summaryrefslogtreecommitdiff
path: root/docs/tutorial/OCamlLangImpl7.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/tutorial/OCamlLangImpl7.html')
-rw-r--r--docs/tutorial/OCamlLangImpl7.html1907
1 files changed, 0 insertions, 1907 deletions
diff --git a/docs/tutorial/OCamlLangImpl7.html b/docs/tutorial/OCamlLangImpl7.html
deleted file mode 100644
index c140888626..0000000000
--- a/docs/tutorial/OCamlLangImpl7.html
+++ /dev/null
@@ -1,1907 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
- construction</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <meta name="author" content="Erick Tryzelaar">
- <link rel="stylesheet" href="../llvm.css" type="text/css">
-</head>
-
-<body>
-
-<div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 7
- <ol>
- <li><a href="#intro">Chapter 7 Introduction</a></li>
- <li><a href="#why">Why is this a hard problem?</a></li>
- <li><a href="#memory">Memory in LLVM</a></li>
- <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
- <li><a href="#adjustments">Adjusting Existing Variables for
- Mutation</a></li>
- <li><a href="#assignment">New Assignment Operator</a></li>
- <li><a href="#localvars">User-defined Local Variables</a></li>
- <li><a href="#code">Full Code Listing</a></li>
- </ol>
-</li>
-<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
- tidbits</li>
-</ul>
-
-<div class="doc_author">
- <p>
- Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
- and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
- </p>
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial. In chapters 1 through 6, we've built a very
-respectable, albeit simple, <a
-href="http://en.wikipedia.org/wiki/Functional_programming">functional
-programming language</a>. In our journey, we learned some parsing techniques,
-how to build and represent an AST, how to build LLVM IR, and how to optimize
-the resultant code as well as JIT compile it.</p>
-
-<p>While Kaleidoscope is interesting as a functional language, the fact that it
-is functional makes it "too easy" to generate LLVM IR for it. In particular, a
-functional language makes it very easy to build LLVM IR directly in <a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
-Since LLVM requires that the input code be in SSA form, this is a very nice
-property and it is often unclear to newcomers how to generate code for an
-imperative language with mutable variables.</p>
-
-<p>The short (and happy) summary of this chapter is that there is no need for
-your front-end to build SSA form: LLVM provides highly tuned and well tested
-support for this, though the way it works is a bit unexpected for some.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-To understand why mutable variables cause complexities in SSA construction,
-consider this extremely simple C example:
-</p>
-
-<div class="doc_code">
-<pre>
-int G, H;
-int test(_Bool Condition) {
- int X;
- if (Condition)
- X = G;
- else
- X = H;
- return X;
-}
-</pre>
-</div>
-
-<p>In this case, we have the variable "X", whose value depends on the path
-executed in the program. Because there are two different possible values for X
-before the return instruction, a PHI node is inserted to merge the two values.
-The LLVM IR that we want for this example looks like this:</p>
-
-<div class="doc_code">
-<pre>
-@G = weak global i32 0 ; type of @G is i32*
-@H = weak global i32 0 ; type of @H is i32*
-
-define i32 @test(i1 %Condition) {
-entry:
- br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
- %X.0 = load i32* @G
- br label %cond_next
-
-cond_false:
- %X.1 = load i32* @H
- br label %cond_next
-
-cond_next:
- %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
- ret i32 %X.2
-}
-</pre>
-</div>
-
-<p>In this example, the loads from the G and H global variables are explicit in
-the LLVM IR, and they live in the then/else branches of the if statement
-(cond_true/cond_false). In order to merge the incoming values, the X.2 phi node
-in the cond_next block selects the right value to use based on where control
-flow is coming from: if control flow comes from the cond_false block, X.2 gets
-the value of X.1. Alternatively, if control flow comes from cond_true, it gets
-the value of X.0. The intent of this chapter is not to explain the details of
-SSA form. For more information, see one of the many <a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online
-references</a>.</p>
-
-<p>The question for this article is "who places the phi nodes when lowering
-assignments to mutable variables?". The issue here is that LLVM
-<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
-However, SSA construction requires non-trivial algorithms and data structures,
-so it is inconvenient and wasteful for every front-end to have to reproduce this
-logic.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="memory">Memory in LLVM</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>The 'trick' here is that while LLVM does require all register values to be
-in SSA form, it does not require (or permit) memory objects to be in SSA form.
-In the example above, note that the loads from G and H are direct accesses to
-G and H: they are not renamed or versioned. This differs from some other
-compiler systems, which do try to version memory objects. In LLVM, instead of
-encoding dataflow analysis of memory into the LLVM IR, it is handled with <a
-href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
-demand.</p>
-
-<p>
-With this in mind, the high-level idea is that we want to make a stack variable
-(which lives in memory, because it is on the stack) for each mutable object in
-a function. To take advantage of this trick, we need to talk about how LLVM
-represents stack variables.
-</p>
-
-<p>In LLVM, all memory accesses are explicit with load/store instructions, and
-it is carefully designed not to have (or need) an "address-of" operator. Notice
-how the type of the @G/@H global variables is actually "i32*" even though the
-variable is defined as "i32". What this means is that @G defines <em>space</em>
-for an i32 in the global data area, but its <em>name</em> actually refers to the
-address for that space. Stack variables work the same way, except that instead of
-being declared with global variable definitions, they are declared with the
-<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
-
-<div class="doc_code">
-<pre>
-define i32 @example() {
-entry:
- %X = alloca i32 ; type of %X is i32*.
- ...
- %tmp = load i32* %X ; load the stack value %X from the stack.
- %tmp2 = add i32 %tmp, 1 ; increment it
- store i32 %tmp2, i32* %X ; store it back
- ...
-</pre>
-</div>
-
-<p>This code shows an example of how you can declare and manipulate a stack
-variable in the LLVM IR. Stack memory allocated with the alloca instruction is
-fully general: you can pass the address of the stack slot to functions, you can
-store it in other variables, etc. In our example above, we could rewrite the
-example to use the alloca technique to avoid using a PHI node:</p>
-
-<div class="doc_code">
-<pre>
-@G = weak global i32 0 ; type of @G is i32*
-@H = weak global i32 0 ; type of @H is i32*
-
-define i32 @test(i1 %Condition) {
-entry:
- %X = alloca i32 ; type of %X is i32*.
- br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
- %X.0 = load i32* @G
- store i32 %X.0, i32* %X ; Update X
- br label %cond_next
-
-cond_false:
- %X.1 = load i32* @H
- store i32 %X.1, i32* %X ; Update X
- br label %cond_next
-
-cond_next:
- %X.2 = load i32* %X ; Read X
- ret i32 %X.2
-}
-</pre>
-</div>
-
-<p>With this, we have discovered a way to handle arbitrary mutable variables
-without the need to create Phi nodes at all:</p>
-
-<ol>
-<li>Each mutable variable becomes a stack allocation.</li>
-<li>Each read of the variable becomes a load from the stack.</li>
-<li>Each update of the variable becomes a store to the stack.</li>
-<li>Taking the address of a variable just uses the stack address directly.</li>
-</ol>
-
-<p>While this solution has solved our immediate problem, it introduced another
-one: we have now apparently introduced a lot of stack traffic for very simple
-and common operations, a major performance problem. Fortunately for us, the
-LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
-this case, promoting allocas like this into SSA registers, inserting Phi nodes
-as appropriate. If you run this example through the pass, for example, you'll
-get:</p>
-
-<div class="doc_code">
-<pre>
-$ <b>llvm-as &lt; example.ll | opt -mem2reg | llvm-dis</b>
-@G = weak global i32 0
-@H = weak global i32 0
-
-define i32 @test(i1 %Condition) {
-entry:
- br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
- %X.0 = load i32* @G
- br label %cond_next
-
-cond_false:
- %X.1 = load i32* @H
- br label %cond_next
-
-cond_next:
- %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
- ret i32 %X.01
-}
-</pre>
-</div>
-
-<p>The mem2reg pass implements the standard "iterated dominance frontier"
-algorithm for constructing SSA form and has a number of optimizations that speed
-up (very common) degenerate cases. The mem2reg optimization pass is the answer
-to dealing with mutable variables, and we highly recommend that you depend on
-it. Note that mem2reg only works on variables in certain circumstances:</p>
-
-<ol>
-<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
-promotes them. It does not apply to global variables or heap allocations.</li>
-
-<li>mem2reg only looks for alloca instructions in the entry block of the
-function. Being in the entry block guarantees that the alloca is only executed
-once, which makes analysis simpler.</li>
-
-<li>mem2reg only promotes allocas whose uses are direct loads and stores. If
-the address of the stack object is passed to a function, or if any funny pointer
-arithmetic is involved, the alloca will not be promoted.</li>
-
-<li>mem2reg only works on allocas of <a
-href="../LangRef.html#t_classifications">first class</a>
-values (such as pointers, scalars and vectors), and only if the array size
-of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of
-promoting structs or arrays to registers. Note that the "scalarrepl" pass is
-more powerful and can promote structs, "unions", and arrays in many cases.</li>
-
-</ol>
-
-<p>
-All of these properties are easy to satisfy for most imperative languages, and
-we'll illustrate it below with Kaleidoscope. The final question you may be
-asking is: should I bother with this nonsense for my front-end? Wouldn't it be
-better if I just did SSA construction directly, avoiding use of the mem2reg
-optimization pass? In short, we strongly recommend that you use this technique
-for building SSA form, unless there is an extremely good reason not to. Using
-this technique is:</p>
-
-<ul>
-<li>Proven and well tested: llvm-gcc and clang both use this technique for local
-mutable variables. As such, the most common clients of LLVM are using this to
-handle a bulk of their variables. You can be sure that bugs are found fast and
-fixed early.</li>
-
-<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
-common cases as well as fully general. For example, it has fast-paths for
-variables that are only used in a single block, variables that only have one
-assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
-</li>
-
-<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
-Debug information in LLVM</a> relies on having the address of the variable
-exposed so that debug info can be attached to it. This technique dovetails
-very naturally with this style of debug info.</li>
-</ul>
-
-<p>If nothing else, this makes it much easier to get your front-end up and
-running, and is very simple to implement. Lets extend Kaleidoscope with mutable
-variables now!
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="kalvars">Mutable Variables in
-Kaleidoscope</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>Now that we know the sort of problem we want to tackle, lets see what this
-looks like in the context of our little Kaleidoscope language. We're going to
-add two features:</p>
-
-<ol>
-<li>The ability to mutate variables with the '=' operator.</li>
-<li>The ability to define new variables.</li>
-</ol>
-
-<p>While the first item is really what this is about, we only have variables
-for incoming arguments as well as for induction variables, and redefining those only
-goes so far :). Also, the ability to define new variables is a
-useful thing regardless of whether you will be mutating them. Here's a
-motivating example that shows how we could use these:</p>
-
-<div class="doc_code">
-<pre>
-# Define ':' for sequencing: as a low-precedence operator that ignores operands
-# and just returns the RHS.
-def binary : 1 (x y) y;
-
-# Recursive fib, we could do this before.
-def fib(x)
- if (x &lt; 3) then
- 1
- else
- fib(x-1)+fib(x-2);
-
-# Iterative fib.
-def fibi(x)
- <b>var a = 1, b = 1, c in</b>
- (for i = 3, i &lt; x in
- <b>c = a + b</b> :
- <b>a = b</b> :
- <b>b = c</b>) :
- b;
-
-# Call it.
-fibi(10);
-</pre>
-</div>
-
-<p>
-In order to mutate variables, we have to change our existing variables to use
-the "alloca trick". Once we have that, we'll add our new operator, then extend
-Kaleidoscope to support new variable definitions.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
-Mutation</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-The symbol table in Kaleidoscope is managed at code generation time by the
-'<tt>named_values</tt>' map. This map currently keeps track of the LLVM
-"Value*" that holds the double value for the named variable. In order to
-support mutation, we need to change this slightly, so that it
-<tt>named_values</tt> holds the <em>memory location</em> of the variable in
-question. Note that this change is a refactoring: it changes the structure of
-the code, but does not (by itself) change the behavior of the compiler. All of
-these changes are isolated in the Kaleidoscope code generator.</p>
-
-<p>
-At this point in Kaleidoscope's development, it only supports variables for two
-things: incoming arguments to functions and the induction variable of 'for'
-loops. For consistency, we'll allow mutation of these variables in addition to
-other user-defined variables. This means that these will both need memory
-locations.
-</p>
-
-<p>To start our transformation of Kaleidoscope, we'll change the
-<tt>named_values</tt> map so that it maps to AllocaInst* instead of Value*.
-Once we do this, the C++ compiler will tell us what parts of the code we need to
-update:</p>
-
-<p><b>Note:</b> the ocaml bindings currently model both <tt>Value*</tt>s and
-<tt>AllocInst*</tt>s as <tt>Llvm.llvalue</tt>s, but this may change in the
-future to be more type safe.</p>
-
-<div class="doc_code">
-<pre>
-let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
-</pre>
-</div>
-
-<p>Also, since we will need to create these alloca's, we'll use a helper
-function that ensures that the allocas are created in the entry block of the
-function:</p>
-
-<div class="doc_code">
-<pre>
-(* Create an alloca instruction in the entry block of the function. This
- * is used for mutable variables etc. *)
-let create_entry_block_alloca the_function var_name =
- let builder = builder_at (instr_begin (entry_block the_function)) in
- build_alloca double_type var_name builder
-</pre>
-</div>
-
-<p>This funny looking code creates an <tt>Llvm.llbuilder</tt> object that is
-pointing at the first instruction of the entry block. It then creates an alloca
-with the expected name and returns it. Because all values in Kaleidoscope are
-doubles, there is no need to pass in a type to use.</p>
-
-<p>With this in place, the first functionality change we want to make is to
-variable references. In our new scheme, variables live on the stack, so code
-generating a reference to them actually needs to produce a load from the stack
-slot:</p>
-
-<div class="doc_code">
-<pre>
-let rec codegen_expr = function
- ...
- | Ast.Variable name -&gt;
- let v = try Hashtbl.find named_values name with
- | Not_found -&gt; raise (Error "unknown variable name")
- in
- <b>(* Load the value. *)
- build_load v name builder</b>
-</pre>
-</div>
-
-<p>As you can see, this is pretty straightforward. Now we need to update the
-things that define the variables to set up the alloca. We'll start with
-<tt>codegen_expr Ast.For ...</tt> (see the <a href="#code">full code listing</a>
-for the unabridged code):</p>
-
-<div class="doc_code">
-<pre>
- | Ast.For (var_name, start, end_, step, body) -&gt;
- let the_function = block_parent (insertion_block builder) in
-
- (* Create an alloca for the variable in the entry block. *)
- <b>let alloca = create_entry_block_alloca the_function var_name in</b>
-
- (* Emit the start code first, without 'variable' in scope. *)
- let start_val = codegen_expr start in
-
- <b>(* Store the value into the alloca. *)
- ignore(build_store start_val alloca builder);</b>
-
- ...
-
- (* Within the loop, the variable is defined equal to the PHI node. If it
- * shadows an existing variable, we have to restore it, so save it
- * now. *)
- let old_val =
- try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
- in
- <b>Hashtbl.add named_values var_name alloca;</b>
-
- ...
-
- (* Compute the end condition. *)
- let end_cond = codegen_expr end_ in
-
- <b>(* Reload, increment, and restore the alloca. This handles the case where
- * the body of the loop mutates the variable. *)
- let cur_var = build_load alloca var_name builder in
- let next_var = build_add cur_var step_val "nextvar" builder in
- ignore(build_store next_var alloca builder);</b>
- ...
-</pre>
-</div>
-
-<p>This code is virtually identical to the code <a
-href="OCamlLangImpl5.html#forcodegen">before we allowed mutable variables</a>.
-The big difference is that we no longer have to construct a PHI node, and we use
-load/store to access the variable as needed.</p>
-
-<p>To support mutable argument variables, we need to also make allocas for them.
-The code for this is also pretty simple:</p>
-
-<div class="doc_code">
-<pre>
-(* Create an alloca for each argument and register the argument in the symbol
- * table so that references to it will succeed. *)
-let create_argument_allocas the_function proto =
- let args = match proto with
- | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
- in
- Array.iteri (fun i ai -&gt;
- let var_name = args.(i) in
- (* Create an alloca for this variable. *)
- let alloca = create_entry_block_alloca the_function var_name in
-
- (* Store the initial value into the alloca. *)
- ignore(build_store ai alloca builder);
-
- (* Add arguments to variable symbol table. *)
- Hashtbl.add named_values var_name alloca;
- ) (params the_function)
-</pre>
-</div>
-
-<p>For each argument, we make an alloca, store the input value to the function
-into the alloca, and register the alloca as the memory location for the
-argument. This method gets invoked by <tt>Codegen.codegen_func</tt> right after
-it sets up the entry block for the function.</p>
-
-<p>The final missing piece is adding the mem2reg pass, which allows us to get
-good codegen once again:</p>
-
-<div class="doc_code">
-<pre>
-let main () =
- ...
- let the_fpm = PassManager.create_function Codegen.the_module in
-
- (* Set up the optimizer pipeline. Start with registering info about how the
- * target lays out data structures. *)
- TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
-
- <b>(* Promote allocas to registers. *)
- add_memory_to_register_promotion the_fpm;</b>
-
- (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
- add_instruction_combining the_fpm;
-
- (* reassociate expressions. *)
- add_reassociation the_fpm;
-</pre>
-</div>
-
-<p>It is interesting to see what the code looks like before and after the
-mem2reg optimization runs. For example, this is the before/after code for our
-recursive fib function. Before the optimization:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
- <b>%x1 = alloca double
- store double %x, double* %x1
- %x2 = load double* %x1</b>
- %cmptmp = fcmp ult double %x2, 3.000000e+00
- %booltmp = uitofp i1 %cmptmp to double
- %ifcond = fcmp one double %booltmp, 0.000000e+00
- br i1 %ifcond, label %then, label %else
-
-then: ; preds = %entry
- br label %ifcont
-
-else: ; preds = %entry
- <b>%x3 = load double* %x1</b>
- %subtmp = fsub double %x3, 1.000000e+00
- %calltmp = call double @fib( double %subtmp )
- <b>%x4 = load double* %x1</b>
- %subtmp5 = fsub double %x4, 2.000000e+00
- %calltmp6 = call double @fib( double %subtmp5 )
- %addtmp = fadd double %calltmp, %calltmp6
- br label %ifcont
-
-ifcont: ; preds = %else, %then
- %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
- ret double %iftmp
-}
-</pre>
-</div>
-
-<p>Here there is only one variable (x, the input argument) but you can still
-see the extremely simple-minded code generation strategy we are using. In the
-entry block, an alloca is created, and the initial input value is stored into
-it. Each reference to the variable does a reload from the stack. Also, note
-that we didn't modify the if/then/else expression, so it still inserts a PHI
-node. While we could make an alloca for it, it is actually easier to create a
-PHI node for it, so we still just make the PHI.</p>
-
-<p>Here is the code after the mem2reg pass runs:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
- %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
- %booltmp = uitofp i1 %cmptmp to double
- %ifcond = fcmp one double %booltmp, 0.000000e+00
- br i1 %ifcond, label %then, label %else
-
-then:
- br label %ifcont
-
-else:
- %subtmp = fsub double <b>%x</b>, 1.000000e+00
- %calltmp = call double @fib( double %subtmp )
- %subtmp5 = fsub double <b>%x</b>, 2.000000e+00
- %calltmp6 = call double @fib( double %subtmp5 )
- %addtmp = fadd double %calltmp, %calltmp6
- br label %ifcont
-
-ifcont: ; preds = %else, %then
- %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
- ret double %iftmp
-}
-</pre>
-</div>
-
-<p>This is a trivial case for mem2reg, since there are no redefinitions of the
-variable. The point of showing this is to calm your tension about inserting
-such blatent inefficiencies :).</p>
-
-<p>After the rest of the optimizers run, we get:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
- %cmptmp = fcmp ult double %x, 3.000000e+00
- %booltmp = uitofp i1 %cmptmp to double
- %ifcond = fcmp ueq double %booltmp, 0.000000e+00
- br i1 %ifcond, label %else, label %ifcont
-
-else:
- %subtmp = fsub double %x, 1.000000e+00
- %calltmp = call double @fib( double %subtmp )
- %subtmp5 = fsub double %x, 2.000000e+00
- %calltmp6 = call double @fib( double %subtmp5 )
- %addtmp = fadd double %calltmp, %calltmp6
- ret double %addtmp
-
-ifcont:
- ret double 1.000000e+00
-}
-</pre>
-</div>
-
-<p>Here we see that the simplifycfg pass decided to clone the return instruction
-into the end of the 'else' block. This allowed it to eliminate some branches
-and the PHI node.</p>
-
-<p>Now that all symbol table references are updated to use stack variables,
-we'll add the assignment operator.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>With our current framework, adding a new assignment operator is really
-simple. We will parse it just like any other binary operator, but handle it
-internally (instead of allowing the user to define it). The first step is to
-set a precedence:</p>
-
-<div class="doc_code">
-<pre>
-let main () =
- (* Install standard binary operators.
- * 1 is the lowest precedence. *)
- <b>Hashtbl.add Parser.binop_precedence '=' 2;</b>
- Hashtbl.add Parser.binop_precedence '&lt;' 10;
- Hashtbl.add Parser.binop_precedence '+' 20;
- Hashtbl.add Parser.binop_precedence '-' 20;
- ...
-</pre>
-</div>
-
-<p>Now that the parser knows the precedence of the binary operator, it takes
-care of all the parsing and AST generation. We just need to implement codegen
-for the assignment operator. This looks like:</p>
-
-<div class="doc_code">
-<pre>
-let rec codegen_expr = function
- begin match op with
- | '=' -&gt;
- (* Special case '=' because we don't want to emit the LHS as an
- * expression. *)
- let name =
- match lhs with
- | Ast.Variable name -&gt; name
- | _ -&gt; raise (Error "destination of '=' must be a variable")
- in
-</pre>
-</div>
-
-<p>Unlike the rest of the binary operators, our assignment operator doesn't
-follow the "emit LHS, emit RHS, do computation" model. As such, it is handled
-as a special case before the other binary operators are handled. The other
-strange thing is that it requires the LHS to be a variable. It is invalid to
-have "(x+1) = expr" - only things like "x = expr" are allowed.
-</p>
-
-
-<div class="doc_code">
-<pre>
- (* Codegen the rhs. *)
- let val_ = codegen_expr rhs in
-
- (* Lookup the name. *)
- let variable = try Hashtbl.find named_values name with
- | Not_found -&gt; raise (Error "unknown variable name")
- in
- ignore(build_store val_ variable builder);
- val_
- | _ -&gt;
- ...
-</pre>
-</div>
-
-<p>Once we have the variable, codegen'ing the assignment is straightforward:
-we emit the RHS of the assignment, create a store, and return the computed
-value. Returning a value allows for chained assignments like "X = (Y = Z)".</p>
-
-<p>Now that we have an assignment operator, we can mutate loop variables and
-arguments. For example, we can now run code like this:</p>
-
-<div class="doc_code">
-<pre>
-# Function to print a double.
-extern printd(x);
-
-# Define ':' for sequencing: as a low-precedence operator that ignores operands
-# and just returns the RHS.
-def binary : 1 (x y) y;
-
-def test(x)
- printd(x) :
- x = 4 :
- printd(x);
-
-test(123);
-</pre>
-</div>
-
-<p>When run, this example prints "123" and then "4", showing that we did
-actually mutate the value! Okay, we have now officially implemented our goal:
-getting this to work requires SSA construction in the general case. However,
-to be really useful, we want the ability to define our own local variables, lets
-add this next!
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="localvars">User-defined Local
-Variables</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>Adding var/in is just like any other other extensions we made to
-Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
-The first step for adding our new 'var/in' construct is to extend the lexer.
-As before, this is pretty trivial, the code looks like this:</p>
-
-<div class="doc_code">
-<pre>
-type token =
- ...
- <b>(* var definition *)
- | Var</b>
-
-...
-
-and lex_ident buffer = parser
- ...
- | "in" -&gt; [&lt; 'Token.In; stream &gt;]
- | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
- | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
- <b>| "var" -&gt; [&lt; 'Token.Var; stream &gt;]</b>
- ...
-</pre>
-</div>
-
-<p>The next step is to define the AST node that we will construct. For var/in,
-it looks like this:</p>
-
-<div class="doc_code">
-<pre>
-type expr =
- ...
- (* variant for var/in. *)
- | Var of (string * expr option) array * expr
- ...
-</pre>
-</div>
-
-<p>var/in allows a list of names to be defined all at once, and each name can
-optionally have an initializer value. As such, we capture this information in
-the VarNames vector. Also, var/in has a body, this body is allowed to access
-the variables defined by the var/in.</p>
-
-<p>With this in place, we can define the parser pieces. The first thing we do
-is add it as a primary expression:</p>
-
-<div class="doc_code">
-<pre>
-(* primary
- * ::= identifier
- * ::= numberexpr
- * ::= parenexpr
- * ::= ifexpr
- * ::= forexpr
- <b>* ::= varexpr</b> *)
-let rec parse_primary = parser
- ...
- <b>(* varexpr
- * ::= 'var' identifier ('=' expression?
- * (',' identifier ('=' expression)?)* 'in' expression *)
- | [&lt; 'Token.Var;
- (* At least one variable name is required. *)
- 'Token.Ident id ?? "expected identifier after var";
- init=parse_var_init;
- var_names=parse_var_names [(id, init)];
- (* At this point, we have to have 'in'. *)
- 'Token.In ?? "expected 'in' keyword after 'var'";
- body=parse_expr &gt;] -&gt;
- Ast.Var (Array.of_list (List.rev var_names), body)</b>
-
-...
-
-and parse_var_init = parser
- (* read in the optional initializer. *)
- | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
- | [&lt; &gt;] -&gt; None
-
-and parse_var_names accumulator = parser
- | [&lt; 'Token.Kwd ',';
- 'Token.Ident id ?? "expected identifier list after var";
- init=parse_var_init;
- e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; accumulator
-</pre>
-</div>
-
-<p>Now that we can parse and represent the code, we need to support emission of
-LLVM IR for it. This code starts out with:</p>
-
-<div class="doc_code">
-<pre>
-let rec codegen_expr = function
- ...
- | Ast.Var (var_names, body)
- let old_bindings = ref [] in
-
- let the_function = block_parent (insertion_block builder) in
-
- (* Register all variables and emit their initializer. *)
- Array.iter (fun (var_name, init) -&gt;
-</pre>
-</div>
-
-<p>Basically it loops over all the variables, installing them one at a time.
-For each variable we put into the symbol table, we remember the previous value
-that we replace in OldBindings.</p>
-
-<div class="doc_code">
-<pre>
- (* Emit the initializer before adding the variable to scope, this
- * prevents the initializer from referencing the variable itself, and
- * permits stuff like this:
- * var a = 1 in
- * var a = a in ... # refers to outer 'a'. *)
- let init_val =
- match init with
- | Some init -&gt; codegen_expr init
- (* If not specified, use 0.0. *)
- | None -&gt; const_float double_type 0.0
- in
-
- let alloca = create_entry_block_alloca the_function var_name in
- ignore(build_store init_val alloca builder);
-
- (* Remember the old variable binding so that we can restore the binding
- * when we unrecurse. *)
-
- begin
- try
- let old_value = Hashtbl.find named_values var_name in
- old_bindings := (var_name, old_value) :: !old_bindings;
- with Not_found &gt; ()
- end;
-
- (* Remember this binding. *)
- Hashtbl.add named_values var_name alloca;
- ) var_names;
-</pre>
-</div>
-
-<p>There are more comments here than code. The basic idea is that we emit the
-initializer, create the alloca, then update the symbol table to point to it.
-Once all the variables are installed in the symbol table, we evaluate the body
-of the var/in expression:</p>
-
-<div class="doc_code">
-<pre>
- (* Codegen the body, now that all vars are in scope. *)
- let body_val = codegen_expr body in
-</pre>
-</div>
-
-<p>Finally, before returning, we restore the previous variable bindings:</p>
-
-<div class="doc_code">
-<pre>
- (* Pop all our variables from scope. *)
- List.iter (fun (var_name, old_value) -&gt;
- Hashtbl.add named_values var_name old_value
- ) !old_bindings;
-
- (* Return the body computation. *)
- body_val
-</pre>
-</div>
-
-<p>The end result of all of this is that we get properly scoped variable
-definitions, and we even (trivially) allow mutation of them :).</p>
-
-<p>With this, we completed what we set out to do. Our nice iterative fib
-example from the intro compiles and runs just fine. The mem2reg pass optimizes
-all of our stack variables into SSA registers, inserting PHI nodes where needed,
-and our front-end remains simple: no "iterated dominance frontier" computation
-anywhere in sight.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="code">Full Code Listing</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-Here is the complete code listing for our running example, enhanced with mutable
-variables and var/in support. To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-ocamlbuild toy.byte
-# Run
-./toy.byte
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<dl>
-<dt>_tags:</dt>
-<dd class="doc_code">
-<pre>
-&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
-&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
-&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
-&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
-</pre>
-</dd>
-
-<dt>myocamlbuild.ml:</dt>
-<dd class="doc_code">
-<pre>
-open Ocamlbuild_plugin;;
-
-ocaml_lib ~extern:true "llvm";;
-ocaml_lib ~extern:true "llvm_analysis";;
-ocaml_lib ~extern:true "llvm_executionengine";;
-ocaml_lib ~extern:true "llvm_target";;
-ocaml_lib ~extern:true "llvm_scalar_opts";;
-
-flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
-dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
-</pre>
-</dd>
-
-<dt>token.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer Tokens
- *===----------------------------------------------------------------------===*)
-
-(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
- * these others for known things. *)
-type token =
- (* commands *)
- | Def | Extern
-
- (* primary *)
- | Ident of string | Number of float
-
- (* unknown *)
- | Kwd of char
-
- (* control *)
- | If | Then | Else
- | For | In
-
- (* operators *)
- | Binary | Unary
-
- (* var definition *)
- | Var
-</pre>
-</dd>
-
-<dt>lexer.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer
- *===----------------------------------------------------------------------===*)
-
-let rec lex = parser
- (* Skip any whitespace. *)
- | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
-
- (* identifier: [a-zA-Z][a-zA-Z0-9] *)
- | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
- let buffer = Buffer.create 1 in
- Buffer.add_char buffer c;
- lex_ident buffer stream
-
- (* number: [0-9.]+ *)
- | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
- let buffer = Buffer.create 1 in
- Buffer.add_char buffer c;
- lex_number buffer stream
-
- (* Comment until end of line. *)
- | [&lt; ' ('#'); stream &gt;] -&gt;
- lex_comment stream
-
- (* Otherwise, just return the character as its ascii value. *)
- | [&lt; 'c; stream &gt;] -&gt;
- [&lt; 'Token.Kwd c; lex stream &gt;]
-
- (* end of stream. *)
- | [&lt; &gt;] -&gt; [&lt; &gt;]
-
-and lex_number buffer = parser
- | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
- Buffer.add_char buffer c;
- lex_number buffer stream
- | [&lt; stream=lex &gt;] -&gt;
- [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
-
-and lex_ident buffer = parser
- | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
- Buffer.add_char buffer c;
- lex_ident buffer stream
- | [&lt; stream=lex &gt;] -&gt;
- match Buffer.contents buffer with
- | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
- | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
- | "if" -&gt; [&lt; 'Token.If; stream &gt;]
- | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
- | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
- | "for" -&gt; [&lt; 'Token.For; stream &gt;]
- | "in" -&gt; [&lt; 'Token.In; stream &gt;]
- | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
- | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
- | "var" -&gt; [&lt; 'Token.Var; stream &gt;]
- | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
-
-and lex_comment = parser
- | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
- | [&lt; 'c; e=lex_comment &gt;] -&gt; e
- | [&lt; &gt;] -&gt; [&lt; &gt;]
-</pre>
-</dd>
-
-<dt>ast.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Abstract Syntax Tree (aka Parse Tree)
- *===----------------------------------------------------------------------===*)
-
-(* expr - Base type for all expression nodes. *)
-type expr =
- (* variant for numeric literals like "1.0". *)
- | Number of float
-
- (* variant for referencing a variable, like "a". *)
- | Variable of string
-
- (* variant for a unary operator. *)
- | Unary of char * expr
-
- (* variant for a binary operator. *)
- | Binary of char * expr * expr
-
- (* variant for function calls. *)
- | Call of string * expr array
-
- (* variant for if/then/else. *)
- | If of expr * expr * expr
-
- (* variant for for/in. *)
- | For of string * expr * expr * expr option * expr
-
- (* variant for var/in. *)
- | Var of (string * expr option) array * expr
-
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto =
- | Prototype of string * string array
- | BinOpPrototype of string * string array * int
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</dd>
-
-<dt>parser.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===---------------------------------------------------------------------===
- * Parser
- *===---------------------------------------------------------------------===*)
-
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
-
-(* primary
- * ::= identifier
- * ::= numberexpr
- * ::= parenexpr
- * ::= ifexpr
- * ::= forexpr
- * ::= varexpr *)
-let rec parse_primary = parser
- (* numberexpr ::= number *)
- | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
-
- (* parenexpr ::= '(' expression ')' *)
- | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
-
- (* identifierexpr
- * ::= identifier
- * ::= identifier '(' argumentexpr ')' *)
- | [&lt; 'Token.Ident id; stream &gt;] -&gt;
- let rec parse_args accumulator = parser
- | [&lt; e=parse_expr; stream &gt;] -&gt;
- begin parser
- | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; e :: accumulator
- end stream
- | [&lt; &gt;] -&gt; accumulator
- in
- let rec parse_ident id = parser
- (* Call. *)
- | [&lt; 'Token.Kwd '(';
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
- Ast.Call (id, Array.of_list (List.rev args))
-
- (* Simple variable ref. *)
- | [&lt; &gt;] -&gt; Ast.Variable id
- in
- parse_ident id stream
-
- (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
- | [&lt; 'Token.If; c=parse_expr;
- 'Token.Then ?? "expected 'then'"; t=parse_expr;
- 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
- Ast.If (c, t, e)
-
- (* forexpr
- ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
- | [&lt; 'Token.For;
- 'Token.Ident id ?? "expected identifier after for";
- 'Token.Kwd '=' ?? "expected '=' after for";
- stream &gt;] -&gt;
- begin parser
- | [&lt;
- start=parse_expr;
- 'Token.Kwd ',' ?? "expected ',' after for";
- end_=parse_expr;
- stream &gt;] -&gt;
- let step =
- begin parser
- | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
- | [&lt; &gt;] -&gt; None
- end stream
- in
- begin parser
- | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
- Ast.For (id, start, end_, step, body)
- | [&lt; &gt;] -&gt;
- raise (Stream.Error "expected 'in' after for")
- end stream
- | [&lt; &gt;] -&gt;
- raise (Stream.Error "expected '=' after for")
- end stream
-
- (* varexpr
- * ::= 'var' identifier ('=' expression?
- * (',' identifier ('=' expression)?)* 'in' expression *)
- | [&lt; 'Token.Var;
- (* At least one variable name is required. *)
- 'Token.Ident id ?? "expected identifier after var";
- init=parse_var_init;
- var_names=parse_var_names [(id, init)];
- (* At this point, we have to have 'in'. *)
- 'Token.In ?? "expected 'in' keyword after 'var'";
- body=parse_expr &gt;] -&gt;
- Ast.Var (Array.of_list (List.rev var_names), body)
-
- | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
-
-(* unary
- * ::= primary
- * ::= '!' unary *)
-and parse_unary = parser
- (* If this is a unary operator, read it. *)
- | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
- Ast.Unary (op, operand)
-
- (* If the current token is not an operator, it must be a primary expr. *)
- | [&lt; stream &gt;] -&gt; parse_primary stream
-
-(* binoprhs
- * ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
- match Stream.peek stream with
- (* If this is a binop, find its precedence. *)
- | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
- let token_prec = precedence c in
-
- (* If this is a binop that binds at least as tightly as the current binop,
- * consume it, otherwise we are done. *)
- if token_prec &lt; expr_prec then lhs else begin
- (* Eat the binop. *)
- Stream.junk stream;
-
- (* Parse the primary expression after the binary operator. *)
- let rhs = parse_unary stream in
-
- (* Okay, we know this is a binop. *)
- let rhs =
- match Stream.peek stream with
- | Some (Token.Kwd c2) -&gt;
- (* If BinOp binds less tightly with rhs than the operator after
- * rhs, let the pending operator take rhs as its lhs. *)
- let next_prec = precedence c2 in
- if token_prec &lt; next_prec
- then parse_bin_rhs (token_prec + 1) rhs stream
- else rhs
- | _ -&gt; rhs
- in
-
- (* Merge lhs/rhs. *)
- let lhs = Ast.Binary (c, lhs, rhs) in
- parse_bin_rhs expr_prec lhs stream
- end
- | _ -&gt; lhs
-
-and parse_var_init = parser
- (* read in the optional initializer. *)
- | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
- | [&lt; &gt;] -&gt; None
-
-and parse_var_names accumulator = parser
- | [&lt; 'Token.Kwd ',';
- 'Token.Ident id ?? "expected identifier list after var";
- init=parse_var_init;
- e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; accumulator
-
-(* expression
- * ::= primary binoprhs *)
-and parse_expr = parser
- | [&lt; lhs=parse_unary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
-
-(* prototype
- * ::= id '(' id* ')'
- * ::= binary LETTER number? (id, id)
- * ::= unary LETTER number? (id) *)
-let parse_prototype =
- let rec parse_args accumulator = parser
- | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; accumulator
- in
- let parse_operator = parser
- | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
- | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
- in
- let parse_binary_precedence = parser
- | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
- | [&lt; &gt;] -&gt; 30
- in
- parser
- | [&lt; 'Token.Ident id;
- 'Token.Kwd '(' ?? "expected '(' in prototype";
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
- (* success. *)
- Ast.Prototype (id, Array.of_list (List.rev args))
- | [&lt; (prefix, kind)=parse_operator;
- 'Token.Kwd op ?? "expected an operator";
- (* Read the precedence if present. *)
- binary_precedence=parse_binary_precedence;
- 'Token.Kwd '(' ?? "expected '(' in prototype";
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
- let name = prefix ^ (String.make 1 op) in
- let args = Array.of_list (List.rev args) in
-
- (* Verify right number of arguments for operator. *)
- if Array.length args != kind
- then raise (Stream.Error "invalid number of operands for operator")
- else
- if kind == 1 then
- Ast.Prototype (name, args)
- else
- Ast.BinOpPrototype (name, args, binary_precedence)
- | [&lt; &gt;] -&gt;
- raise (Stream.Error "expected function name in prototype")
-
-(* definition ::= 'def' prototype expression *)
-let parse_definition = parser
- | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
- Ast.Function (p, e)
-
-(* toplevelexpr ::= expression *)
-let parse_toplevel = parser
- | [&lt; e=parse_expr &gt;] -&gt;
- (* Make an anonymous proto. *)
- Ast.Function (Ast.Prototype ("", [||]), e)
-
-(* external ::= 'extern' prototype *)
-let parse_extern = parser
- | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
-</pre>
-</dd>
-
-<dt>codegen.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Code Generation
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-
-exception Error of string
-
-let context = global_context ()
-let the_module = create_module context "my cool jit"
-let builder = builder context
-let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
-let double_type = double_type context
-
-(* Create an alloca instruction in the entry block of the function. This
- * is used for mutable variables etc. *)
-let create_entry_block_alloca the_function var_name =
- let builder = builder_at context (instr_begin (entry_block the_function)) in
- build_alloca double_type var_name builder
-
-let rec codegen_expr = function
- | Ast.Number n -&gt; const_float double_type n
- | Ast.Variable name -&gt;
- let v = try Hashtbl.find named_values name with
- | Not_found -&gt; raise (Error "unknown variable name")
- in
- (* Load the value. *)
- build_load v name builder
- | Ast.Unary (op, operand) -&gt;
- let operand = codegen_expr operand in
- let callee = "unary" ^ (String.make 1 op) in
- let callee =
- match lookup_function callee the_module with
- | Some callee -&gt; callee
- | None -&gt; raise (Error "unknown unary operator")
- in
- build_call callee [|operand|] "unop" builder
- | Ast.Binary (op, lhs, rhs) -&gt;
- begin match op with
- | '=' -&gt;
- (* Special case '=' because we don't want to emit the LHS as an
- * expression. *)
- let name =
- match lhs with
- | Ast.Variable name -&gt; name
- | _ -&gt; raise (Error "destination of '=' must be a variable")
- in
-
- (* Codegen the rhs. *)
- let val_ = codegen_expr rhs in
-
- (* Lookup the name. *)
- let variable = try Hashtbl.find named_values name with
- | Not_found -&gt; raise (Error "unknown variable name")
- in
- ignore(build_store val_ variable builder);
- val_
- | _ -&gt;
- let lhs_val = codegen_expr lhs in
- let rhs_val = codegen_expr rhs in
- begin
- match op with
- | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
- | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
- | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
- | '&lt;' -&gt;
- (* Convert bool 0/1 to double 0.0 or 1.0 *)
- let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
- build_uitofp i double_type "booltmp" builder
- | _ -&gt;
- (* If it wasn't a builtin binary operator, it must be a user defined
- * one. Emit a call to it. *)
- let callee = "binary" ^ (String.make 1 op) in
- let callee =
- match lookup_function callee the_module with
- | Some callee -&gt; callee
- | None -&gt; raise (Error "binary operator not found!")
- in
- build_call callee [|lhs_val; rhs_val|] "binop" builder
- end
- end
- | Ast.Call (callee, args) -&gt;
- (* Look up the name in the module table. *)
- let callee =
- match lookup_function callee the_module with
- | Some callee -&gt; callee
- | None -&gt; raise (Error "unknown function referenced")
- in
- let params = params callee in
-
- (* If argument mismatch error. *)
- if Array.length params == Array.length args then () else
- raise (Error "incorrect # arguments passed");
- let args = Array.map codegen_expr args in
- build_call callee args "calltmp" builder
- | Ast.If (cond, then_, else_) -&gt;
- let cond = codegen_expr cond in
-
- (* Convert condition to a bool by comparing equal to 0.0 *)
- let zero = const_float double_type 0.0 in
- let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
-
- (* Grab the first block so that we might later add the conditional branch
- * to it at the end of the function. *)
- let start_bb = insertion_block builder in
- let the_function = block_parent start_bb in
-
- let then_bb = append_block context "then" the_function in
-
- (* Emit 'then' value. *)
- position_at_end then_bb builder;
- let then_val = codegen_expr then_ in
-
- (* Codegen of 'then' can change the current block, update then_bb for the
- * phi. We create a new name because one is used for the phi node, and the
- * other is used for the conditional branch. *)
- let new_then_bb = insertion_block builder in
-
- (* Emit 'else' value. *)
- let else_bb = append_block context "else" the_function in
- position_at_end else_bb builder;
- let else_val = codegen_expr else_ in
-
- (* Codegen of 'else' can change the current block, update else_bb for the
- * phi. *)
- let new_else_bb = insertion_block builder in
-
- (* Emit merge block. *)
- let merge_bb = append_block context "ifcont" the_function in
- position_at_end merge_bb builder;
- let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
- let phi = build_phi incoming "iftmp" builder in
-
- (* Return to the start block to add the conditional branch. *)
- position_at_end start_bb builder;
- ignore (build_cond_br cond_val then_bb else_bb builder);
-
- (* Set a unconditional branch at the end of the 'then' block and the
- * 'else' block to the 'merge' block. *)
- position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
- position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
-
- (* Finally, set the builder to the end of the merge block. *)
- position_at_end merge_bb builder;
-
- phi
- | Ast.For (var_name, start, end_, step, body) -&gt;
- (* Output this as:
- * var = alloca double
- * ...
- * start = startexpr
- * store start -&gt; var
- * goto loop
- * loop:
- * ...
- * bodyexpr
- * ...
- * loopend:
- * step = stepexpr
- * endcond = endexpr
- *
- * curvar = load var
- * nextvar = curvar + step
- * store nextvar -&gt; var
- * br endcond, loop, endloop
- * outloop: *)
-
- let the_function = block_parent (insertion_block builder) in
-
- (* Create an alloca for the variable in the entry block. *)
- let alloca = create_entry_block_alloca the_function var_name in
-
- (* Emit the start code first, without 'variable' in scope. *)
- let start_val = codegen_expr start in
-
- (* Store the value into the alloca. *)
- ignore(build_store start_val alloca builder);
-
- (* Make the new basic block for the loop header, inserting after current
- * block. *)
- let loop_bb = append_block context "loop" the_function in
-
- (* Insert an explicit fall through from the current block to the
- * loop_bb. *)
- ignore (build_br loop_bb builder);
-
- (* Start insertion in loop_bb. *)
- position_at_end loop_bb builder;
-
- (* Within the loop, the variable is defined equal to the PHI node. If it
- * shadows an existing variable, we have to restore it, so save it
- * now. *)
- let old_val =
- try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
- in
- Hashtbl.add named_values var_name alloca;
-
- (* Emit the body of the loop. This, like any other expr, can change the
- * current BB. Note that we ignore the value computed by the body, but
- * don't allow an error *)
- ignore (codegen_expr body);
-
- (* Emit the step value. *)
- let step_val =
- match step with
- | Some step -&gt; codegen_expr step
- (* If not specified, use 1.0. *)
- | None -&gt; const_float double_type 1.0
- in
-
- (* Compute the end condition. *)
- let end_cond = codegen_expr end_ in
-
- (* Reload, increment, and restore the alloca. This handles the case where
- * the body of the loop mutates the variable. *)
- let cur_var = build_load alloca var_name builder in
- let next_var = build_add cur_var step_val "nextvar" builder in
- ignore(build_store next_var alloca builder);
-
- (* Convert condition to a bool by comparing equal to 0.0. *)
- let zero = const_float double_type 0.0 in
- let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
-
- (* Create the "after loop" block and insert it. *)
- let after_bb = append_block context "afterloop" the_function in
-
- (* Insert the conditional branch into the end of loop_end_bb. *)
- ignore (build_cond_br end_cond loop_bb after_bb builder);
-
- (* Any new code will be inserted in after_bb. *)
- position_at_end after_bb builder;
-
- (* Restore the unshadowed variable. *)
- begin match old_val with
- | Some old_val -&gt; Hashtbl.add named_values var_name old_val
- | None -&gt; ()
- end;
-
- (* for expr always returns 0.0. *)
- const_null double_type
- | Ast.Var (var_names, body) -&gt;
- let old_bindings = ref [] in
-
- let the_function = block_parent (insertion_block builder) in
-
- (* Register all variables and emit their initializer. *)
- Array.iter (fun (var_name, init) -&gt;
- (* Emit the initializer before adding the variable to scope, this
- * prevents the initializer from referencing the variable itself, and
- * permits stuff like this:
- * var a = 1 in
- * var a = a in ... # refers to outer 'a'. *)
- let init_val =
- match init with
- | Some init -&gt; codegen_expr init
- (* If not specified, use 0.0. *)
- | None -&gt; const_float double_type 0.0
- in
-
- let alloca = create_entry_block_alloca the_function var_name in
- ignore(build_store init_val alloca builder);
-
- (* Remember the old variable binding so that we can restore the binding
- * when we unrecurse. *)
- begin
- try
- let old_value = Hashtbl.find named_values var_name in
- old_bindings := (var_name, old_value) :: !old_bindings;
- with Not_found -&gt; ()
- end;
-
- (* Remember this binding. *)
- Hashtbl.add named_values var_name alloca;
- ) var_names;
-
- (* Codegen the body, now that all vars are in scope. *)
- let body_val = codegen_expr body in
-
- (* Pop all our variables from scope. *)
- List.iter (fun (var_name, old_value) -&gt;
- Hashtbl.add named_values var_name old_value
- ) !old_bindings;
-
- (* Return the body computation. *)
- body_val
-
-let codegen_proto = function
- | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -&gt;
- (* Make the function type: double(double,double) etc. *)
- let doubles = Array.make (Array.length args) double_type in
- let ft = function_type double_type doubles in
- let f =
- match lookup_function name the_module with
- | None -&gt; declare_function name ft the_module
-
- (* If 'f' conflicted, there was already something named 'name'. If it
- * has a body, don't allow redefinition or reextern. *)
- | Some f -&gt;
- (* If 'f' already has a body, reject this. *)
- if block_begin f &lt;&gt; At_end f then
- raise (Error "redefinition of function");
-
- (* If 'f' took a different number of arguments, reject. *)
- if element_type (type_of f) &lt;&gt; ft then
- raise (Error "redefinition of function with different # args");
- f
- in
-
- (* Set names for all arguments. *)
- Array.iteri (fun i a -&gt;
- let n = args.(i) in
- set_value_name n a;
- Hashtbl.add named_values n a;
- ) (params f);
- f
-
-(* Create an alloca for each argument and register the argument in the symbol
- * table so that references to it will succeed. *)
-let create_argument_allocas the_function proto =
- let args = match proto with
- | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
- in
- Array.iteri (fun i ai -&gt;
- let var_name = args.(i) in
- (* Create an alloca for this variable. *)
- let alloca = create_entry_block_alloca the_function var_name in
-
- (* Store the initial value into the alloca. *)
- ignore(build_store ai alloca builder);
-
- (* Add arguments to variable symbol table. *)
- Hashtbl.add named_values var_name alloca;
- ) (params the_function)
-
-let codegen_func the_fpm = function
- | Ast.Function (proto, body) -&gt;
- Hashtbl.clear named_values;
- let the_function = codegen_proto proto in
-
- (* If this is an operator, install it. *)
- begin match proto with
- | Ast.BinOpPrototype (name, args, prec) -&gt;
- let op = name.[String.length name - 1] in
- Hashtbl.add Parser.binop_precedence op prec;
- | _ -&gt; ()
- end;
-
- (* Create a new basic block to start insertion into. *)
- let bb = append_block context "entry" the_function in
- position_at_end bb builder;
-
- try
- (* Add all arguments to the symbol table and create their allocas. *)
- create_argument_allocas the_function proto;
-
- let ret_val = codegen_expr body in
-
- (* Finish off the function. *)
- let _ = build_ret ret_val builder in
-
- (* Validate the generated code, checking for consistency. *)
- Llvm_analysis.assert_valid_function the_function;
-
- (* Optimize the function. *)
- let _ = PassManager.run_function the_function the_fpm in
-
- the_function
- with e -&gt;
- delete_function the_function;
- raise e
-</pre>
-</dd>
-
-<dt>toplevel.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Top-Level parsing and JIT Driver
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-open Llvm_executionengine
-
-(* top ::= definition | external | expression | ';' *)
-let rec main_loop the_fpm the_execution_engine stream =
- match Stream.peek stream with
- | None -&gt; ()
-
- (* ignore top-level semicolons. *)
- | Some (Token.Kwd ';') -&gt;
- Stream.junk stream;
- main_loop the_fpm the_execution_engine stream
-
- | Some token -&gt;
- begin
- try match token with
- | Token.Def -&gt;
- let e = Parser.parse_definition stream in
- print_endline "parsed a function definition.";
- dump_value (Codegen.codegen_func the_fpm e);
- | Token.Extern -&gt;
- let e = Parser.parse_extern stream in
- print_endline "parsed an extern.";
- dump_value (Codegen.codegen_proto e);
- | _ -&gt;
- (* Evaluate a top-level expression into an anonymous function. *)
- let e = Parser.parse_toplevel stream in
- print_endline "parsed a top-level expr";
- let the_function = Codegen.codegen_func the_fpm e in
- dump_value the_function;
-
- (* JIT the function, returning a function pointer. *)
- let result = ExecutionEngine.run_function the_function [||]
- the_execution_engine in
-
- print_string "Evaluated to ";
- print_float (GenericValue.as_float Codegen.double_type result);
- print_newline ();
- with Stream.Error s | Codegen.Error s -&gt;
- (* Skip token for error recovery. *)
- Stream.junk stream;
- print_endline s;
- end;
- print_string "ready&gt; "; flush stdout;
- main_loop the_fpm the_execution_engine stream
-</pre>
-</dd>
-
-<dt>toy.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Main driver code.
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-open Llvm_executionengine
-open Llvm_target
-open Llvm_scalar_opts
-
-let main () =
- ignore (initialize_native_target ());
-
- (* Install standard binary operators.
- * 1 is the lowest precedence. *)
- Hashtbl.add Parser.binop_precedence '=' 2;
- Hashtbl.add Parser.binop_precedence '&lt;' 10;
- Hashtbl.add Parser.binop_precedence '+' 20;
- Hashtbl.add Parser.binop_precedence '-' 20;
- Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
-
- (* Prime the first token. *)
- print_string "ready&gt; "; flush stdout;
- let stream = Lexer.lex (Stream.of_channel stdin) in
-
- (* Create the JIT. *)
- let the_execution_engine = ExecutionEngine.create Codegen.the_module in
- let the_fpm = PassManager.create_function Codegen.the_module in
-
- (* Set up the optimizer pipeline. Start with registering info about how the
- * target lays out data structures. *)
- TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
-
- (* Promote allocas to registers. *)
- add_memory_to_register_promotion the_fpm;
-
- (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
- add_instruction_combination the_fpm;
-
- (* reassociate expressions. *)
- add_reassociation the_fpm;
-
- (* Eliminate Common SubExpressions. *)
- add_gvn the_fpm;
-
- (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
- add_cfg_simplification the_fpm;
-
- ignore (PassManager.initialize the_fpm);
-
- (* Run the main "interpreter loop" now. *)
- Toplevel.main_loop the_fpm the_execution_engine stream;
-
- (* Print out all the generated code. *)
- dump_module Codegen.the_module
-;;
-
-main ()
-</pre>
-</dd>
-
-<dt>bindings.c</dt>
-<dd class="doc_code">
-<pre>
-#include &lt;stdio.h&gt;
-
-/* putchard - putchar that takes a double and returns 0. */
-extern double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-
-/* printd - printf that takes a double prints it as "%f\n", returning 0. */
-extern double printd(double X) {
- printf("%f\n", X);
- return 0;
-}
-</pre>
-</dd>
-</dl>
-
-<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
- <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
- <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
- <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
- Last modified: $Date$
-</address>
-</body>
-</html>