summaryrefslogtreecommitdiff
path: root/include/llvm/CodeGen/PBQP/HeuristicBase.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/CodeGen/PBQP/HeuristicBase.h')
-rw-r--r--include/llvm/CodeGen/PBQP/HeuristicBase.h247
1 files changed, 247 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/PBQP/HeuristicBase.h b/include/llvm/CodeGen/PBQP/HeuristicBase.h
new file mode 100644
index 0000000000..8bcbb9ed1d
--- /dev/null
+++ b/include/llvm/CodeGen/PBQP/HeuristicBase.h
@@ -0,0 +1,247 @@
+//===-- HeuristcBase.h --- Heuristic base class for PBQP --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_HEURISTICBASE_H
+#define LLVM_CODEGEN_PBQP_HEURISTICBASE_H
+
+#include "HeuristicSolver.h"
+
+namespace PBQP {
+
+ /// \brief Abstract base class for heuristic implementations.
+ ///
+ /// This class provides a handy base for heuristic implementations with common
+ /// solver behaviour implemented for a number of methods.
+ ///
+ /// To implement your own heuristic using this class as a base you'll have to
+ /// implement, as a minimum, the following methods:
+ /// <ul>
+ /// <li> void addToHeuristicList(Graph::NodeItr) : Add a node to the
+ /// heuristic reduction list.
+ /// <li> void heuristicReduce() : Perform a single heuristic reduction.
+ /// <li> void preUpdateEdgeCosts(Graph::EdgeItr) : Handle the (imminent)
+ /// change to the cost matrix on the given edge (by R2).
+ /// <li> void postUpdateEdgeCostts(Graph::EdgeItr) : Handle the new
+ /// costs on the given edge.
+ /// <li> void handleAddEdge(Graph::EdgeItr) : Handle the addition of a new
+ /// edge into the PBQP graph (by R2).
+ /// <li> void handleRemoveEdge(Graph::EdgeItr, Graph::NodeItr) : Handle the
+ /// disconnection of the given edge from the given node.
+ /// <li> A constructor for your derived class : to pass back a reference to
+ /// the solver which is using this heuristic.
+ /// </ul>
+ ///
+ /// These methods are implemented in this class for documentation purposes,
+ /// but will assert if called.
+ ///
+ /// Note that this class uses the curiously recursive template idiom to
+ /// forward calls to the derived class. These methods need not be made
+ /// virtual, and indeed probably shouldn't for performance reasons.
+ ///
+ /// You'll also need to provide NodeData and EdgeData structs in your class.
+ /// These can be used to attach data relevant to your heuristic to each
+ /// node/edge in the PBQP graph.
+
+ template <typename HImpl>
+ class HeuristicBase {
+ private:
+
+ typedef std::list<Graph::NodeId> OptimalList;
+
+ HeuristicSolverImpl<HImpl> &s;
+ Graph &g;
+ OptimalList optimalList;
+
+ // Return a reference to the derived heuristic.
+ HImpl& impl() { return static_cast<HImpl&>(*this); }
+
+ // Add the given node to the optimal reductions list. Keep an iterator to
+ // its location for fast removal.
+ void addToOptimalReductionList(Graph::NodeId nId) {
+ optimalList.insert(optimalList.end(), nId);
+ }
+
+ public:
+
+ /// \brief Construct an instance with a reference to the given solver.
+ /// @param solver The solver which is using this heuristic instance.
+ HeuristicBase(HeuristicSolverImpl<HImpl> &solver)
+ : s(solver), g(s.getGraph()) { }
+
+ /// \brief Get the solver which is using this heuristic instance.
+ /// @return The solver which is using this heuristic instance.
+ ///
+ /// You can use this method to get access to the solver in your derived
+ /// heuristic implementation.
+ HeuristicSolverImpl<HImpl>& getSolver() { return s; }
+
+ /// \brief Get the graph representing the problem to be solved.
+ /// @return The graph representing the problem to be solved.
+ Graph& getGraph() { return g; }
+
+ /// \brief Tell the solver to simplify the graph before the reduction phase.
+ /// @return Whether or not the solver should run a simplification phase
+ /// prior to the main setup and reduction.
+ ///
+ /// HeuristicBase returns true from this method as it's a sensible default,
+ /// however you can over-ride it in your derived class if you want different
+ /// behaviour.
+ bool solverRunSimplify() const { return true; }
+
+ /// \brief Decide whether a node should be optimally or heuristically
+ /// reduced.
+ /// @return Whether or not the given node should be listed for optimal
+ /// reduction (via R0, R1 or R2).
+ ///
+ /// HeuristicBase returns true for any node with degree less than 3. This is
+ /// sane and sensible for many situations, but not all. You can over-ride
+ /// this method in your derived class if you want a different selection
+ /// criteria. Note however that your criteria for selecting optimal nodes
+ /// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or
+ /// higher should not be selected under any circumstances.
+ bool shouldOptimallyReduce(Graph::NodeId nId) {
+ if (g.getNodeDegree(nId) < 3)
+ return true;
+ // else
+ return false;
+ }
+
+ /// \brief Add the given node to the list of nodes to be optimally reduced.
+ /// @param nId Node id to be added.
+ ///
+ /// You probably don't want to over-ride this, except perhaps to record
+ /// statistics before calling this implementation. HeuristicBase relies on
+ /// its behaviour.
+ void addToOptimalReduceList(Graph::NodeId nId) {
+ optimalList.push_back(nId);
+ }
+
+ /// \brief Initialise the heuristic.
+ ///
+ /// HeuristicBase iterates over all nodes in the problem and adds them to
+ /// the appropriate list using addToOptimalReduceList or
+ /// addToHeuristicReduceList based on the result of shouldOptimallyReduce.
+ ///
+ /// This behaviour should be fine for most situations.
+ void setup() {
+ for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
+ nItr != nEnd; ++nItr) {
+ if (impl().shouldOptimallyReduce(*nItr)) {
+ addToOptimalReduceList(*nItr);
+ } else {
+ impl().addToHeuristicReduceList(*nItr);
+ }
+ }
+ }
+
+ /// \brief Optimally reduce one of the nodes in the optimal reduce list.
+ /// @return True if a reduction takes place, false if the optimal reduce
+ /// list is empty.
+ ///
+ /// Selects a node from the optimal reduce list and removes it, applying
+ /// R0, R1 or R2 as appropriate based on the selected node's degree.
+ bool optimalReduce() {
+ if (optimalList.empty())
+ return false;
+
+ Graph::NodeId nId = optimalList.front();
+ optimalList.pop_front();
+
+ switch (s.getSolverDegree(nId)) {
+ case 0: s.applyR0(nId); break;
+ case 1: s.applyR1(nId); break;
+ case 2: s.applyR2(nId); break;
+ default: llvm_unreachable(
+ "Optimal reductions of degree > 2 nodes is invalid.");
+ }
+
+ return true;
+ }
+
+ /// \brief Perform the PBQP reduction process.
+ ///
+ /// Reduces the problem to the empty graph by repeated application of the
+ /// reduction rules R0, R1, R2 and RN.
+ /// R0, R1 or R2 are always applied if possible before RN is used.
+ void reduce() {
+ bool finished = false;
+
+ while (!finished) {
+ if (!optimalReduce()) {
+ if (impl().heuristicReduce()) {
+ getSolver().recordRN();
+ } else {
+ finished = true;
+ }
+ }
+ }
+ }
+
+ /// \brief Add a node to the heuristic reduce list.
+ /// @param nId Node id to add to the heuristic reduce list.
+ void addToHeuristicList(Graph::NodeId nId) {
+ llvm_unreachable("Must be implemented in derived class.");
+ }
+
+ /// \brief Heuristically reduce one of the nodes in the heuristic
+ /// reduce list.
+ /// @return True if a reduction takes place, false if the heuristic reduce
+ /// list is empty.
+ bool heuristicReduce() {
+ llvm_unreachable("Must be implemented in derived class.");
+ return false;
+ }
+
+ /// \brief Prepare a change in the costs on the given edge.
+ /// @param eId Edge id.
+ void preUpdateEdgeCosts(Graph::EdgeId eId) {
+ llvm_unreachable("Must be implemented in derived class.");
+ }
+
+ /// \brief Handle the change in the costs on the given edge.
+ /// @param eId Edge id.
+ void postUpdateEdgeCostts(Graph::EdgeId eId) {
+ llvm_unreachable("Must be implemented in derived class.");
+ }
+
+ /// \brief Handle the addition of a new edge into the PBQP graph.
+ /// @param eId Edge id for the added edge.
+ void handleAddEdge(Graph::EdgeId eId) {
+ llvm_unreachable("Must be implemented in derived class.");
+ }
+
+ /// \brief Handle disconnection of an edge from a node.
+ /// @param eId Edge id for edge being disconnected.
+ /// @param nId Node id for the node being disconnected from.
+ ///
+ /// Edges are frequently removed due to the removal of a node. This
+ /// method allows for the effect to be computed only for the remaining
+ /// node in the graph.
+ void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
+ llvm_unreachable("Must be implemented in derived class.");
+ }
+
+ /// \brief Clean up any structures used by HeuristicBase.
+ ///
+ /// At present this just performs a sanity check: that the optimal reduce
+ /// list is empty now that reduction has completed.
+ ///
+ /// If your derived class has more complex structures which need tearing
+ /// down you should over-ride this method but include a call back to this
+ /// implementation.
+ void cleanup() {
+ assert(optimalList.empty() && "Nodes left over in optimal reduce list?");
+ }
+
+ };
+
+}
+
+
+#endif // LLVM_CODEGEN_PBQP_HEURISTICBASE_H