summaryrefslogtreecommitdiff
path: root/docs/tutorial/OCamlLangImpl4.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/tutorial/OCamlLangImpl4.html')
-rw-r--r--docs/tutorial/OCamlLangImpl4.html1026
1 files changed, 0 insertions, 1026 deletions
diff --git a/docs/tutorial/OCamlLangImpl4.html b/docs/tutorial/OCamlLangImpl4.html
deleted file mode 100644
index eb97d986c2..0000000000
--- a/docs/tutorial/OCamlLangImpl4.html
+++ /dev/null
@@ -1,1026 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <meta name="author" content="Erick Tryzelaar">
- <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 4
- <ol>
- <li><a href="#intro">Chapter 4 Introduction</a></li>
- <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
- <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
- <li><a href="#jit">Adding a JIT Compiler</a></li>
- <li><a href="#code">Full Code Listing</a></li>
- </ol>
-</li>
-<li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control
-Flow</li>
-</ul>
-
-<div class="doc_author">
- <p>
- Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
- and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
- </p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 4 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple
-language and added support for generating LLVM IR. This chapter describes
-two new techniques: adding optimizer support to your language, and adding JIT
-compiler support. These additions will demonstrate how to get nice, efficient code
-for the Kaleidoscope language.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p><b>Note:</b> the default <tt>IRBuilder</tt> now always includes the constant
-folding optimisations below.<p>
-
-<p>
-Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately,
-it does not produce wonderful code. For example, when compiling simple code,
-we don't get obvious optimizations:</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>def test(x) 1+2+x;</b>
-Read function definition:
-define double @test(double %x) {
-entry:
- %addtmp = fadd double 1.000000e+00, 2.000000e+00
- %addtmp1 = fadd double %addtmp, %x
- ret double %addtmp1
-}
-</pre>
-</div>
-
-<p>This code is a very, very literal transcription of the AST built by parsing
-the input. As such, this transcription lacks optimizations like constant folding
-(we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other
-more important optimizations. Constant folding, in particular, is a very common
-and very important optimization: so much so that many language implementors
-implement constant folding support in their AST representation.</p>
-
-<p>With LLVM, you don't need this support in the AST. Since all calls to build
-LLVM IR go through the LLVM builder, it would be nice if the builder itself
-checked to see if there was a constant folding opportunity when you call it.
-If so, it could just do the constant fold and return the constant instead of
-creating an instruction. This is exactly what the <tt>LLVMFoldingBuilder</tt>
-class does.
-
-<p>All we did was switch from <tt>LLVMBuilder</tt> to
-<tt>LLVMFoldingBuilder</tt>. Though we change no other code, we now have all of our
-instructions implicitly constant folded without us having to do anything
-about it. For example, the input above now compiles to:</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>def test(x) 1+2+x;</b>
-Read function definition:
-define double @test(double %x) {
-entry:
- %addtmp = fadd double 3.000000e+00, %x
- ret double %addtmp
-}
-</pre>
-</div>
-
-<p>Well, that was easy :). In practice, we recommend always using
-<tt>LLVMFoldingBuilder</tt> when generating code like this. It has no
-"syntactic overhead" for its use (you don't have to uglify your compiler with
-constant checks everywhere) and it can dramatically reduce the amount of
-LLVM IR that is generated in some cases (particular for languages with a macro
-preprocessor or that use a lot of constants).</p>
-
-<p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact
-that it does all of its analysis inline with the code as it is built. If you
-take a slightly more complex example:</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
-ready&gt; Read function definition:
-define double @test(double %x) {
-entry:
- %addtmp = fadd double 3.000000e+00, %x
- %addtmp1 = fadd double %x, 3.000000e+00
- %multmp = fmul double %addtmp, %addtmp1
- ret double %multmp
-}
-</pre>
-</div>
-
-<p>In this case, the LHS and RHS of the multiplication are the same value. We'd
-really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
-of computing "<tt>x*3</tt>" twice.</p>
-
-<p>Unfortunately, no amount of local analysis will be able to detect and correct
-this. This requires two transformations: reassociation of expressions (to
-make the add's lexically identical) and Common Subexpression Elimination (CSE)
-to delete the redundant add instruction. Fortunately, LLVM provides a broad
-range of optimizations that you can use, in the form of "passes".</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>LLVM provides many optimization passes, which do many different sorts of
-things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
-to the mistaken notion that one set of optimizations is right for all languages
-and for all situations. LLVM allows a compiler implementor to make complete
-decisions about what optimizations to use, in which order, and in what
-situation.</p>
-
-<p>As a concrete example, LLVM supports both "whole module" passes, which look
-across as large of body of code as they can (often a whole file, but if run
-at link time, this can be a substantial portion of the whole program). It also
-supports and includes "per-function" passes which just operate on a single
-function at a time, without looking at other functions. For more information
-on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
-to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
-Passes</a>.</p>
-
-<p>For Kaleidoscope, we are currently generating functions on the fly, one at
-a time, as the user types them in. We aren't shooting for the ultimate
-optimization experience in this setting, but we also want to catch the easy and
-quick stuff where possible. As such, we will choose to run a few per-function
-optimizations as the user types the function in. If we wanted to make a "static
-Kaleidoscope compiler", we would use exactly the code we have now, except that
-we would defer running the optimizer until the entire file has been parsed.</p>
-
-<p>In order to get per-function optimizations going, we need to set up a
-<a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and
-organize the LLVM optimizations that we want to run. Once we have that, we can
-add a set of optimizations to run. The code looks like this:</p>
-
-<div class="doc_code">
-<pre>
- (* Create the JIT. *)
- let the_execution_engine = ExecutionEngine.create Codegen.the_module in
- let the_fpm = PassManager.create_function Codegen.the_module in
-
- (* Set up the optimizer pipeline. Start with registering info about how the
- * target lays out data structures. *)
- DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
-
- (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
- add_instruction_combining the_fpm;
-
- (* reassociate expressions. *)
- add_reassociation the_fpm;
-
- (* Eliminate Common SubExpressions. *)
- add_gvn the_fpm;
-
- (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
- add_cfg_simplification the_fpm;
-
- ignore (PassManager.initialize the_fpm);
-
- (* Run the main "interpreter loop" now. *)
- Toplevel.main_loop the_fpm the_execution_engine stream;
-</pre>
-</div>
-
-<p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>". It
-requires a pointer to the <tt>the_module</tt> to construct itself. Once it is
-set up, we use a series of "add" calls to add a bunch of LLVM passes. The
-first pass is basically boilerplate, it adds a pass so that later optimizations
-know how the data structures in the program are laid out. The
-"<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
-get to in the next section.</p>
-
-<p>In this case, we choose to add 4 optimization passes. The passes we chose
-here are a pretty standard set of "cleanup" optimizations that are useful for
-a wide variety of code. I won't delve into what they do but, believe me,
-they are a good starting place :).</p>
-
-<p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it.
-We do this by running it after our newly created function is constructed (in
-<tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p>
-
-<div class="doc_code">
-<pre>
-let codegen_func the_fpm = function
- ...
- try
- let ret_val = codegen_expr body in
-
- (* Finish off the function. *)
- let _ = build_ret ret_val builder in
-
- (* Validate the generated code, checking for consistency. *)
- Llvm_analysis.assert_valid_function the_function;
-
- (* Optimize the function. *)
- let _ = PassManager.run_function the_function the_fpm in
-
- the_function
-</pre>
-</div>
-
-<p>As you can see, this is pretty straightforward. The <tt>the_fpm</tt>
-optimizes and updates the LLVM Function* in place, improving (hopefully) its
-body. With this in place, we can try our test above again:</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
-ready&gt; Read function definition:
-define double @test(double %x) {
-entry:
- %addtmp = fadd double %x, 3.000000e+00
- %multmp = fmul double %addtmp, %addtmp
- ret double %multmp
-}
-</pre>
-</div>
-
-<p>As expected, we now get our nicely optimized code, saving a floating point
-add instruction from every execution of this function.</p>
-
-<p>LLVM provides a wide variety of optimizations that can be used in certain
-circumstances. Some <a href="../Passes.html">documentation about the various
-passes</a> is available, but it isn't very complete. Another good source of
-ideas can come from looking at the passes that <tt>Clang</tt> runs to get
-started. The "<tt>opt</tt>" tool allows you to experiment with passes from the
-command line, so you can see if they do anything.</p>
-
-<p>Now that we have reasonable code coming out of our front-end, lets talk about
-executing it!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="jit">Adding a JIT Compiler</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Code that is available in LLVM IR can have a wide variety of tools
-applied to it. For example, you can run optimizations on it (as we did above),
-you can dump it out in textual or binary forms, you can compile the code to an
-assembly file (.s) for some target, or you can JIT compile it. The nice thing
-about the LLVM IR representation is that it is the "common currency" between
-many different parts of the compiler.
-</p>
-
-<p>In this section, we'll add JIT compiler support to our interpreter. The
-basic idea that we want for Kaleidoscope is to have the user enter function
-bodies as they do now, but immediately evaluate the top-level expressions they
-type in. For example, if they type in "1 + 2;", we should evaluate and print
-out 3. If they define a function, they should be able to call it from the
-command line.</p>
-
-<p>In order to do this, we first declare and initialize the JIT. This is done
-by adding a global variable and a call in <tt>main</tt>:</p>
-
-<div class="doc_code">
-<pre>
-...
-let main () =
- ...
- <b>(* Create the JIT. *)
- let the_execution_engine = ExecutionEngine.create Codegen.the_module in</b>
- ...
-</pre>
-</div>
-
-<p>This creates an abstract "Execution Engine" which can be either a JIT
-compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
-for you if one is available for your platform, otherwise it will fall back to
-the interpreter.</p>
-
-<p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT
-is ready to be used. There are a variety of APIs that are useful, but the
-simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
-function. This method JIT compiles the specified LLVM Function and returns a
-function pointer to the generated machine code. In our case, this means that we
-can change the code that parses a top-level expression to look like this:</p>
-
-<div class="doc_code">
-<pre>
- (* Evaluate a top-level expression into an anonymous function. *)
- let e = Parser.parse_toplevel stream in
- print_endline "parsed a top-level expr";
- let the_function = Codegen.codegen_func the_fpm e in
- dump_value the_function;
-
- (* JIT the function, returning a function pointer. *)
- let result = ExecutionEngine.run_function the_function [||]
- the_execution_engine in
-
- print_string "Evaluated to ";
- print_float (GenericValue.as_float Codegen.double_type result);
- print_newline ();
-</pre>
-</div>
-
-<p>Recall that we compile top-level expressions into a self-contained LLVM
-function that takes no arguments and returns the computed double. Because the
-LLVM JIT compiler matches the native platform ABI, this means that you can just
-cast the result pointer to a function pointer of that type and call it directly.
-This means, there is no difference between JIT compiled code and native machine
-code that is statically linked into your application.</p>
-
-<p>With just these two changes, lets see how Kaleidoscope works now!</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>4+5;</b>
-define double @""() {
-entry:
- ret double 9.000000e+00
-}
-
-<em>Evaluated to 9.000000</em>
-</pre>
-</div>
-
-<p>Well this looks like it is basically working. The dump of the function
-shows the "no argument function that always returns double" that we synthesize
-for each top level expression that is typed in. This demonstrates very basic
-functionality, but can we do more?</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>def testfunc(x y) x + y*2; </b>
-Read function definition:
-define double @testfunc(double %x, double %y) {
-entry:
- %multmp = fmul double %y, 2.000000e+00
- %addtmp = fadd double %multmp, %x
- ret double %addtmp
-}
-
-ready&gt; <b>testfunc(4, 10);</b>
-define double @""() {
-entry:
- %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
- ret double %calltmp
-}
-
-<em>Evaluated to 24.000000</em>
-</pre>
-</div>
-
-<p>This illustrates that we can now call user code, but there is something a bit
-subtle going on here. Note that we only invoke the JIT on the anonymous
-functions that <em>call testfunc</em>, but we never invoked it
-on <em>testfunc</em> itself. What actually happened here is that the JIT
-scanned for all non-JIT'd functions transitively called from the anonymous
-function and compiled all of them before returning
-from <tt>run_function</tt>.</p>
-
-<p>The JIT provides a number of other more advanced interfaces for things like
-freeing allocated machine code, rejit'ing functions to update them, etc.
-However, even with this simple code, we get some surprisingly powerful
-capabilities - check this out (I removed the dump of the anonymous functions,
-you should get the idea by now :) :</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>extern sin(x);</b>
-Read extern:
-declare double @sin(double)
-
-ready&gt; <b>extern cos(x);</b>
-Read extern:
-declare double @cos(double)
-
-ready&gt; <b>sin(1.0);</b>
-<em>Evaluated to 0.841471</em>
-
-ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
-Read function definition:
-define double @foo(double %x) {
-entry:
- %calltmp = call double @sin(double %x)
- %multmp = fmul double %calltmp, %calltmp
- %calltmp2 = call double @cos(double %x)
- %multmp4 = fmul double %calltmp2, %calltmp2
- %addtmp = fadd double %multmp, %multmp4
- ret double %addtmp
-}
-
-ready&gt; <b>foo(4.0);</b>
-<em>Evaluated to 1.000000</em>
-</pre>
-</div>
-
-<p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
-simple: in this example, the JIT started execution of a function and got to a
-function call. It realized that the function was not yet JIT compiled and
-invoked the standard set of routines to resolve the function. In this case,
-there is no body defined for the function, so the JIT ended up calling
-"<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself. Since
-"<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
-calls in the module to call the libm version of <tt>sin</tt> directly.</p>
-
-<p>The LLVM JIT provides a number of interfaces (look in the
-<tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions
-get resolved. It allows you to establish explicit mappings between IR objects
-and addresses (useful for LLVM global variables that you want to map to static
-tables, for example), allows you to dynamically decide on the fly based on the
-function name, and even allows you to have the JIT compile functions lazily the
-first time they're called.</p>
-
-<p>One interesting application of this is that we can now extend the language
-by writing arbitrary C code to implement operations. For example, if we add:
-</p>
-
-<div class="doc_code">
-<pre>
-/* putchard - putchar that takes a double and returns 0. */
-extern "C"
-double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-</pre>
-</div>
-
-<p>Now we can produce simple output to the console by using things like:
-"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
-the console (120 is the ASCII code for 'x'). Similar code could be used to
-implement file I/O, console input, and many other capabilities in
-Kaleidoscope.</p>
-
-<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
-this point, we can compile a non-Turing-complete programming language, optimize
-and JIT compile it in a user-driven way. Next up we'll look into <a
-href="OCamlLangImpl5.html">extending the language with control flow
-constructs</a>, tackling some interesting LLVM IR issues along the way.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-LLVM JIT and optimizer. To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-ocamlbuild toy.byte
-# Run
-./toy.byte
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<dl>
-<dt>_tags:</dt>
-<dd class="doc_code">
-<pre>
-&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
-&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
-&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
-&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
-</pre>
-</dd>
-
-<dt>myocamlbuild.ml:</dt>
-<dd class="doc_code">
-<pre>
-open Ocamlbuild_plugin;;
-
-ocaml_lib ~extern:true "llvm";;
-ocaml_lib ~extern:true "llvm_analysis";;
-ocaml_lib ~extern:true "llvm_executionengine";;
-ocaml_lib ~extern:true "llvm_target";;
-ocaml_lib ~extern:true "llvm_scalar_opts";;
-
-flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
-dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
-</pre>
-</dd>
-
-<dt>token.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer Tokens
- *===----------------------------------------------------------------------===*)
-
-(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
- * these others for known things. *)
-type token =
- (* commands *)
- | Def | Extern
-
- (* primary *)
- | Ident of string | Number of float
-
- (* unknown *)
- | Kwd of char
-</pre>
-</dd>
-
-<dt>lexer.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer
- *===----------------------------------------------------------------------===*)
-
-let rec lex = parser
- (* Skip any whitespace. *)
- | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
-
- (* identifier: [a-zA-Z][a-zA-Z0-9] *)
- | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
- let buffer = Buffer.create 1 in
- Buffer.add_char buffer c;
- lex_ident buffer stream
-
- (* number: [0-9.]+ *)
- | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
- let buffer = Buffer.create 1 in
- Buffer.add_char buffer c;
- lex_number buffer stream
-
- (* Comment until end of line. *)
- | [&lt; ' ('#'); stream &gt;] -&gt;
- lex_comment stream
-
- (* Otherwise, just return the character as its ascii value. *)
- | [&lt; 'c; stream &gt;] -&gt;
- [&lt; 'Token.Kwd c; lex stream &gt;]
-
- (* end of stream. *)
- | [&lt; &gt;] -&gt; [&lt; &gt;]
-
-and lex_number buffer = parser
- | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
- Buffer.add_char buffer c;
- lex_number buffer stream
- | [&lt; stream=lex &gt;] -&gt;
- [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
-
-and lex_ident buffer = parser
- | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
- Buffer.add_char buffer c;
- lex_ident buffer stream
- | [&lt; stream=lex &gt;] -&gt;
- match Buffer.contents buffer with
- | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
- | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
- | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
-
-and lex_comment = parser
- | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
- | [&lt; 'c; e=lex_comment &gt;] -&gt; e
- | [&lt; &gt;] -&gt; [&lt; &gt;]
-</pre>
-</dd>
-
-<dt>ast.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Abstract Syntax Tree (aka Parse Tree)
- *===----------------------------------------------------------------------===*)
-
-(* expr - Base type for all expression nodes. *)
-type expr =
- (* variant for numeric literals like "1.0". *)
- | Number of float
-
- (* variant for referencing a variable, like "a". *)
- | Variable of string
-
- (* variant for a binary operator. *)
- | Binary of char * expr * expr
-
- (* variant for function calls. *)
- | Call of string * expr array
-
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto = Prototype of string * string array
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</dd>
-
-<dt>parser.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===---------------------------------------------------------------------===
- * Parser
- *===---------------------------------------------------------------------===*)
-
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
-
-(* primary
- * ::= identifier
- * ::= numberexpr
- * ::= parenexpr *)
-let rec parse_primary = parser
- (* numberexpr ::= number *)
- | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
-
- (* parenexpr ::= '(' expression ')' *)
- | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
-
- (* identifierexpr
- * ::= identifier
- * ::= identifier '(' argumentexpr ')' *)
- | [&lt; 'Token.Ident id; stream &gt;] -&gt;
- let rec parse_args accumulator = parser
- | [&lt; e=parse_expr; stream &gt;] -&gt;
- begin parser
- | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; e :: accumulator
- end stream
- | [&lt; &gt;] -&gt; accumulator
- in
- let rec parse_ident id = parser
- (* Call. *)
- | [&lt; 'Token.Kwd '(';
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
- Ast.Call (id, Array.of_list (List.rev args))
-
- (* Simple variable ref. *)
- | [&lt; &gt;] -&gt; Ast.Variable id
- in
- parse_ident id stream
-
- | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
-
-(* binoprhs
- * ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
- match Stream.peek stream with
- (* If this is a binop, find its precedence. *)
- | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
- let token_prec = precedence c in
-
- (* If this is a binop that binds at least as tightly as the current binop,
- * consume it, otherwise we are done. *)
- if token_prec &lt; expr_prec then lhs else begin
- (* Eat the binop. *)
- Stream.junk stream;
-
- (* Parse the primary expression after the binary operator. *)
- let rhs = parse_primary stream in
-
- (* Okay, we know this is a binop. *)
- let rhs =
- match Stream.peek stream with
- | Some (Token.Kwd c2) -&gt;
- (* If BinOp binds less tightly with rhs than the operator after
- * rhs, let the pending operator take rhs as its lhs. *)
- let next_prec = precedence c2 in
- if token_prec &lt; next_prec
- then parse_bin_rhs (token_prec + 1) rhs stream
- else rhs
- | _ -&gt; rhs
- in
-
- (* Merge lhs/rhs. *)
- let lhs = Ast.Binary (c, lhs, rhs) in
- parse_bin_rhs expr_prec lhs stream
- end
- | _ -&gt; lhs
-
-(* expression
- * ::= primary binoprhs *)
-and parse_expr = parser
- | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
-
-(* prototype
- * ::= id '(' id* ')' *)
-let parse_prototype =
- let rec parse_args accumulator = parser
- | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; accumulator
- in
-
- parser
- | [&lt; 'Token.Ident id;
- 'Token.Kwd '(' ?? "expected '(' in prototype";
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
- (* success. *)
- Ast.Prototype (id, Array.of_list (List.rev args))
-
- | [&lt; &gt;] -&gt;
- raise (Stream.Error "expected function name in prototype")
-
-(* definition ::= 'def' prototype expression *)
-let parse_definition = parser
- | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
- Ast.Function (p, e)
-
-(* toplevelexpr ::= expression *)
-let parse_toplevel = parser
- | [&lt; e=parse_expr &gt;] -&gt;
- (* Make an anonymous proto. *)
- Ast.Function (Ast.Prototype ("", [||]), e)
-
-(* external ::= 'extern' prototype *)
-let parse_extern = parser
- | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
-</pre>
-</dd>
-
-<dt>codegen.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Code Generation
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-
-exception Error of string
-
-let context = global_context ()
-let the_module = create_module context "my cool jit"
-let builder = builder context
-let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
-let double_type = double_type context
-
-let rec codegen_expr = function
- | Ast.Number n -&gt; const_float double_type n
- | Ast.Variable name -&gt;
- (try Hashtbl.find named_values name with
- | Not_found -&gt; raise (Error "unknown variable name"))
- | Ast.Binary (op, lhs, rhs) -&gt;
- let lhs_val = codegen_expr lhs in
- let rhs_val = codegen_expr rhs in
- begin
- match op with
- | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
- | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
- | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
- | '&lt;' -&gt;
- (* Convert bool 0/1 to double 0.0 or 1.0 *)
- let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
- build_uitofp i double_type "booltmp" builder
- | _ -&gt; raise (Error "invalid binary operator")
- end
- | Ast.Call (callee, args) -&gt;
- (* Look up the name in the module table. *)
- let callee =
- match lookup_function callee the_module with
- | Some callee -&gt; callee
- | None -&gt; raise (Error "unknown function referenced")
- in
- let params = params callee in
-
- (* If argument mismatch error. *)
- if Array.length params == Array.length args then () else
- raise (Error "incorrect # arguments passed");
- let args = Array.map codegen_expr args in
- build_call callee args "calltmp" builder
-
-let codegen_proto = function
- | Ast.Prototype (name, args) -&gt;
- (* Make the function type: double(double,double) etc. *)
- let doubles = Array.make (Array.length args) double_type in
- let ft = function_type double_type doubles in
- let f =
- match lookup_function name the_module with
- | None -&gt; declare_function name ft the_module
-
- (* If 'f' conflicted, there was already something named 'name'. If it
- * has a body, don't allow redefinition or reextern. *)
- | Some f -&gt;
- (* If 'f' already has a body, reject this. *)
- if block_begin f &lt;&gt; At_end f then
- raise (Error "redefinition of function");
-
- (* If 'f' took a different number of arguments, reject. *)
- if element_type (type_of f) &lt;&gt; ft then
- raise (Error "redefinition of function with different # args");
- f
- in
-
- (* Set names for all arguments. *)
- Array.iteri (fun i a -&gt;
- let n = args.(i) in
- set_value_name n a;
- Hashtbl.add named_values n a;
- ) (params f);
- f
-
-let codegen_func the_fpm = function
- | Ast.Function (proto, body) -&gt;
- Hashtbl.clear named_values;
- let the_function = codegen_proto proto in
-
- (* Create a new basic block to start insertion into. *)
- let bb = append_block context "entry" the_function in
- position_at_end bb builder;
-
- try
- let ret_val = codegen_expr body in
-
- (* Finish off the function. *)
- let _ = build_ret ret_val builder in
-
- (* Validate the generated code, checking for consistency. *)
- Llvm_analysis.assert_valid_function the_function;
-
- (* Optimize the function. *)
- let _ = PassManager.run_function the_function the_fpm in
-
- the_function
- with e -&gt;
- delete_function the_function;
- raise e
-</pre>
-</dd>
-
-<dt>toplevel.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Top-Level parsing and JIT Driver
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-open Llvm_executionengine
-
-(* top ::= definition | external | expression | ';' *)
-let rec main_loop the_fpm the_execution_engine stream =
- match Stream.peek stream with
- | None -&gt; ()
-
- (* ignore top-level semicolons. *)
- | Some (Token.Kwd ';') -&gt;
- Stream.junk stream;
- main_loop the_fpm the_execution_engine stream
-
- | Some token -&gt;
- begin
- try match token with
- | Token.Def -&gt;
- let e = Parser.parse_definition stream in
- print_endline "parsed a function definition.";
- dump_value (Codegen.codegen_func the_fpm e);
- | Token.Extern -&gt;
- let e = Parser.parse_extern stream in
- print_endline "parsed an extern.";
- dump_value (Codegen.codegen_proto e);
- | _ -&gt;
- (* Evaluate a top-level expression into an anonymous function. *)
- let e = Parser.parse_toplevel stream in
- print_endline "parsed a top-level expr";
- let the_function = Codegen.codegen_func the_fpm e in
- dump_value the_function;
-
- (* JIT the function, returning a function pointer. *)
- let result = ExecutionEngine.run_function the_function [||]
- the_execution_engine in
-
- print_string "Evaluated to ";
- print_float (GenericValue.as_float Codegen.double_type result);
- print_newline ();
- with Stream.Error s | Codegen.Error s -&gt;
- (* Skip token for error recovery. *)
- Stream.junk stream;
- print_endline s;
- end;
- print_string "ready&gt; "; flush stdout;
- main_loop the_fpm the_execution_engine stream
-</pre>
-</dd>
-
-<dt>toy.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Main driver code.
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-open Llvm_executionengine
-open Llvm_target
-open Llvm_scalar_opts
-
-let main () =
- ignore (initialize_native_target ());
-
- (* Install standard binary operators.
- * 1 is the lowest precedence. *)
- Hashtbl.add Parser.binop_precedence '&lt;' 10;
- Hashtbl.add Parser.binop_precedence '+' 20;
- Hashtbl.add Parser.binop_precedence '-' 20;
- Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
-
- (* Prime the first token. *)
- print_string "ready&gt; "; flush stdout;
- let stream = Lexer.lex (Stream.of_channel stdin) in
-
- (* Create the JIT. *)
- let the_execution_engine = ExecutionEngine.create Codegen.the_module in
- let the_fpm = PassManager.create_function Codegen.the_module in
-
- (* Set up the optimizer pipeline. Start with registering info about how the
- * target lays out data structures. *)
- DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
-
- (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
- add_instruction_combination the_fpm;
-
- (* reassociate expressions. *)
- add_reassociation the_fpm;
-
- (* Eliminate Common SubExpressions. *)
- add_gvn the_fpm;
-
- (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
- add_cfg_simplification the_fpm;
-
- ignore (PassManager.initialize the_fpm);
-
- (* Run the main "interpreter loop" now. *)
- Toplevel.main_loop the_fpm the_execution_engine stream;
-
- (* Print out all the generated code. *)
- dump_module Codegen.the_module
-;;
-
-main ()
-</pre>
-</dd>
-
-<dt>bindings.c</dt>
-<dd class="doc_code">
-<pre>
-#include &lt;stdio.h&gt;
-
-/* putchard - putchar that takes a double and returns 0. */
-extern double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-</pre>
-</dd>
-</dl>
-
-<a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
- <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
- <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
- <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
- Last modified: $Date$
-</address>
-</body>
-</html>