summaryrefslogtreecommitdiff
path: root/docs/TestingGuide.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/TestingGuide.rst')
-rw-r--r--docs/TestingGuide.rst713
1 files changed, 713 insertions, 0 deletions
diff --git a/docs/TestingGuide.rst b/docs/TestingGuide.rst
new file mode 100644
index 0000000000..db779185a9
--- /dev/null
+++ b/docs/TestingGuide.rst
@@ -0,0 +1,713 @@
+=================================
+LLVM Testing Infrastructure Guide
+=================================
+
+Written by John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya
+Lattner
+
+.. contents::
+ :local:
+
+Overview
+========
+
+This document is the reference manual for the LLVM testing
+infrastructure. It documents the structure of the LLVM testing
+infrastructure, the tools needed to use it, and how to add and run
+tests.
+
+Requirements
+============
+
+In order to use the LLVM testing infrastructure, you will need all of
+the software required to build LLVM, as well as
+`Python <http://python.org>`_ 2.4 or later.
+
+LLVM testing infrastructure organization
+========================================
+
+The LLVM testing infrastructure contains two major categories of tests:
+regression tests and whole programs. The regression tests are contained
+inside the LLVM repository itself under ``llvm/test`` and are expected
+to always pass -- they should be run before every commit.
+
+The whole programs tests are referred to as the "LLVM test suite" (or
+"test-suite") and are in the ``test-suite`` module in subversion. For
+historical reasons, these tests are also referred to as the "nightly
+tests" in places, which is less ambiguous than "test-suite" and remains
+in use although we run them much more often than nightly.
+
+Regression tests
+----------------
+
+The regression tests are small pieces of code that test a specific
+feature of LLVM or trigger a specific bug in LLVM. They are usually
+written in LLVM assembly language, but can be written in other languages
+if the test targets a particular language front end (and the appropriate
+``--with-llvmgcc`` options were used at ``configure`` time of the
+``llvm`` module). These tests are driven by the 'lit' testing tool,
+which is part of LLVM.
+
+These code fragments are not complete programs. The code generated from
+them is never executed to determine correct behavior.
+
+These code fragment tests are located in the ``llvm/test`` directory.
+
+Typically when a bug is found in LLVM, a regression test containing just
+enough code to reproduce the problem should be written and placed
+somewhere underneath this directory. In most cases, this will be a small
+piece of LLVM assembly language code, often distilled from an actual
+application or benchmark.
+
+``test-suite``
+--------------
+
+The test suite contains whole programs, which are pieces of code which
+can be compiled and linked into a stand-alone program that can be
+executed. These programs are generally written in high level languages
+such as C or C++.
+
+These programs are compiled using a user specified compiler and set of
+flags, and then executed to capture the program output and timing
+information. The output of these programs is compared to a reference
+output to ensure that the program is being compiled correctly.
+
+In addition to compiling and executing programs, whole program tests
+serve as a way of benchmarking LLVM performance, both in terms of the
+efficiency of the programs generated as well as the speed with which
+LLVM compiles, optimizes, and generates code.
+
+The test-suite is located in the ``test-suite`` Subversion module.
+
+Debugging Information tests
+---------------------------
+
+The test suite contains tests to check quality of debugging information.
+The test are written in C based languages or in LLVM assembly language.
+
+These tests are compiled and run under a debugger. The debugger output
+is checked to validate of debugging information. See README.txt in the
+test suite for more information . This test suite is located in the
+``debuginfo-tests`` Subversion module.
+
+Quick start
+===========
+
+The tests are located in two separate Subversion modules. The
+regressions tests are in the main "llvm" module under the directory
+``llvm/test`` (so you get these tests for free with the main llvm tree).
+Use "make check-all" to run the regression tests after building LLVM.
+
+The more comprehensive test suite that includes whole programs in C and
+C++ is in the ``test-suite`` module. See ```test-suite``
+Quickstart <#testsuitequickstart>`_ for more information on running
+these tests.
+
+Regression tests
+----------------
+
+To run all of the LLVM regression tests, use master Makefile in the
+``llvm/test`` directory:
+
+.. code-block:: bash
+
+ % gmake -C llvm/test
+
+or
+
+.. code-block:: bash
+
+ % gmake check
+
+If you have `Clang <http://clang.llvm.org/>`_ checked out and built, you
+can run the LLVM and Clang tests simultaneously using:
+
+or
+
+.. code-block:: bash
+
+ % gmake check-all
+
+To run the tests with Valgrind (Memcheck by default), just append
+``VG=1`` to the commands above, e.g.:
+
+.. code-block:: bash
+
+ % gmake check VG=1
+
+To run individual tests or subsets of tests, you can use the 'llvm-lit'
+script which is built as part of LLVM. For example, to run the
+'Integer/BitPacked.ll' test by itself you can run:
+
+.. code-block:: bash
+
+ % llvm-lit ~/llvm/test/Integer/BitPacked.ll
+
+or to run all of the ARM CodeGen tests:
+
+.. code-block:: bash
+
+ % llvm-lit ~/llvm/test/CodeGen/ARM
+
+For more information on using the 'lit' tool, see 'llvm-lit --help' or
+the 'lit' man page.
+
+Debugging Information tests
+---------------------------
+
+To run debugging information tests simply checkout the tests inside
+clang/test directory.
+
+.. code-block:: bash
+
+ % cd clang/test
+ % svn co http://llvm.org/svn/llvm-project/debuginfo-tests/trunk debuginfo-tests
+
+These tests are already set up to run as part of clang regression tests.
+
+Regression test structure
+=========================
+
+The LLVM regression tests are driven by 'lit' and are located in the
+``llvm/test`` directory.
+
+This directory contains a large array of small tests that exercise
+various features of LLVM and to ensure that regressions do not occur.
+The directory is broken into several sub-directories, each focused on a
+particular area of LLVM. A few of the important ones are:
+
+- ``Analysis``: checks Analysis passes.
+- ``Archive``: checks the Archive library.
+- ``Assembler``: checks Assembly reader/writer functionality.
+- ``Bitcode``: checks Bitcode reader/writer functionality.
+- ``CodeGen``: checks code generation and each target.
+- ``Features``: checks various features of the LLVM language.
+- ``Linker``: tests bitcode linking.
+- ``Transforms``: tests each of the scalar, IPO, and utility transforms
+ to ensure they make the right transformations.
+- ``Verifier``: tests the IR verifier.
+
+Writing new regression tests
+----------------------------
+
+The regression test structure is very simple, but does require some
+information to be set. This information is gathered via ``configure``
+and is written to a file, ``lit.site.cfg`` in ``llvm/test``. The
+``llvm/test`` Makefile does this work for you.
+
+In order for the regression tests to work, each directory of tests must
+have a ``lit.local.cfg`` file. Lit looks for this file to determine how
+to run the tests. This file is just Python code and thus is very
+flexible, but we've standardized it for the LLVM regression tests. If
+you're adding a directory of tests, just copy ``lit.local.cfg`` from
+another directory to get running. The standard ``lit.local.cfg`` simply
+specifies which files to look in for tests. Any directory that contains
+only directories does not need the ``lit.local.cfg`` file. Read the `Lit
+documentation <http://llvm.org/cmds/lit.html>`_ for more information.
+
+The ``llvm-runtests`` function looks at each file that is passed to it
+and gathers any lines together that match "RUN:". These are the "RUN"
+lines that specify how the test is to be run. So, each test script must
+contain RUN lines if it is to do anything. If there are no RUN lines,
+the ``llvm-runtests`` function will issue an error and the test will
+fail.
+
+RUN lines are specified in the comments of the test program using the
+keyword ``RUN`` followed by a colon, and lastly the command (pipeline)
+to execute. Together, these lines form the "script" that
+``llvm-runtests`` executes to run the test case. The syntax of the RUN
+lines is similar to a shell's syntax for pipelines including I/O
+redirection and variable substitution. However, even though these lines
+may *look* like a shell script, they are not. RUN lines are interpreted
+directly by the Tcl ``exec`` command. They are never executed by a
+shell. Consequently the syntax differs from normal shell script syntax
+in a few ways. You can specify as many RUN lines as needed.
+
+lit performs substitution on each RUN line to replace LLVM tool names
+with the full paths to the executable built for each tool (in
+$(LLVM\_OBJ\_ROOT)/$(BuildMode)/bin). This ensures that lit does not
+invoke any stray LLVM tools in the user's path during testing.
+
+Each RUN line is executed on its own, distinct from other lines unless
+its last character is ``\``. This continuation character causes the RUN
+line to be concatenated with the next one. In this way you can build up
+long pipelines of commands without making huge line lengths. The lines
+ending in ``\`` are concatenated until a RUN line that doesn't end in
+``\`` is found. This concatenated set of RUN lines then constitutes one
+execution. Tcl will substitute variables and arrange for the pipeline to
+be executed. If any process in the pipeline fails, the entire line (and
+test case) fails too.
+
+Below is an example of legal RUN lines in a ``.ll`` file:
+
+.. code-block:: llvm
+
+ ; RUN: llvm-as < %s | llvm-dis > %t1
+ ; RUN: llvm-dis < %s.bc-13 > %t2
+ ; RUN: diff %t1 %t2
+
+As with a Unix shell, the RUN: lines permit pipelines and I/O
+redirection to be used. However, the usage is slightly different than
+for Bash. To check what's legal, see the documentation for the `Tcl
+exec <http://www.tcl.tk/man/tcl8.5/TclCmd/exec.htm#M2>`_ command and the
+`tutorial <http://www.tcl.tk/man/tcl8.5/tutorial/Tcl26.html>`_. The
+major differences are:
+
+- You can't do ``2>&1``. That will cause Tcl to write to a file named
+ ``&1``. Usually this is done to get stderr to go through a pipe. You
+ can do that in tcl with ``|&`` so replace this idiom:
+ ``... 2>&1 | grep`` with ``... |& grep``
+- You can only redirect to a file, not to another descriptor and not
+ from a here document.
+- tcl supports redirecting to open files with the @ syntax but you
+ shouldn't use that here.
+
+There are some quoting rules that you must pay attention to when writing
+your RUN lines. In general nothing needs to be quoted. Tcl won't strip
+off any quote characters so they will get passed to the invoked program.
+For example:
+
+.. code-block:: bash
+
+ ... | grep 'find this string'
+
+This will fail because the ' characters are passed to grep. This would
+instruction grep to look for ``'find`` in the files ``this`` and
+``string'``. To avoid this use curly braces to tell Tcl that it should
+treat everything enclosed as one value. So our example would become:
+
+.. code-block:: bash
+
+ ... | grep {find this string}
+
+Additionally, the characters ``[`` and ``]`` are treated specially by
+Tcl. They tell Tcl to interpret the content as a command to execute.
+Since these characters are often used in regular expressions this can
+have disastrous results and cause the entire test run in a directory to
+fail. For example, a common idiom is to look for some basicblock number:
+
+.. code-block:: bash
+
+ ... | grep bb[2-8]
+
+This, however, will cause Tcl to fail because its going to try to
+execute a program named "2-8". Instead, what you want is this:
+
+.. code-block:: bash
+
+ ... | grep {bb\[2-8\]}
+
+Finally, if you need to pass the ``\`` character down to a program, then
+it must be doubled. This is another Tcl special character. So, suppose
+you had:
+
+.. code-block:: bash
+
+ ... | grep 'i32\*'
+
+This will fail to match what you want (a pointer to i32). First, the
+``'`` do not get stripped off. Second, the ``\`` gets stripped off by
+Tcl so what grep sees is: ``'i32*'``. That's not likely to match
+anything. To resolve this you must use ``\\`` and the ``{}``, like this:
+
+.. code-block:: bash
+
+ ... | grep {i32\\*}
+
+If your system includes GNU ``grep``, make sure that ``GREP_OPTIONS`` is
+not set in your environment. Otherwise, you may get invalid results
+(both false positives and false negatives).
+
+The FileCheck utility
+---------------------
+
+A powerful feature of the RUN: lines is that it allows any arbitrary
+commands to be executed as part of the test harness. While standard
+(portable) unix tools like 'grep' work fine on run lines, as you see
+above, there are a lot of caveats due to interaction with Tcl syntax,
+and we want to make sure the run lines are portable to a wide range of
+systems. Another major problem is that grep is not very good at checking
+to verify that the output of a tools contains a series of different
+output in a specific order. The FileCheck tool was designed to help with
+these problems.
+
+FileCheck (whose basic command line arguments are described in `the
+FileCheck man page <http://llvm.org/cmds/FileCheck.html>`_ is designed
+to read a file to check from standard input, and the set of things to
+verify from a file specified as a command line argument. A simple
+example of using FileCheck from a RUN line looks like this:
+
+.. code-block:: llvm
+
+ ; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s
+
+This syntax says to pipe the current file ("%s") into llvm-as, pipe that
+into llc, then pipe the output of llc into FileCheck. This means that
+FileCheck will be verifying its standard input (the llc output) against
+the filename argument specified (the original .ll file specified by
+"%s"). To see how this works, let's look at the rest of the .ll file
+(after the RUN line):
+
+.. code-block:: llvm
+
+ define void @sub1(i32* %p, i32 %v) {
+ entry:
+ ; CHECK: sub1:
+ ; CHECK: subl
+ %0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
+ ret void
+ }
+
+ define void @inc4(i64* %p) {
+ entry:
+ ; CHECK: inc4:
+ ; CHECK: incq
+ %0 = tail call i64 @llvm.atomic.load.add.i64.p0i64(i64* %p, i64 1)
+ ret void
+ }
+
+Here you can see some "CHECK:" lines specified in comments. Now you can
+see how the file is piped into llvm-as, then llc, and the machine code
+output is what we are verifying. FileCheck checks the machine code
+output to verify that it matches what the "CHECK:" lines specify.
+
+The syntax of the CHECK: lines is very simple: they are fixed strings
+that must occur in order. FileCheck defaults to ignoring horizontal
+whitespace differences (e.g. a space is allowed to match a tab) but
+otherwise, the contents of the CHECK: line is required to match some
+thing in the test file exactly.
+
+One nice thing about FileCheck (compared to grep) is that it allows
+merging test cases together into logical groups. For example, because
+the test above is checking for the "sub1:" and "inc4:" labels, it will
+not match unless there is a "subl" in between those labels. If it
+existed somewhere else in the file, that would not count: "grep subl"
+matches if subl exists anywhere in the file.
+
+The FileCheck -check-prefix option
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The FileCheck -check-prefix option allows multiple test configurations
+to be driven from one .ll file. This is useful in many circumstances,
+for example, testing different architectural variants with llc. Here's a
+simple example:
+
+.. code-block:: llvm
+
+ ; RUN: llvm-as < %s | llc -mtriple=i686-apple-darwin9 -mattr=sse41 \
+ ; RUN: | FileCheck %s -check-prefix=X32
+ ; RUN: llvm-as < %s | llc -mtriple=x86_64-apple-darwin9 -mattr=sse41 \
+ ; RUN: | FileCheck %s -check-prefix=X64
+
+ define <4 x i32> @pinsrd_1(i32 %s, <4 x i32> %tmp) nounwind {
+ %tmp1 = insertelement <4 x i32> %tmp, i32 %s, i32 1
+ ret <4 x i32> %tmp1
+ ; X32: pinsrd_1:
+ ; X32: pinsrd $1, 4(%esp), %xmm0
+
+ ; X64: pinsrd_1:
+ ; X64: pinsrd $1, %edi, %xmm0
+ }
+
+In this case, we're testing that we get the expected code generation
+with both 32-bit and 64-bit code generation.
+
+The "CHECK-NEXT:" directive
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sometimes you want to match lines and would like to verify that matches
+happen on exactly consecutive lines with no other lines in between them.
+In this case, you can use CHECK: and CHECK-NEXT: directives to specify
+this. If you specified a custom check prefix, just use "<PREFIX>-NEXT:".
+For example, something like this works as you'd expect:
+
+.. code-block:: llvm
+
+ define void @t2(<2 x double>* %r, <2 x double>* %A, double %B) {
+ %tmp3 = load <2 x double>* %A, align 16
+ %tmp7 = insertelement <2 x double> undef, double %B, i32 0
+ %tmp9 = shufflevector <2 x double> %tmp3,
+ <2 x double> %tmp7,
+ <2 x i32> < i32 0, i32 2 >
+ store <2 x double> %tmp9, <2 x double>* %r, align 16
+ ret void
+
+ ; CHECK: t2:
+ ; CHECK: movl 8(%esp), %eax
+ ; CHECK-NEXT: movapd (%eax), %xmm0
+ ; CHECK-NEXT: movhpd 12(%esp), %xmm0
+ ; CHECK-NEXT: movl 4(%esp), %eax
+ ; CHECK-NEXT: movapd %xmm0, (%eax)
+ ; CHECK-NEXT: ret
+ }
+
+CHECK-NEXT: directives reject the input unless there is exactly one
+newline between it an the previous directive. A CHECK-NEXT cannot be the
+first directive in a file.
+
+The "CHECK-NOT:" directive
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The CHECK-NOT: directive is used to verify that a string doesn't occur
+between two matches (or the first match and the beginning of the file).
+For example, to verify that a load is removed by a transformation, a
+test like this can be used:
+
+.. code-block:: llvm
+
+ define i8 @coerce_offset0(i32 %V, i32* %P) {
+ store i32 %V, i32* %P
+
+ %P2 = bitcast i32* %P to i8*
+ %P3 = getelementptr i8* %P2, i32 2
+
+ %A = load i8* %P3
+ ret i8 %A
+ ; CHECK: @coerce_offset0
+ ; CHECK-NOT: load
+ ; CHECK: ret i8
+ }
+
+FileCheck Pattern Matching Syntax
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The CHECK: and CHECK-NOT: directives both take a pattern to match. For
+most uses of FileCheck, fixed string matching is perfectly sufficient.
+For some things, a more flexible form of matching is desired. To support
+this, FileCheck allows you to specify regular expressions in matching
+strings, surrounded by double braces: **{{yourregex}}**. Because we want
+to use fixed string matching for a majority of what we do, FileCheck has
+been designed to support mixing and matching fixed string matching with
+regular expressions. This allows you to write things like this:
+
+.. code-block:: llvm
+
+ ; CHECK: movhpd {{[0-9]+}}(%esp), {{%xmm[0-7]}}
+
+In this case, any offset from the ESP register will be allowed, and any
+xmm register will be allowed.
+
+Because regular expressions are enclosed with double braces, they are
+visually distinct, and you don't need to use escape characters within
+the double braces like you would in C. In the rare case that you want to
+match double braces explicitly from the input, you can use something
+ugly like **{{[{][{]}}** as your pattern.
+
+FileCheck Variables
+^^^^^^^^^^^^^^^^^^^
+
+It is often useful to match a pattern and then verify that it occurs
+again later in the file. For codegen tests, this can be useful to allow
+any register, but verify that that register is used consistently later.
+To do this, FileCheck allows named variables to be defined and
+substituted into patterns. Here is a simple example:
+
+.. code-block:: llvm
+
+ ; CHECK: test5:
+ ; CHECK: notw [[REGISTER:%[a-z]+]]
+ ; CHECK: andw {{.*}}[[REGISTER]]
+
+The first check line matches a regex (``%[a-z]+``) and captures it into
+the variables "REGISTER". The second line verifies that whatever is in
+REGISTER occurs later in the file after an "andw". FileCheck variable
+references are always contained in ``[[ ]]`` pairs, are named, and their
+names can be formed with the regex "``[a-zA-Z][a-zA-Z0-9]*``". If a
+colon follows the name, then it is a definition of the variable, if not,
+it is a use.
+
+FileCheck variables can be defined multiple times, and uses always get
+the latest value. Note that variables are all read at the start of a
+"CHECK" line and are all defined at the end. This means that if you have
+something like "``CHECK: [[XYZ:.*]]x[[XYZ]]``" that the check line will
+read the previous value of the XYZ variable and define a new one after
+the match is performed. If you need to do something like this you can
+probably take advantage of the fact that FileCheck is not actually
+line-oriented when it matches, this allows you to define two separate
+CHECK lines that match on the same line.
+
+Variables and substitutions
+---------------------------
+
+With a RUN line there are a number of substitutions that are permitted.
+In general, any Tcl variable that is available in the ``substitute``
+function (in ``test/lib/llvm.exp``) can be substituted into a RUN line.
+To make a substitution just write the variable's name preceded by a $.
+Additionally, for compatibility reasons with previous versions of the
+test library, certain names can be accessed with an alternate syntax: a
+% prefix. These alternates are deprecated and may go away in a future
+version.
+
+Here are the available variable names. The alternate syntax is listed in
+parentheses.
+
+``$test`` (``%s``)
+ The full path to the test case's source. This is suitable for passing on
+ the command line as the input to an llvm tool.
+
+``%(line)``, ``%(line+<number>)``, ``%(line-<number>)``
+ The number of the line where this variable is used, with an optional
+ integer offset. This can be used in tests with multiple RUN: lines,
+ which reference test file's line numbers.
+
+``$srcdir``
+ The source directory from where the "``make check``" was run.
+
+``objdir``
+ The object directory that corresponds to the ``$srcdir``.
+
+``subdir``
+ A partial path from the ``test`` directory that contains the
+ sub-directory that contains the test source being executed.
+
+``srcroot``
+ The root directory of the LLVM src tree.
+
+``objroot``
+ The root directory of the LLVM object tree. This could be the same as
+ the srcroot.
+
+``path``
+ The path to the directory that contains the test case source. This is
+ for locating any supporting files that are not generated by the test,
+ but used by the test.
+
+``tmp``
+ The path to a temporary file name that could be used for this test case.
+ The file name won't conflict with other test cases. You can append to it
+ if you need multiple temporaries. This is useful as the destination of
+ some redirected output.
+
+``target_triplet`` (``%target_triplet``)
+ The target triplet that corresponds to the current host machine (the one
+ running the test cases). This should probably be called "host".
+
+``link`` (``%link``)
+ This full link command used to link LLVM executables. This has all the
+ configured -I, -L and -l options.
+
+``shlibext`` (``%shlibext``)
+ The suffix for the host platforms share library (dll) files. This
+ includes the period as the first character.
+
+To add more variables, two things need to be changed. First, add a line
+in the ``test/Makefile`` that creates the ``site.exp`` file. This will
+"set" the variable as a global in the site.exp file. Second, in the
+``test/lib/llvm.exp`` file, in the substitute proc, add the variable
+name to the list of "global" declarations at the beginning of the proc.
+That's it, the variable can then be used in test scripts.
+
+Other Features
+--------------
+
+To make RUN line writing easier, there are several shell scripts located
+in the ``llvm/test/Scripts`` directory. This directory is in the PATH
+when running tests, so you can just call these scripts using their name.
+For example:
+
+``ignore``
+ This script runs its arguments and then always returns 0. This is useful
+ in cases where the test needs to cause a tool to generate an error (e.g.
+ to check the error output). However, any program in a pipeline that
+ returns a non-zero result will cause the test to fail. This script
+ overcomes that issue and nicely documents that the test case is
+ purposefully ignoring the result code of the tool
+``not``
+ This script runs its arguments and then inverts the result code from it.
+ Zero result codes become 1. Non-zero result codes become 0. This is
+ useful to invert the result of a grep. For example "not grep X" means
+ succeed only if you don't find X in the input.
+
+Sometimes it is necessary to mark a test case as "expected fail" or
+XFAIL. You can easily mark a test as XFAIL just by including ``XFAIL:``
+on a line near the top of the file. This signals that the test case
+should succeed if the test fails. Such test cases are counted separately
+by the testing tool. To specify an expected fail, use the XFAIL keyword
+in the comments of the test program followed by a colon and one or more
+failure patterns. Each failure pattern can be either ``*`` (to specify
+fail everywhere), or a part of a target triple (indicating the test
+should fail on that platform), or the name of a configurable feature
+(for example, ``loadable_module``). If there is a match, the test is
+expected to fail. If not, the test is expected to succeed. To XFAIL
+everywhere just specify ``XFAIL: *``. Here is an example of an ``XFAIL``
+line:
+
+.. code-block:: llvm
+
+ ; XFAIL: darwin,sun
+
+To make the output more useful, the ``llvm_runtest`` function wil scan
+the lines of the test case for ones that contain a pattern that matches
+``PR[0-9]+``. This is the syntax for specifying a PR (Problem Report) number
+that is related to the test case. The number after "PR" specifies the
+LLVM bugzilla number. When a PR number is specified, it will be used in
+the pass/fail reporting. This is useful to quickly get some context when
+a test fails.
+
+Finally, any line that contains "END." will cause the special
+interpretation of lines to terminate. This is generally done right after
+the last RUN: line. This has two side effects:
+
+(a) it prevents special interpretation of lines that are part of the test
+ program, not the instructions to the test case, and
+
+(b) it speeds things up for really big test cases by avoiding
+ interpretation of the remainder of the file.
+
+``test-suite`` Overview
+=======================
+
+The ``test-suite`` module contains a number of programs that can be
+compiled and executed. The ``test-suite`` includes reference outputs for
+all of the programs, so that the output of the executed program can be
+checked for correctness.
+
+``test-suite`` tests are divided into three types of tests: MultiSource,
+SingleSource, and External.
+
+- ``test-suite/SingleSource``
+
+ The SingleSource directory contains test programs that are only a
+ single source file in size. These are usually small benchmark
+ programs or small programs that calculate a particular value. Several
+ such programs are grouped together in each directory.
+
+- ``test-suite/MultiSource``
+
+ The MultiSource directory contains subdirectories which contain
+ entire programs with multiple source files. Large benchmarks and
+ whole applications go here.
+
+- ``test-suite/External``
+
+ The External directory contains Makefiles for building code that is
+ external to (i.e., not distributed with) LLVM. The most prominent
+ members of this directory are the SPEC 95 and SPEC 2000 benchmark
+ suites. The ``External`` directory does not contain these actual
+ tests, but only the Makefiles that know how to properly compile these
+ programs from somewhere else. When using ``LNT``, use the
+ ``--test-externals`` option to include these tests in the results.
+
+``test-suite`` Quickstart
+-------------------------
+
+The modern way of running the ``test-suite`` is focused on testing and
+benchmarking complete compilers using the
+`LNT <http://llvm.org/docs/lnt>`_ testing infrastructure.
+
+For more information on using LNT to execute the ``test-suite``, please
+see the `LNT Quickstart <http://llvm.org/docs/lnt/quickstart.html>`_
+documentation.
+
+``test-suite`` Makefiles
+------------------------
+
+Historically, the ``test-suite`` was executed using a complicated setup
+of Makefiles. The LNT based approach above is recommended for most
+users, but there are some testing scenarios which are not supported by
+the LNT approach. In addition, LNT currently uses the Makefile setup
+under the covers and so developers who are interested in how LNT works
+under the hood may want to understand the Makefile based setup.
+
+For more information on the ``test-suite`` Makefile setup, please see
+the `Test Suite Makefile Guide. <TestSuiteMakefileGuide.html>`_