summaryrefslogtreecommitdiff
path: root/docs/tutorial/LangImpl5.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/tutorial/LangImpl5.html')
-rw-r--r--docs/tutorial/LangImpl5.html1772
1 files changed, 0 insertions, 1772 deletions
diff --git a/docs/tutorial/LangImpl5.html b/docs/tutorial/LangImpl5.html
deleted file mode 100644
index 768d9a0e11..0000000000
--- a/docs/tutorial/LangImpl5.html
+++ /dev/null
@@ -1,1772 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Extending the Language: Control Flow</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Extending the Language: Control Flow</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 5
- <ol>
- <li><a href="#intro">Chapter 5 Introduction</a></li>
- <li><a href="#ifthen">If/Then/Else</a>
- <ol>
- <li><a href="#iflexer">Lexer Extensions</a></li>
- <li><a href="#ifast">AST Extensions</a></li>
- <li><a href="#ifparser">Parser Extensions</a></li>
- <li><a href="#ifir">LLVM IR</a></li>
- <li><a href="#ifcodegen">Code Generation</a></li>
- </ol>
- </li>
- <li><a href="#for">'for' Loop Expression</a>
- <ol>
- <li><a href="#forlexer">Lexer Extensions</a></li>
- <li><a href="#forast">AST Extensions</a></li>
- <li><a href="#forparser">Parser Extensions</a></li>
- <li><a href="#forir">LLVM IR</a></li>
- <li><a href="#forcodegen">Code Generation</a></li>
- </ol>
- </li>
- <li><a href="#code">Full Code Listing</a></li>
- </ol>
-</li>
-<li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language:
-User-defined Operators</li>
-</ul>
-
-<div class="doc_author">
- <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 5 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial. Parts 1-4 described the implementation of the simple
-Kaleidoscope language and included support for generating LLVM IR, followed by
-optimizations and a JIT compiler. Unfortunately, as presented, Kaleidoscope is
-mostly useless: it has no control flow other than call and return. This means
-that you can't have conditional branches in the code, significantly limiting its
-power. In this episode of "build that compiler", we'll extend Kaleidoscope to
-have an if/then/else expression plus a simple 'for' loop.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="ifthen">If/Then/Else</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Extending Kaleidoscope to support if/then/else is quite straightforward. It
-basically requires adding support for this "new" concept to the lexer,
-parser, AST, and LLVM code emitter. This example is nice, because it shows how
-easy it is to "grow" a language over time, incrementally extending it as new
-ideas are discovered.</p>
-
-<p>Before we get going on "how" we add this extension, lets talk about "what" we
-want. The basic idea is that we want to be able to write this sort of thing:
-</p>
-
-<div class="doc_code">
-<pre>
-def fib(x)
- if x &lt; 3 then
- 1
- else
- fib(x-1)+fib(x-2);
-</pre>
-</div>
-
-<p>In Kaleidoscope, every construct is an expression: there are no statements.
-As such, the if/then/else expression needs to return a value like any other.
-Since we're using a mostly functional form, we'll have it evaluate its
-conditional, then return the 'then' or 'else' value based on how the condition
-was resolved. This is very similar to the C "?:" expression.</p>
-
-<p>The semantics of the if/then/else expression is that it evaluates the
-condition to a boolean equality value: 0.0 is considered to be false and
-everything else is considered to be true.
-If the condition is true, the first subexpression is evaluated and returned, if
-the condition is false, the second subexpression is evaluated and returned.
-Since Kaleidoscope allows side-effects, this behavior is important to nail down.
-</p>
-
-<p>Now that we know what we "want", lets break this down into its constituent
-pieces.</p>
-
-<!-- ======================================================================= -->
-<h4><a name="iflexer">Lexer Extensions for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-
-<div>
-
-<p>The lexer extensions are straightforward. First we add new enum values
-for the relevant tokens:</p>
-
-<div class="doc_code">
-<pre>
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
-</pre>
-</div>
-
-<p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
-stuff:</p>
-
-<div class="doc_code">
-<pre>
- ...
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- <b>if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;</b>
- return tok_identifier;
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifast">AST Extensions for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>To represent the new expression we add a new AST node for it:</p>
-
-<div class="doc_code">
-<pre>
-/// IfExprAST - Expression class for if/then/else.
-class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
-public:
- IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
- : Cond(cond), Then(then), Else(_else) {}
- virtual Value *Codegen();
-};
-</pre>
-</div>
-
-<p>The AST node just has pointers to the various subexpressions.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifparser">Parser Extensions for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Now that we have the relevant tokens coming from the lexer and we have the
-AST node to build, our parsing logic is relatively straightforward. First we
-define a new parsing function:</p>
-
-<div class="doc_code">
-<pre>
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
- getNextToken(); // eat the if.
-
- // condition.
- ExprAST *Cond = ParseExpression();
- if (!Cond) return 0;
-
- if (CurTok != tok_then)
- return Error("expected then");
- getNextToken(); // eat the then
-
- ExprAST *Then = ParseExpression();
- if (Then == 0) return 0;
-
- if (CurTok != tok_else)
- return Error("expected else");
-
- getNextToken();
-
- ExprAST *Else = ParseExpression();
- if (!Else) return 0;
-
- return new IfExprAST(Cond, Then, Else);
-}
-</pre>
-</div>
-
-<p>Next we hook it up as a primary expression:</p>
-
-<div class="doc_code">
-<pre>
-static ExprAST *ParsePrimary() {
- switch (CurTok) {
- default: return Error("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- <b>case tok_if: return ParseIfExpr();</b>
- }
-}
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifir">LLVM IR for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Now that we have it parsing and building the AST, the final piece is adding
-LLVM code generation support. This is the most interesting part of the
-if/then/else example, because this is where it starts to introduce new concepts.
-All of the code above has been thoroughly described in previous chapters.
-</p>
-
-<p>To motivate the code we want to produce, lets take a look at a simple
-example. Consider:</p>
-
-<div class="doc_code">
-<pre>
-extern foo();
-extern bar();
-def baz(x) if x then foo() else bar();
-</pre>
-</div>
-
-<p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
-looks like this:</p>
-
-<div class="doc_code">
-<pre>
-declare double @foo()
-
-declare double @bar()
-
-define double @baz(double %x) {
-entry:
- %ifcond = fcmp one double %x, 0.000000e+00
- br i1 %ifcond, label %then, label %else
-
-then: ; preds = %entry
- %calltmp = call double @foo()
- br label %ifcont
-
-else: ; preds = %entry
- %calltmp1 = call double @bar()
- br label %ifcont
-
-ifcont: ; preds = %else, %then
- %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
- ret double %iftmp
-}
-</pre>
-</div>
-
-<p>To visualize the control flow graph, you can use a nifty feature of the LLVM
-'<a href="http://llvm.org/cmds/opt.html">opt</a>' tool. If you put this LLVM IR
-into "t.ll" and run "<tt>llvm-as &lt; t.ll | opt -analyze -view-cfg</tt>", <a
-href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
-see this graph:</p>
-
-<div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423"
-height="315"></div>
-
-<p>Another way to get this is to call "<tt>F-&gt;viewCFG()</tt>" or
-"<tt>F-&gt;viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by
-inserting actual calls into the code and recompiling or by calling these in the
-debugger. LLVM has many nice features for visualizing various graphs.</p>
-
-<p>Getting back to the generated code, it is fairly simple: the entry block
-evaluates the conditional expression ("x" in our case here) and compares the
-result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
-instruction ('one' is "Ordered and Not Equal"). Based on the result of this
-expression, the code jumps to either the "then" or "else" blocks, which contain
-the expressions for the true/false cases.</p>
-
-<p>Once the then/else blocks are finished executing, they both branch back to the
-'ifcont' block to execute the code that happens after the if/then/else. In this
-case the only thing left to do is to return to the caller of the function. The
-question then becomes: how does the code know which expression to return?</p>
-
-<p>The answer to this question involves an important SSA operation: the
-<a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
-operation</a>. If you're not familiar with SSA, <a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
-article</a> is a good introduction and there are various other introductions to
-it available on your favorite search engine. The short version is that
-"execution" of the Phi operation requires "remembering" which block control came
-from. The Phi operation takes on the value corresponding to the input control
-block. In this case, if control comes in from the "then" block, it gets the
-value of "calltmp". If control comes from the "else" block, it gets the value
-of "calltmp1".</p>
-
-<p>At this point, you are probably starting to think "Oh no! This means my
-simple and elegant front-end will have to start generating SSA form in order to
-use LLVM!". Fortunately, this is not the case, and we strongly advise
-<em>not</em> implementing an SSA construction algorithm in your front-end
-unless there is an amazingly good reason to do so. In practice, there are two
-sorts of values that float around in code written for your average imperative
-programming language that might need Phi nodes:</p>
-
-<ol>
-<li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
-<li>Values that are implicit in the structure of your AST, such as the Phi node
-in this case.</li>
-</ol>
-
-<p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable
-variables"), we'll talk about #1
-in depth. For now, just believe me that you don't need SSA construction to
-handle this case. For #2, you have the choice of using the techniques that we will
-describe for #1, or you can insert Phi nodes directly, if convenient. In this
-case, it is really really easy to generate the Phi node, so we choose to do it
-directly.</p>
-
-<p>Okay, enough of the motivation and overview, lets generate code!</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifcodegen">Code Generation for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>In order to generate code for this, we implement the <tt>Codegen</tt> method
-for <tt>IfExprAST</tt>:</p>
-
-<div class="doc_code">
-<pre>
-Value *IfExprAST::Codegen() {
- Value *CondV = Cond-&gt;Codegen();
- if (CondV == 0) return 0;
-
- // Convert condition to a bool by comparing equal to 0.0.
- CondV = Builder.CreateFCmpONE(CondV,
- ConstantFP::get(getGlobalContext(), APFloat(0.0)),
- "ifcond");
-</pre>
-</div>
-
-<p>This code is straightforward and similar to what we saw before. We emit the
-expression for the condition, then compare that value to zero to get a truth
-value as a 1-bit (bool) value.</p>
-
-<div class="doc_code">
-<pre>
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
-
- // Create blocks for the then and else cases. Insert the 'then' block at the
- // end of the function.
- BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
- BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
- BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
-
- Builder.CreateCondBr(CondV, ThenBB, ElseBB);
-</pre>
-</div>
-
-<p>This code creates the basic blocks that are related to the if/then/else
-statement, and correspond directly to the blocks in the example above. The
-first line gets the current Function object that is being built. It
-gets this by asking the builder for the current BasicBlock, and asking that
-block for its "parent" (the function it is currently embedded into).</p>
-
-<p>Once it has that, it creates three blocks. Note that it passes "TheFunction"
-into the constructor for the "then" block. This causes the constructor to
-automatically insert the new block into the end of the specified function. The
-other two blocks are created, but aren't yet inserted into the function.</p>
-
-<p>Once the blocks are created, we can emit the conditional branch that chooses
-between them. Note that creating new blocks does not implicitly affect the
-IRBuilder, so it is still inserting into the block that the condition
-went into. Also note that it is creating a branch to the "then" block and the
-"else" block, even though the "else" block isn't inserted into the function yet.
-This is all ok: it is the standard way that LLVM supports forward
-references.</p>
-
-<div class="doc_code">
-<pre>
- // Emit then value.
- Builder.SetInsertPoint(ThenBB);
-
- Value *ThenV = Then-&gt;Codegen();
- if (ThenV == 0) return 0;
-
- Builder.CreateBr(MergeBB);
- // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
- ThenBB = Builder.GetInsertBlock();
-</pre>
-</div>
-
-<p>After the conditional branch is inserted, we move the builder to start
-inserting into the "then" block. Strictly speaking, this call moves the
-insertion point to be at the end of the specified block. However, since the
-"then" block is empty, it also starts out by inserting at the beginning of the
-block. :)</p>
-
-<p>Once the insertion point is set, we recursively codegen the "then" expression
-from the AST. To finish off the "then" block, we create an unconditional branch
-to the merge block. One interesting (and very important) aspect of the LLVM IR
-is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
-to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
-instruction</a> such as return or branch. This means that all control flow,
-<em>including fall throughs</em> must be made explicit in the LLVM IR. If you
-violate this rule, the verifier will emit an error.</p>
-
-<p>The final line here is quite subtle, but is very important. The basic issue
-is that when we create the Phi node in the merge block, we need to set up the
-block/value pairs that indicate how the Phi will work. Importantly, the Phi
-node expects to have an entry for each predecessor of the block in the CFG. Why
-then, are we getting the current block when we just set it to ThenBB 5 lines
-above? The problem is that the "Then" expression may actually itself change the
-block that the Builder is emitting into if, for example, it contains a nested
-"if/then/else" expression. Because calling Codegen recursively could
-arbitrarily change the notion of the current block, we are required to get an
-up-to-date value for code that will set up the Phi node.</p>
-
-<div class="doc_code">
-<pre>
- // Emit else block.
- TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
- Builder.SetInsertPoint(ElseBB);
-
- Value *ElseV = Else-&gt;Codegen();
- if (ElseV == 0) return 0;
-
- Builder.CreateBr(MergeBB);
- // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
- ElseBB = Builder.GetInsertBlock();
-</pre>
-</div>
-
-<p>Code generation for the 'else' block is basically identical to codegen for
-the 'then' block. The only significant difference is the first line, which adds
-the 'else' block to the function. Recall previously that the 'else' block was
-created, but not added to the function. Now that the 'then' and 'else' blocks
-are emitted, we can finish up with the merge code:</p>
-
-<div class="doc_code">
-<pre>
- // Emit merge block.
- TheFunction->getBasicBlockList().push_back(MergeBB);
- Builder.SetInsertPoint(MergeBB);
- PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
- "iftmp");
-
- PN->addIncoming(ThenV, ThenBB);
- PN->addIncoming(ElseV, ElseBB);
- return PN;
-}
-</pre>
-</div>
-
-<p>The first two lines here are now familiar: the first adds the "merge" block
-to the Function object (it was previously floating, like the else block above).
-The second block changes the insertion point so that newly created code will go
-into the "merge" block. Once that is done, we need to create the PHI node and
-set up the block/value pairs for the PHI.</p>
-
-<p>Finally, the CodeGen function returns the phi node as the value computed by
-the if/then/else expression. In our example above, this returned value will
-feed into the code for the top-level function, which will create the return
-instruction.</p>
-
-<p>Overall, we now have the ability to execute conditional code in
-Kaleidoscope. With this extension, Kaleidoscope is a fairly complete language
-that can calculate a wide variety of numeric functions. Next up we'll add
-another useful expression that is familiar from non-functional languages...</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="for">'for' Loop Expression</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Now that we know how to add basic control flow constructs to the language,
-we have the tools to add more powerful things. Lets add something more
-aggressive, a 'for' expression:</p>
-
-<div class="doc_code">
-<pre>
- extern putchard(char)
- def printstar(n)
- for i = 1, i &lt; n, 1.0 in
- putchard(42); # ascii 42 = '*'
-
- # print 100 '*' characters
- printstar(100);
-</pre>
-</div>
-
-<p>This expression defines a new variable ("i" in this case) which iterates from
-a starting value, while the condition ("i &lt; n" in this case) is true,
-incrementing by an optional step value ("1.0" in this case). If the step value
-is omitted, it defaults to 1.0. While the loop is true, it executes its
-body expression. Because we don't have anything better to return, we'll just
-define the loop as always returning 0.0. In the future when we have mutable
-variables, it will get more useful.</p>
-
-<p>As before, lets talk about the changes that we need to Kaleidoscope to
-support this.</p>
-
-<!-- ======================================================================= -->
-<h4><a name="forlexer">Lexer Extensions for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The lexer extensions are the same sort of thing as for if/then/else:</p>
-
-<div class="doc_code">
-<pre>
- ... in enum Token ...
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
-<b> tok_for = -9, tok_in = -10</b>
-
- ... in gettok ...
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;
- <b>if (IdentifierStr == "for") return tok_for;
- if (IdentifierStr == "in") return tok_in;</b>
- return tok_identifier;
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forast">AST Extensions for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The AST node is just as simple. It basically boils down to capturing
-the variable name and the constituent expressions in the node.</p>
-
-<div class="doc_code">
-<pre>
-/// ForExprAST - Expression class for for/in.
-class ForExprAST : public ExprAST {
- std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
-public:
- ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
- virtual Value *Codegen();
-};
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forparser">Parser Extensions for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The parser code is also fairly standard. The only interesting thing here is
-handling of the optional step value. The parser code handles it by checking to
-see if the second comma is present. If not, it sets the step value to null in
-the AST node:</p>
-
-<div class="doc_code">
-<pre>
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
- getNextToken(); // eat the for.
-
- if (CurTok != tok_identifier)
- return Error("expected identifier after for");
-
- std::string IdName = IdentifierStr;
- getNextToken(); // eat identifier.
-
- if (CurTok != '=')
- return Error("expected '=' after for");
- getNextToken(); // eat '='.
-
-
- ExprAST *Start = ParseExpression();
- if (Start == 0) return 0;
- if (CurTok != ',')
- return Error("expected ',' after for start value");
- getNextToken();
-
- ExprAST *End = ParseExpression();
- if (End == 0) return 0;
-
- // The step value is optional.
- ExprAST *Step = 0;
- if (CurTok == ',') {
- getNextToken();
- Step = ParseExpression();
- if (Step == 0) return 0;
- }
-
- if (CurTok != tok_in)
- return Error("expected 'in' after for");
- getNextToken(); // eat 'in'.
-
- ExprAST *Body = ParseExpression();
- if (Body == 0) return 0;
-
- return new ForExprAST(IdName, Start, End, Step, Body);
-}
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forir">LLVM IR for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Now we get to the good part: the LLVM IR we want to generate for this thing.
-With the simple example above, we get this LLVM IR (note that this dump is
-generated with optimizations disabled for clarity):
-</p>
-
-<div class="doc_code">
-<pre>
-declare double @putchard(double)
-
-define double @printstar(double %n) {
-entry:
- ; initial value = 1.0 (inlined into phi)
- br label %loop
-
-loop: ; preds = %loop, %entry
- %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
- ; body
- %calltmp = call double @putchard(double 4.200000e+01)
- ; increment
- %nextvar = fadd double %i, 1.000000e+00
-
- ; termination test
- %cmptmp = fcmp ult double %i, %n
- %booltmp = uitofp i1 %cmptmp to double
- %loopcond = fcmp one double %booltmp, 0.000000e+00
- br i1 %loopcond, label %loop, label %afterloop
-
-afterloop: ; preds = %loop
- ; loop always returns 0.0
- ret double 0.000000e+00
-}
-</pre>
-</div>
-
-<p>This loop contains all the same constructs we saw before: a phi node, several
-expressions, and some basic blocks. Lets see how this fits together.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forcodegen">Code Generation for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The first part of Codegen is very simple: we just output the start expression
-for the loop value:</p>
-
-<div class="doc_code">
-<pre>
-Value *ForExprAST::Codegen() {
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start-&gt;Codegen();
- if (StartVal == 0) return 0;
-</pre>
-</div>
-
-<p>With this out of the way, the next step is to set up the LLVM basic block
-for the start of the loop body. In the case above, the whole loop body is one
-block, but remember that the body code itself could consist of multiple blocks
-(e.g. if it contains an if/then/else or a for/in expression).</p>
-
-<div class="doc_code">
-<pre>
- // Make the new basic block for the loop header, inserting after current
- // block.
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
- BasicBlock *PreheaderBB = Builder.GetInsertBlock();
- BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-
- // Insert an explicit fall through from the current block to the LoopBB.
- Builder.CreateBr(LoopBB);
-</pre>
-</div>
-
-<p>This code is similar to what we saw for if/then/else. Because we will need
-it to create the Phi node, we remember the block that falls through into the
-loop. Once we have that, we create the actual block that starts the loop and
-create an unconditional branch for the fall-through between the two blocks.</p>
-
-<div class="doc_code">
-<pre>
- // Start insertion in LoopBB.
- Builder.SetInsertPoint(LoopBB);
-
- // Start the PHI node with an entry for Start.
- PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
- Variable-&gt;addIncoming(StartVal, PreheaderBB);
-</pre>
-</div>
-
-<p>Now that the "preheader" for the loop is set up, we switch to emitting code
-for the loop body. To begin with, we move the insertion point and create the
-PHI node for the loop induction variable. Since we already know the incoming
-value for the starting value, we add it to the Phi node. Note that the Phi will
-eventually get a second value for the backedge, but we can't set it up yet
-(because it doesn't exist!).</p>
-
-<div class="doc_code">
-<pre>
- // Within the loop, the variable is defined equal to the PHI node. If it
- // shadows an existing variable, we have to restore it, so save it now.
- Value *OldVal = NamedValues[VarName];
- NamedValues[VarName] = Variable;
-
- // Emit the body of the loop. This, like any other expr, can change the
- // current BB. Note that we ignore the value computed by the body, but don't
- // allow an error.
- if (Body-&gt;Codegen() == 0)
- return 0;
-</pre>
-</div>
-
-<p>Now the code starts to get more interesting. Our 'for' loop introduces a new
-variable to the symbol table. This means that our symbol table can now contain
-either function arguments or loop variables. To handle this, before we codegen
-the body of the loop, we add the loop variable as the current value for its
-name. Note that it is possible that there is a variable of the same name in the
-outer scope. It would be easy to make this an error (emit an error and return
-null if there is already an entry for VarName) but we choose to allow shadowing
-of variables. In order to handle this correctly, we remember the Value that
-we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is
-no shadowed variable).</p>
-
-<p>Once the loop variable is set into the symbol table, the code recursively
-codegen's the body. This allows the body to use the loop variable: any
-references to it will naturally find it in the symbol table.</p>
-
-<div class="doc_code">
-<pre>
- // Emit the step value.
- Value *StepVal;
- if (Step) {
- StepVal = Step-&gt;Codegen();
- if (StepVal == 0) return 0;
- } else {
- // If not specified, use 1.0.
- StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
- }
-
- Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
-</pre>
-</div>
-
-<p>Now that the body is emitted, we compute the next value of the iteration
-variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>'
-will be the value of the loop variable on the next iteration of the loop.</p>
-
-<div class="doc_code">
-<pre>
- // Compute the end condition.
- Value *EndCond = End-&gt;Codegen();
- if (EndCond == 0) return EndCond;
-
- // Convert condition to a bool by comparing equal to 0.0.
- EndCond = Builder.CreateFCmpONE(EndCond,
- ConstantFP::get(getGlobalContext(), APFloat(0.0)),
- "loopcond");
-</pre>
-</div>
-
-<p>Finally, we evaluate the exit value of the loop, to determine whether the
-loop should exit. This mirrors the condition evaluation for the if/then/else
-statement.</p>
-
-<div class="doc_code">
-<pre>
- // Create the "after loop" block and insert it.
- BasicBlock *LoopEndBB = Builder.GetInsertBlock();
- BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-
- // Insert the conditional branch into the end of LoopEndBB.
- Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
-
- // Any new code will be inserted in AfterBB.
- Builder.SetInsertPoint(AfterBB);
-</pre>
-</div>
-
-<p>With the code for the body of the loop complete, we just need to finish up
-the control flow for it. This code remembers the end block (for the phi node),
-then creates the block for the loop exit ("afterloop"). Based on the value of
-the exit condition, it creates a conditional branch that chooses between
-executing the loop again and exiting the loop. Any future code is emitted in
-the "afterloop" block, so it sets the insertion position to it.</p>
-
-<div class="doc_code">
-<pre>
- // Add a new entry to the PHI node for the backedge.
- Variable-&gt;addIncoming(NextVar, LoopEndBB);
-
- // Restore the unshadowed variable.
- if (OldVal)
- NamedValues[VarName] = OldVal;
- else
- NamedValues.erase(VarName);
-
- // for expr always returns 0.0.
- return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
-}
-</pre>
-</div>
-
-<p>The final code handles various cleanups: now that we have the "NextVar"
-value, we can add the incoming value to the loop PHI node. After that, we
-remove the loop variable from the symbol table, so that it isn't in scope after
-the for loop. Finally, code generation of the for loop always returns 0.0, so
-that is what we return from <tt>ForExprAST::Codegen</tt>.</p>
-
-<p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
-the tutorial. In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors
-to know. In the next chapter of our saga, we will get a bit crazier and add
-<a href="LangImpl6.html">user-defined operators</a> to our poor innocent
-language.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-if/then/else and for expressions.. To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
-# Run
-./toy
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-#include "llvm/DerivedTypes.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/JIT.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Support/TargetSelect.h"
-#include &lt;cstdio&gt;
-#include &lt;string&gt;
-#include &lt;map&gt;
-#include &lt;vector&gt;
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5,
-
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
- tok_for = -9, tok_in = -10
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;
- if (IdentifierStr == "for") return tok_for;
- if (IdentifierStr == "in") return tok_in;
- return tok_identifier;
- }
-
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), 0);
- return tok_number;
- }
-
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
- virtual ~ExprAST() {}
- virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
- double Val;
-public:
- NumberExprAST(double val) : Val(val) {}
- virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
- std::string Name;
-public:
- VariableExprAST(const std::string &amp;name) : Name(name) {}
- virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
- char Op;
- ExprAST *LHS, *RHS;
-public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
- virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
- std::string Callee;
- std::vector&lt;ExprAST*&gt; Args;
-public:
- CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
- : Callee(callee), Args(args) {}
- virtual Value *Codegen();
-};
-
-/// IfExprAST - Expression class for if/then/else.
-class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
-public:
- IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
- : Cond(cond), Then(then), Else(_else) {}
- virtual Value *Codegen();
-};
-
-/// ForExprAST - Expression class for for/in.
-class ForExprAST : public ExprAST {
- std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
-public:
- ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
- virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes).
-class PrototypeAST {
- std::string Name;
- std::vector&lt;std::string&gt; Args;
-public:
- PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
- : Name(name), Args(args) {}
-
- Function *Codegen();
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-public:
- FunctionAST(PrototypeAST *proto, ExprAST *body)
- : Proto(proto), Body(body) {}
-
- Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
-/// token the parser is looking at. getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
- return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map&lt;char, int&gt; BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
- if (!isascii(CurTok))
- return -1;
-
- // Make sure it's a declared binop.
- int TokPrec = BinopPrecedence[CurTok];
- if (TokPrec &lt;= 0) return -1;
- return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-/// ::= identifier
-/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
- std::string IdName = IdentifierStr;
-
- getNextToken(); // eat identifier.
-
- if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
-
- // Call.
- getNextToken(); // eat (
- std::vector&lt;ExprAST*&gt; Args;
- if (CurTok != ')') {
- while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg) return 0;
- Args.push_back(Arg);
-
- if (CurTok == ')') break;
-
- if (CurTok != ',')
- return Error("Expected ')' or ',' in argument list");
- getNextToken();
- }
- }
-
- // Eat the ')'.
- getNextToken();
-
- return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
- getNextToken(); // consume the number
- return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
- getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
- if (!V) return 0;
-
- if (CurTok != ')')
- return Error("expected ')'");
- getNextToken(); // eat ).
- return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
- getNextToken(); // eat the if.
-
- // condition.
- ExprAST *Cond = ParseExpression();
- if (!Cond) return 0;
-
- if (CurTok != tok_then)
- return Error("expected then");
- getNextToken(); // eat the then
-
- ExprAST *Then = ParseExpression();
- if (Then == 0) return 0;
-
- if (CurTok != tok_else)
- return Error("expected else");
-
- getNextToken();
-
- ExprAST *Else = ParseExpression();
- if (!Else) return 0;
-
- return new IfExprAST(Cond, Then, Else);
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
- getNextToken(); // eat the for.
-
- if (CurTok != tok_identifier)
- return Error("expected identifier after for");
-
- std::string IdName = IdentifierStr;
- getNextToken(); // eat identifier.
-
- if (CurTok != '=')
- return Error("expected '=' after for");
- getNextToken(); // eat '='.
-
-
- ExprAST *Start = ParseExpression();
- if (Start == 0) return 0;
- if (CurTok != ',')
- return Error("expected ',' after for start value");
- getNextToken();
-
- ExprAST *End = ParseExpression();
- if (End == 0) return 0;
-
- // The step value is optional.
- ExprAST *Step = 0;
- if (CurTok == ',') {
- getNextToken();
- Step = ParseExpression();
- if (Step == 0) return 0;
- }
-
- if (CurTok != tok_in)
- return Error("expected 'in' after for");
- getNextToken(); // eat 'in'.
-
- ExprAST *Body = ParseExpression();
- if (Body == 0) return 0;
-
- return new ForExprAST(IdName, Start, End, Step, Body);
-}
-
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-/// ::= ifexpr
-/// ::= forexpr
-static ExprAST *ParsePrimary() {
- switch (CurTok) {
- default: return Error("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- case tok_if: return ParseIfExpr();
- case tok_for: return ParseForExpr();
- }
-}
-
-/// binoprhs
-/// ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
- // If this is a binop, find its precedence.
- while (1) {
- int TokPrec = GetTokPrecedence();
-
- // If this is a binop that binds at least as tightly as the current binop,
- // consume it, otherwise we are done.
- if (TokPrec &lt; ExprPrec)
- return LHS;
-
- // Okay, we know this is a binop.
- int BinOp = CurTok;
- getNextToken(); // eat binop
-
- // Parse the primary expression after the binary operator.
- ExprAST *RHS = ParsePrimary();
- if (!RHS) return 0;
-
- // If BinOp binds less tightly with RHS than the operator after RHS, let
- // the pending operator take RHS as its LHS.
- int NextPrec = GetTokPrecedence();
- if (TokPrec &lt; NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, RHS);
- if (RHS == 0) return 0;
- }
-
- // Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
- }
-}
-
-/// expression
-/// ::= primary binoprhs
-///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParsePrimary();
- if (!LHS) return 0;
-
- return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-/// ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
- if (CurTok != tok_identifier)
- return ErrorP("Expected function name in prototype");
-
- std::string FnName = IdentifierStr;
- getNextToken();
-
- if (CurTok != '(')
- return ErrorP("Expected '(' in prototype");
-
- std::vector&lt;std::string&gt; ArgNames;
- while (getNextToken() == tok_identifier)
- ArgNames.push_back(IdentifierStr);
- if (CurTok != ')')
- return ErrorP("Expected ')' in prototype");
-
- // success.
- getNextToken(); // eat ')'.
-
- return new PrototypeAST(FnName, ArgNames);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
- getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0) return 0;
-
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
- // Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
- return new FunctionAST(Proto, E);
- }
- return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
- getNextToken(); // eat extern.
- return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-static Module *TheModule;
-static IRBuilder&lt;&gt; Builder(getGlobalContext());
-static std::map&lt;std::string, Value*&gt; NamedValues;
-static FunctionPassManager *TheFPM;
-
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-Value *NumberExprAST::Codegen() {
- return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::Codegen() {
- // Look this variable up in the function.
- Value *V = NamedValues[Name];
- return V ? V : ErrorV("Unknown variable name");
-}
-
-Value *BinaryExprAST::Codegen() {
- Value *L = LHS-&gt;Codegen();
- Value *R = RHS-&gt;Codegen();
- if (L == 0 || R == 0) return 0;
-
- switch (Op) {
- case '+': return Builder.CreateFAdd(L, R, "addtmp");
- case '-': return Builder.CreateFSub(L, R, "subtmp");
- case '*': return Builder.CreateFMul(L, R, "multmp");
- case '&lt;':
- L = Builder.CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
- "booltmp");
- default: return ErrorV("invalid binary operator");
- }
-}
-
-Value *CallExprAST::Codegen() {
- // Look up the name in the global module table.
- Function *CalleeF = TheModule-&gt;getFunction(Callee);
- if (CalleeF == 0)
- return ErrorV("Unknown function referenced");
-
- // If argument mismatch error.
- if (CalleeF-&gt;arg_size() != Args.size())
- return ErrorV("Incorrect # arguments passed");
-
- std::vector&lt;Value*&gt; ArgsV;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- ArgsV.push_back(Args[i]-&gt;Codegen());
- if (ArgsV.back() == 0) return 0;
- }
-
- return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-
-Value *IfExprAST::Codegen() {
- Value *CondV = Cond-&gt;Codegen();
- if (CondV == 0) return 0;
-
- // Convert condition to a bool by comparing equal to 0.0.
- CondV = Builder.CreateFCmpONE(CondV,
- ConstantFP::get(getGlobalContext(), APFloat(0.0)),
- "ifcond");
-
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
-
- // Create blocks for the then and else cases. Insert the 'then' block at the
- // end of the function.
- BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
- BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
- BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
-
- Builder.CreateCondBr(CondV, ThenBB, ElseBB);
-
- // Emit then value.
- Builder.SetInsertPoint(ThenBB);
-
- Value *ThenV = Then-&gt;Codegen();
- if (ThenV == 0) return 0;
-
- Builder.CreateBr(MergeBB);
- // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
- ThenBB = Builder.GetInsertBlock();
-
- // Emit else block.
- TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
- Builder.SetInsertPoint(ElseBB);
-
- Value *ElseV = Else-&gt;Codegen();
- if (ElseV == 0) return 0;
-
- Builder.CreateBr(MergeBB);
- // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
- ElseBB = Builder.GetInsertBlock();
-
- // Emit merge block.
- TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
- Builder.SetInsertPoint(MergeBB);
- PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
- "iftmp");
-
- PN-&gt;addIncoming(ThenV, ThenBB);
- PN-&gt;addIncoming(ElseV, ElseBB);
- return PN;
-}
-
-Value *ForExprAST::Codegen() {
- // Output this as:
- // ...
- // start = startexpr
- // goto loop
- // loop:
- // variable = phi [start, loopheader], [nextvariable, loopend]
- // ...
- // bodyexpr
- // ...
- // loopend:
- // step = stepexpr
- // nextvariable = variable + step
- // endcond = endexpr
- // br endcond, loop, endloop
- // outloop:
-
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start-&gt;Codegen();
- if (StartVal == 0) return 0;
-
- // Make the new basic block for the loop header, inserting after current
- // block.
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
- BasicBlock *PreheaderBB = Builder.GetInsertBlock();
- BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-
- // Insert an explicit fall through from the current block to the LoopBB.
- Builder.CreateBr(LoopBB);
-
- // Start insertion in LoopBB.
- Builder.SetInsertPoint(LoopBB);
-
- // Start the PHI node with an entry for Start.
- PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
- Variable-&gt;addIncoming(StartVal, PreheaderBB);
-
- // Within the loop, the variable is defined equal to the PHI node. If it
- // shadows an existing variable, we have to restore it, so save it now.
- Value *OldVal = NamedValues[VarName];
- NamedValues[VarName] = Variable;
-
- // Emit the body of the loop. This, like any other expr, can change the
- // current BB. Note that we ignore the value computed by the body, but don't
- // allow an error.
- if (Body-&gt;Codegen() == 0)
- return 0;
-
- // Emit the step value.
- Value *StepVal;
- if (Step) {
- StepVal = Step-&gt;Codegen();
- if (StepVal == 0) return 0;
- } else {
- // If not specified, use 1.0.
- StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
- }
-
- Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
-
- // Compute the end condition.
- Value *EndCond = End-&gt;Codegen();
- if (EndCond == 0) return EndCond;
-
- // Convert condition to a bool by comparing equal to 0.0.
- EndCond = Builder.CreateFCmpONE(EndCond,
- ConstantFP::get(getGlobalContext(), APFloat(0.0)),
- "loopcond");
-
- // Create the "after loop" block and insert it.
- BasicBlock *LoopEndBB = Builder.GetInsertBlock();
- BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-
- // Insert the conditional branch into the end of LoopEndBB.
- Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
-
- // Any new code will be inserted in AfterBB.
- Builder.SetInsertPoint(AfterBB);
-
- // Add a new entry to the PHI node for the backedge.
- Variable-&gt;addIncoming(NextVar, LoopEndBB);
-
- // Restore the unshadowed variable.
- if (OldVal)
- NamedValues[VarName] = OldVal;
- else
- NamedValues.erase(VarName);
-
-
- // for expr always returns 0.0.
- return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
-}
-
-Function *PrototypeAST::Codegen() {
- // Make the function type: double(double,double) etc.
- std::vector&lt;Type*&gt; Doubles(Args.size(),
- Type::getDoubleTy(getGlobalContext()));
- FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
- Doubles, false);
-
- Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-
- // If F conflicted, there was already something named 'Name'. If it has a
- // body, don't allow redefinition or reextern.
- if (F-&gt;getName() != Name) {
- // Delete the one we just made and get the existing one.
- F-&gt;eraseFromParent();
- F = TheModule-&gt;getFunction(Name);
-
- // If F already has a body, reject this.
- if (!F-&gt;empty()) {
- ErrorF("redefinition of function");
- return 0;
- }
-
- // If F took a different number of args, reject.
- if (F-&gt;arg_size() != Args.size()) {
- ErrorF("redefinition of function with different # args");
- return 0;
- }
- }
-
- // Set names for all arguments.
- unsigned Idx = 0;
- for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
- ++AI, ++Idx) {
- AI-&gt;setName(Args[Idx]);
-
- // Add arguments to variable symbol table.
- NamedValues[Args[Idx]] = AI;
- }
-
- return F;
-}
-
-Function *FunctionAST::Codegen() {
- NamedValues.clear();
-
- Function *TheFunction = Proto-&gt;Codegen();
- if (TheFunction == 0)
- return 0;
-
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
- Builder.SetInsertPoint(BB);
-
- if (Value *RetVal = Body-&gt;Codegen()) {
- // Finish off the function.
- Builder.CreateRet(RetVal);
-
- // Validate the generated code, checking for consistency.
- verifyFunction(*TheFunction);
-
- // Optimize the function.
- TheFPM-&gt;run(*TheFunction);
-
- return TheFunction;
- }
-
- // Error reading body, remove function.
- TheFunction-&gt;eraseFromParent();
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static ExecutionEngine *TheExecutionEngine;
-
-static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (Function *LF = F-&gt;Codegen()) {
- fprintf(stderr, "Read function definition:");
- LF-&gt;dump();
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (Function *F = P-&gt;Codegen()) {
- fprintf(stderr, "Read extern: ");
- F-&gt;dump();
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleTopLevelExpression() {
- // Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F-&gt;Codegen()) {
- // JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)FPtr;
- fprintf(stderr, "Evaluated to %f\n", FP());
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
- while (1) {
- fprintf(stderr, "ready&gt; ");
- switch (CurTok) {
- case tok_eof: return;
- case ';': getNextToken(); break; // ignore top-level semicolons.
- case tok_def: HandleDefinition(); break;
- case tok_extern: HandleExtern(); break;
- default: HandleTopLevelExpression(); break;
- }
- }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C"
-double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
- InitializeNativeTarget();
- LLVMContext &amp;Context = getGlobalContext();
-
- // Install standard binary operators.
- // 1 is lowest precedence.
- BinopPrecedence['&lt;'] = 10;
- BinopPrecedence['+'] = 20;
- BinopPrecedence['-'] = 20;
- BinopPrecedence['*'] = 40; // highest.
-
- // Prime the first token.
- fprintf(stderr, "ready&gt; ");
- getNextToken();
-
- // Make the module, which holds all the code.
- TheModule = new Module("my cool jit", Context);
-
- // Create the JIT. This takes ownership of the module.
- std::string ErrStr;
- TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
- if (!TheExecutionEngine) {
- fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
- exit(1);
- }
-
- FunctionPassManager OurFPM(TheModule);
-
- // Set up the optimizer pipeline. Start with registering info about how the
- // target lays out data structures.
- OurFPM.add(new DataLayout(*TheExecutionEngine-&gt;getDataLayout()));
- // Provide basic AliasAnalysis support for GVN.
- OurFPM.add(createBasicAliasAnalysisPass());
- // Do simple "peephole" optimizations and bit-twiddling optzns.
- OurFPM.add(createInstructionCombiningPass());
- // Reassociate expressions.
- OurFPM.add(createReassociatePass());
- // Eliminate Common SubExpressions.
- OurFPM.add(createGVNPass());
- // Simplify the control flow graph (deleting unreachable blocks, etc).
- OurFPM.add(createCFGSimplificationPass());
-
- OurFPM.doInitialization();
-
- // Set the global so the code gen can use this.
- TheFPM = &amp;OurFPM;
-
- // Run the main "interpreter loop" now.
- MainLoop();
-
- TheFPM = 0;
-
- // Print out all of the generated code.
- TheModule-&gt;dump();
-
- return 0;
-}
-</pre>
-</div>
-
-<a href="LangImpl6.html">Next: Extending the language: user-defined operators</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
- <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
- <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
- Last modified: $Date$
-</address>
-</body>
-</html>