summaryrefslogtreecommitdiff
path: root/include/llvm/IR/InstrTypes.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/IR/InstrTypes.h')
-rw-r--r--include/llvm/IR/InstrTypes.h851
1 files changed, 851 insertions, 0 deletions
diff --git a/include/llvm/IR/InstrTypes.h b/include/llvm/IR/InstrTypes.h
new file mode 100644
index 0000000000..66bf8dde97
--- /dev/null
+++ b/include/llvm/IR/InstrTypes.h
@@ -0,0 +1,851 @@
+//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various meta classes of instructions that exist in the VM
+// representation. Specific concrete subclasses of these may be found in the
+// i*.h files...
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_INSTRUCTION_TYPES_H
+#define LLVM_INSTRUCTION_TYPES_H
+
+#include "llvm/ADT/Twine.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/OperandTraits.h"
+
+namespace llvm {
+
+class LLVMContext;
+
+//===----------------------------------------------------------------------===//
+// TerminatorInst Class
+//===----------------------------------------------------------------------===//
+
+/// TerminatorInst - Subclasses of this class are all able to terminate a basic
+/// block. Thus, these are all the flow control type of operations.
+///
+class TerminatorInst : public Instruction {
+protected:
+ TerminatorInst(Type *Ty, Instruction::TermOps iType,
+ Use *Ops, unsigned NumOps,
+ Instruction *InsertBefore = 0)
+ : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}
+
+ TerminatorInst(Type *Ty, Instruction::TermOps iType,
+ Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
+ : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}
+
+ // Out of line virtual method, so the vtable, etc has a home.
+ ~TerminatorInst();
+
+ /// Virtual methods - Terminators should overload these and provide inline
+ /// overrides of non-V methods.
+ virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
+ virtual unsigned getNumSuccessorsV() const = 0;
+ virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
+ virtual TerminatorInst *clone_impl() const = 0;
+public:
+
+ /// getNumSuccessors - Return the number of successors that this terminator
+ /// has.
+ unsigned getNumSuccessors() const {
+ return getNumSuccessorsV();
+ }
+
+ /// getSuccessor - Return the specified successor.
+ ///
+ BasicBlock *getSuccessor(unsigned idx) const {
+ return getSuccessorV(idx);
+ }
+
+ /// setSuccessor - Update the specified successor to point at the provided
+ /// block.
+ void setSuccessor(unsigned idx, BasicBlock *B) {
+ setSuccessorV(idx, B);
+ }
+
+ // Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const Instruction *I) {
+ return I->isTerminator();
+ }
+ static inline bool classof(const Value *V) {
+ return isa<Instruction>(V) && classof(cast<Instruction>(V));
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+// UnaryInstruction Class
+//===----------------------------------------------------------------------===//
+
+class UnaryInstruction : public Instruction {
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+
+protected:
+ UnaryInstruction(Type *Ty, unsigned iType, Value *V,
+ Instruction *IB = 0)
+ : Instruction(Ty, iType, &Op<0>(), 1, IB) {
+ Op<0>() = V;
+ }
+ UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
+ : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
+ Op<0>() = V;
+ }
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+
+ // Out of line virtual method, so the vtable, etc has a home.
+ ~UnaryInstruction();
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+
+ // Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const Instruction *I) {
+ return I->getOpcode() == Instruction::Alloca ||
+ I->getOpcode() == Instruction::Load ||
+ I->getOpcode() == Instruction::VAArg ||
+ I->getOpcode() == Instruction::ExtractValue ||
+ (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
+ }
+ static inline bool classof(const Value *V) {
+ return isa<Instruction>(V) && classof(cast<Instruction>(V));
+ }
+};
+
+template <>
+struct OperandTraits<UnaryInstruction> :
+ public FixedNumOperandTraits<UnaryInstruction, 1> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)
+
+//===----------------------------------------------------------------------===//
+// BinaryOperator Class
+//===----------------------------------------------------------------------===//
+
+class BinaryOperator : public Instruction {
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+protected:
+ void init(BinaryOps iType);
+ BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
+ const Twine &Name, Instruction *InsertBefore);
+ BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
+ const Twine &Name, BasicBlock *InsertAtEnd);
+ virtual BinaryOperator *clone_impl() const LLVM_OVERRIDE;
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+
+ /// Create() - Construct a binary instruction, given the opcode and the two
+ /// operands. Optionally (if InstBefore is specified) insert the instruction
+ /// into a BasicBlock right before the specified instruction. The specified
+ /// Instruction is allowed to be a dereferenced end iterator.
+ ///
+ static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
+ const Twine &Name = Twine(),
+ Instruction *InsertBefore = 0);
+
+ /// Create() - Construct a binary instruction, given the opcode and the two
+ /// operands. Also automatically insert this instruction to the end of the
+ /// BasicBlock specified.
+ ///
+ static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
+ const Twine &Name, BasicBlock *InsertAtEnd);
+
+ /// Create* - These methods just forward to Create, and are useful when you
+ /// statically know what type of instruction you're going to create. These
+ /// helpers just save some typing.
+#define HANDLE_BINARY_INST(N, OPC, CLASS) \
+ static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
+ const Twine &Name = "") {\
+ return Create(Instruction::OPC, V1, V2, Name);\
+ }
+#include "llvm/IR/Instruction.def"
+#define HANDLE_BINARY_INST(N, OPC, CLASS) \
+ static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
+ const Twine &Name, BasicBlock *BB) {\
+ return Create(Instruction::OPC, V1, V2, Name, BB);\
+ }
+#include "llvm/IR/Instruction.def"
+#define HANDLE_BINARY_INST(N, OPC, CLASS) \
+ static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
+ const Twine &Name, Instruction *I) {\
+ return Create(Instruction::OPC, V1, V2, Name, I);\
+ }
+#include "llvm/IR/Instruction.def"
+
+ static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name = "") {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name);
+ BO->setHasNoSignedWrap(true);
+ return BO;
+ }
+ static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name, BasicBlock *BB) {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
+ BO->setHasNoSignedWrap(true);
+ return BO;
+ }
+ static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name, Instruction *I) {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
+ BO->setHasNoSignedWrap(true);
+ return BO;
+ }
+
+ static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name = "") {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name);
+ BO->setHasNoUnsignedWrap(true);
+ return BO;
+ }
+ static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name, BasicBlock *BB) {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
+ BO->setHasNoUnsignedWrap(true);
+ return BO;
+ }
+ static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name, Instruction *I) {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
+ BO->setHasNoUnsignedWrap(true);
+ return BO;
+ }
+
+ static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name = "") {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name);
+ BO->setIsExact(true);
+ return BO;
+ }
+ static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name, BasicBlock *BB) {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
+ BO->setIsExact(true);
+ return BO;
+ }
+ static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
+ const Twine &Name, Instruction *I) {
+ BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
+ BO->setIsExact(true);
+ return BO;
+ }
+
+#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \
+ static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
+ (Value *V1, Value *V2, const Twine &Name = "") { \
+ return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \
+ } \
+ static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
+ (Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \
+ return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \
+ } \
+ static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
+ (Value *V1, Value *V2, const Twine &Name, Instruction *I) { \
+ return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \
+ }
+
+ DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
+ DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
+ DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
+ DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
+ DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
+ DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
+ DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
+ DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
+
+ DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv
+ DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv
+ DEFINE_HELPERS(AShr, Exact) // CreateExactAShr
+ DEFINE_HELPERS(LShr, Exact) // CreateExactLShr
+
+#undef DEFINE_HELPERS
+
+ /// Helper functions to construct and inspect unary operations (NEG and NOT)
+ /// via binary operators SUB and XOR:
+ ///
+ /// CreateNeg, CreateNot - Create the NEG and NOT
+ /// instructions out of SUB and XOR instructions.
+ ///
+ static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
+ Instruction *InsertBefore = 0);
+ static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd);
+ static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
+ Instruction *InsertBefore = 0);
+ static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd);
+ static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
+ Instruction *InsertBefore = 0);
+ static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd);
+ static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
+ Instruction *InsertBefore = 0);
+ static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd);
+ static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
+ Instruction *InsertBefore = 0);
+ static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd);
+
+ /// isNeg, isFNeg, isNot - Check if the given Value is a
+ /// NEG, FNeg, or NOT instruction.
+ ///
+ static bool isNeg(const Value *V);
+ static bool isFNeg(const Value *V);
+ static bool isNot(const Value *V);
+
+ /// getNegArgument, getNotArgument - Helper functions to extract the
+ /// unary argument of a NEG, FNEG or NOT operation implemented via
+ /// Sub, FSub, or Xor.
+ ///
+ static const Value *getNegArgument(const Value *BinOp);
+ static Value *getNegArgument( Value *BinOp);
+ static const Value *getFNegArgument(const Value *BinOp);
+ static Value *getFNegArgument( Value *BinOp);
+ static const Value *getNotArgument(const Value *BinOp);
+ static Value *getNotArgument( Value *BinOp);
+
+ BinaryOps getOpcode() const {
+ return static_cast<BinaryOps>(Instruction::getOpcode());
+ }
+
+ /// swapOperands - Exchange the two operands to this instruction.
+ /// This instruction is safe to use on any binary instruction and
+ /// does not modify the semantics of the instruction. If the instruction
+ /// cannot be reversed (ie, it's a Div), then return true.
+ ///
+ bool swapOperands();
+
+ /// setHasNoUnsignedWrap - Set or clear the nsw flag on this instruction,
+ /// which must be an operator which supports this flag. See LangRef.html
+ /// for the meaning of this flag.
+ void setHasNoUnsignedWrap(bool b = true);
+
+ /// setHasNoSignedWrap - Set or clear the nsw flag on this instruction,
+ /// which must be an operator which supports this flag. See LangRef.html
+ /// for the meaning of this flag.
+ void setHasNoSignedWrap(bool b = true);
+
+ /// setIsExact - Set or clear the exact flag on this instruction,
+ /// which must be an operator which supports this flag. See LangRef.html
+ /// for the meaning of this flag.
+ void setIsExact(bool b = true);
+
+ /// hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
+ bool hasNoUnsignedWrap() const;
+
+ /// hasNoSignedWrap - Determine whether the no signed wrap flag is set.
+ bool hasNoSignedWrap() const;
+
+ /// isExact - Determine whether the exact flag is set.
+ bool isExact() const;
+
+ // Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const Instruction *I) {
+ return I->isBinaryOp();
+ }
+ static inline bool classof(const Value *V) {
+ return isa<Instruction>(V) && classof(cast<Instruction>(V));
+ }
+};
+
+template <>
+struct OperandTraits<BinaryOperator> :
+ public FixedNumOperandTraits<BinaryOperator, 2> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)
+
+//===----------------------------------------------------------------------===//
+// CastInst Class
+//===----------------------------------------------------------------------===//
+
+/// CastInst - This is the base class for all instructions that perform data
+/// casts. It is simply provided so that instruction category testing
+/// can be performed with code like:
+///
+/// if (isa<CastInst>(Instr)) { ... }
+/// @brief Base class of casting instructions.
+class CastInst : public UnaryInstruction {
+ virtual void anchor() LLVM_OVERRIDE;
+protected:
+ /// @brief Constructor with insert-before-instruction semantics for subclasses
+ CastInst(Type *Ty, unsigned iType, Value *S,
+ const Twine &NameStr = "", Instruction *InsertBefore = 0)
+ : UnaryInstruction(Ty, iType, S, InsertBefore) {
+ setName(NameStr);
+ }
+ /// @brief Constructor with insert-at-end-of-block semantics for subclasses
+ CastInst(Type *Ty, unsigned iType, Value *S,
+ const Twine &NameStr, BasicBlock *InsertAtEnd)
+ : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
+ setName(NameStr);
+ }
+public:
+ /// Provides a way to construct any of the CastInst subclasses using an
+ /// opcode instead of the subclass's constructor. The opcode must be in the
+ /// CastOps category (Instruction::isCast(opcode) returns true). This
+ /// constructor has insert-before-instruction semantics to automatically
+ /// insert the new CastInst before InsertBefore (if it is non-null).
+ /// @brief Construct any of the CastInst subclasses
+ static CastInst *Create(
+ Instruction::CastOps, ///< The opcode of the cast instruction
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which cast should be made
+ const Twine &Name = "", ///< Name for the instruction
+ Instruction *InsertBefore = 0 ///< Place to insert the instruction
+ );
+ /// Provides a way to construct any of the CastInst subclasses using an
+ /// opcode instead of the subclass's constructor. The opcode must be in the
+ /// CastOps category. This constructor has insert-at-end-of-block semantics
+ /// to automatically insert the new CastInst at the end of InsertAtEnd (if
+ /// its non-null).
+ /// @brief Construct any of the CastInst subclasses
+ static CastInst *Create(
+ Instruction::CastOps, ///< The opcode for the cast instruction
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which operand is casted
+ const Twine &Name, ///< The name for the instruction
+ BasicBlock *InsertAtEnd ///< The block to insert the instruction into
+ );
+
+ /// @brief Create a ZExt or BitCast cast instruction
+ static CastInst *CreateZExtOrBitCast(
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which cast should be made
+ const Twine &Name = "", ///< Name for the instruction
+ Instruction *InsertBefore = 0 ///< Place to insert the instruction
+ );
+
+ /// @brief Create a ZExt or BitCast cast instruction
+ static CastInst *CreateZExtOrBitCast(
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which operand is casted
+ const Twine &Name, ///< The name for the instruction
+ BasicBlock *InsertAtEnd ///< The block to insert the instruction into
+ );
+
+ /// @brief Create a SExt or BitCast cast instruction
+ static CastInst *CreateSExtOrBitCast(
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which cast should be made
+ const Twine &Name = "", ///< Name for the instruction
+ Instruction *InsertBefore = 0 ///< Place to insert the instruction
+ );
+
+ /// @brief Create a SExt or BitCast cast instruction
+ static CastInst *CreateSExtOrBitCast(
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which operand is casted
+ const Twine &Name, ///< The name for the instruction
+ BasicBlock *InsertAtEnd ///< The block to insert the instruction into
+ );
+
+ /// @brief Create a BitCast or a PtrToInt cast instruction
+ static CastInst *CreatePointerCast(
+ Value *S, ///< The pointer value to be casted (operand 0)
+ Type *Ty, ///< The type to which operand is casted
+ const Twine &Name, ///< The name for the instruction
+ BasicBlock *InsertAtEnd ///< The block to insert the instruction into
+ );
+
+ /// @brief Create a BitCast or a PtrToInt cast instruction
+ static CastInst *CreatePointerCast(
+ Value *S, ///< The pointer value to be casted (operand 0)
+ Type *Ty, ///< The type to which cast should be made
+ const Twine &Name = "", ///< Name for the instruction
+ Instruction *InsertBefore = 0 ///< Place to insert the instruction
+ );
+
+ /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
+ static CastInst *CreateIntegerCast(
+ Value *S, ///< The pointer value to be casted (operand 0)
+ Type *Ty, ///< The type to which cast should be made
+ bool isSigned, ///< Whether to regard S as signed or not
+ const Twine &Name = "", ///< Name for the instruction
+ Instruction *InsertBefore = 0 ///< Place to insert the instruction
+ );
+
+ /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
+ static CastInst *CreateIntegerCast(
+ Value *S, ///< The integer value to be casted (operand 0)
+ Type *Ty, ///< The integer type to which operand is casted
+ bool isSigned, ///< Whether to regard S as signed or not
+ const Twine &Name, ///< The name for the instruction
+ BasicBlock *InsertAtEnd ///< The block to insert the instruction into
+ );
+
+ /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
+ static CastInst *CreateFPCast(
+ Value *S, ///< The floating point value to be casted
+ Type *Ty, ///< The floating point type to cast to
+ const Twine &Name = "", ///< Name for the instruction
+ Instruction *InsertBefore = 0 ///< Place to insert the instruction
+ );
+
+ /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
+ static CastInst *CreateFPCast(
+ Value *S, ///< The floating point value to be casted
+ Type *Ty, ///< The floating point type to cast to
+ const Twine &Name, ///< The name for the instruction
+ BasicBlock *InsertAtEnd ///< The block to insert the instruction into
+ );
+
+ /// @brief Create a Trunc or BitCast cast instruction
+ static CastInst *CreateTruncOrBitCast(
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which cast should be made
+ const Twine &Name = "", ///< Name for the instruction
+ Instruction *InsertBefore = 0 ///< Place to insert the instruction
+ );
+
+ /// @brief Create a Trunc or BitCast cast instruction
+ static CastInst *CreateTruncOrBitCast(
+ Value *S, ///< The value to be casted (operand 0)
+ Type *Ty, ///< The type to which operand is casted
+ const Twine &Name, ///< The name for the instruction
+ BasicBlock *InsertAtEnd ///< The block to insert the instruction into
+ );
+
+ /// @brief Check whether it is valid to call getCastOpcode for these types.
+ static bool isCastable(
+ Type *SrcTy, ///< The Type from which the value should be cast.
+ Type *DestTy ///< The Type to which the value should be cast.
+ );
+
+ /// Returns the opcode necessary to cast Val into Ty using usual casting
+ /// rules.
+ /// @brief Infer the opcode for cast operand and type
+ static Instruction::CastOps getCastOpcode(
+ const Value *Val, ///< The value to cast
+ bool SrcIsSigned, ///< Whether to treat the source as signed
+ Type *Ty, ///< The Type to which the value should be casted
+ bool DstIsSigned ///< Whether to treate the dest. as signed
+ );
+
+ /// There are several places where we need to know if a cast instruction
+ /// only deals with integer source and destination types. To simplify that
+ /// logic, this method is provided.
+ /// @returns true iff the cast has only integral typed operand and dest type.
+ /// @brief Determine if this is an integer-only cast.
+ bool isIntegerCast() const;
+
+ /// A lossless cast is one that does not alter the basic value. It implies
+ /// a no-op cast but is more stringent, preventing things like int->float,
+ /// long->double, or int->ptr.
+ /// @returns true iff the cast is lossless.
+ /// @brief Determine if this is a lossless cast.
+ bool isLosslessCast() const;
+
+ /// A no-op cast is one that can be effected without changing any bits.
+ /// It implies that the source and destination types are the same size. The
+ /// IntPtrTy argument is used to make accurate determinations for casts
+ /// involving Integer and Pointer types. They are no-op casts if the integer
+ /// is the same size as the pointer. However, pointer size varies with
+ /// platform. Generally, the result of DataLayout::getIntPtrType() should be
+ /// passed in. If that's not available, use Type::Int64Ty, which will make
+ /// the isNoopCast call conservative.
+ /// @brief Determine if the described cast is a no-op cast.
+ static bool isNoopCast(
+ Instruction::CastOps Opcode, ///< Opcode of cast
+ Type *SrcTy, ///< SrcTy of cast
+ Type *DstTy, ///< DstTy of cast
+ Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null
+ );
+
+ /// @brief Determine if this cast is a no-op cast.
+ bool isNoopCast(
+ Type *IntPtrTy ///< Integer type corresponding to pointer
+ ) const;
+
+ /// Determine how a pair of casts can be eliminated, if they can be at all.
+ /// This is a helper function for both CastInst and ConstantExpr.
+ /// @returns 0 if the CastInst pair can't be eliminated, otherwise
+ /// returns Instruction::CastOps value for a cast that can replace
+ /// the pair, casting SrcTy to DstTy.
+ /// @brief Determine if a cast pair is eliminable
+ static unsigned isEliminableCastPair(
+ Instruction::CastOps firstOpcode, ///< Opcode of first cast
+ Instruction::CastOps secondOpcode, ///< Opcode of second cast
+ Type *SrcTy, ///< SrcTy of 1st cast
+ Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
+ Type *DstTy, ///< DstTy of 2nd cast
+ Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
+ Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
+ Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null
+ );
+
+ /// @brief Return the opcode of this CastInst
+ Instruction::CastOps getOpcode() const {
+ return Instruction::CastOps(Instruction::getOpcode());
+ }
+
+ /// @brief Return the source type, as a convenience
+ Type* getSrcTy() const { return getOperand(0)->getType(); }
+ /// @brief Return the destination type, as a convenience
+ Type* getDestTy() const { return getType(); }
+
+ /// This method can be used to determine if a cast from S to DstTy using
+ /// Opcode op is valid or not.
+ /// @returns true iff the proposed cast is valid.
+ /// @brief Determine if a cast is valid without creating one.
+ static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
+
+ /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const Instruction *I) {
+ return I->isCast();
+ }
+ static inline bool classof(const Value *V) {
+ return isa<Instruction>(V) && classof(cast<Instruction>(V));
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// CmpInst Class
+//===----------------------------------------------------------------------===//
+
+/// This class is the base class for the comparison instructions.
+/// @brief Abstract base class of comparison instructions.
+class CmpInst : public Instruction {
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+ CmpInst() LLVM_DELETED_FUNCTION;
+protected:
+ CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
+ Value *LHS, Value *RHS, const Twine &Name = "",
+ Instruction *InsertBefore = 0);
+
+ CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
+ Value *LHS, Value *RHS, const Twine &Name,
+ BasicBlock *InsertAtEnd);
+
+ virtual void anchor() LLVM_OVERRIDE; // Out of line virtual method.
+public:
+ /// This enumeration lists the possible predicates for CmpInst subclasses.
+ /// Values in the range 0-31 are reserved for FCmpInst, while values in the
+ /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
+ /// predicate values are not overlapping between the classes.
+ enum Predicate {
+ // Opcode U L G E Intuitive operation
+ FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded)
+ FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal
+ FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than
+ FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal
+ FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than
+ FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal
+ FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal
+ FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
+ FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
+ FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal
+ FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than
+ FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal
+ FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than
+ FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal
+ FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal
+ FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded)
+ FIRST_FCMP_PREDICATE = FCMP_FALSE,
+ LAST_FCMP_PREDICATE = FCMP_TRUE,
+ BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
+ ICMP_EQ = 32, ///< equal
+ ICMP_NE = 33, ///< not equal
+ ICMP_UGT = 34, ///< unsigned greater than
+ ICMP_UGE = 35, ///< unsigned greater or equal
+ ICMP_ULT = 36, ///< unsigned less than
+ ICMP_ULE = 37, ///< unsigned less or equal
+ ICMP_SGT = 38, ///< signed greater than
+ ICMP_SGE = 39, ///< signed greater or equal
+ ICMP_SLT = 40, ///< signed less than
+ ICMP_SLE = 41, ///< signed less or equal
+ FIRST_ICMP_PREDICATE = ICMP_EQ,
+ LAST_ICMP_PREDICATE = ICMP_SLE,
+ BAD_ICMP_PREDICATE = ICMP_SLE + 1
+ };
+
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ /// Construct a compare instruction, given the opcode, the predicate and
+ /// the two operands. Optionally (if InstBefore is specified) insert the
+ /// instruction into a BasicBlock right before the specified instruction.
+ /// The specified Instruction is allowed to be a dereferenced end iterator.
+ /// @brief Create a CmpInst
+ static CmpInst *Create(OtherOps Op,
+ unsigned short predicate, Value *S1,
+ Value *S2, const Twine &Name = "",
+ Instruction *InsertBefore = 0);
+
+ /// Construct a compare instruction, given the opcode, the predicate and the
+ /// two operands. Also automatically insert this instruction to the end of
+ /// the BasicBlock specified.
+ /// @brief Create a CmpInst
+ static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
+ Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
+
+ /// @brief Get the opcode casted to the right type
+ OtherOps getOpcode() const {
+ return static_cast<OtherOps>(Instruction::getOpcode());
+ }
+
+ /// @brief Return the predicate for this instruction.
+ Predicate getPredicate() const {
+ return Predicate(getSubclassDataFromInstruction());
+ }
+
+ /// @brief Set the predicate for this instruction to the specified value.
+ void setPredicate(Predicate P) { setInstructionSubclassData(P); }
+
+ static bool isFPPredicate(Predicate P) {
+ return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
+ }
+
+ static bool isIntPredicate(Predicate P) {
+ return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
+ }
+
+ bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
+ bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
+
+
+ /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
+ /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
+ /// @returns the inverse predicate for the instruction's current predicate.
+ /// @brief Return the inverse of the instruction's predicate.
+ Predicate getInversePredicate() const {
+ return getInversePredicate(getPredicate());
+ }
+
+ /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
+ /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
+ /// @returns the inverse predicate for predicate provided in \p pred.
+ /// @brief Return the inverse of a given predicate
+ static Predicate getInversePredicate(Predicate pred);
+
+ /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
+ /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
+ /// @returns the predicate that would be the result of exchanging the two
+ /// operands of the CmpInst instruction without changing the result
+ /// produced.
+ /// @brief Return the predicate as if the operands were swapped
+ Predicate getSwappedPredicate() const {
+ return getSwappedPredicate(getPredicate());
+ }
+
+ /// This is a static version that you can use without an instruction
+ /// available.
+ /// @brief Return the predicate as if the operands were swapped.
+ static Predicate getSwappedPredicate(Predicate pred);
+
+ /// @brief Provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+
+ /// This is just a convenience that dispatches to the subclasses.
+ /// @brief Swap the operands and adjust predicate accordingly to retain
+ /// the same comparison.
+ void swapOperands();
+
+ /// This is just a convenience that dispatches to the subclasses.
+ /// @brief Determine if this CmpInst is commutative.
+ bool isCommutative() const;
+
+ /// This is just a convenience that dispatches to the subclasses.
+ /// @brief Determine if this is an equals/not equals predicate.
+ bool isEquality() const;
+
+ /// @returns true if the comparison is signed, false otherwise.
+ /// @brief Determine if this instruction is using a signed comparison.
+ bool isSigned() const {
+ return isSigned(getPredicate());
+ }
+
+ /// @returns true if the comparison is unsigned, false otherwise.
+ /// @brief Determine if this instruction is using an unsigned comparison.
+ bool isUnsigned() const {
+ return isUnsigned(getPredicate());
+ }
+
+ /// This is just a convenience.
+ /// @brief Determine if this is true when both operands are the same.
+ bool isTrueWhenEqual() const {
+ return isTrueWhenEqual(getPredicate());
+ }
+
+ /// This is just a convenience.
+ /// @brief Determine if this is false when both operands are the same.
+ bool isFalseWhenEqual() const {
+ return isFalseWhenEqual(getPredicate());
+ }
+
+ /// @returns true if the predicate is unsigned, false otherwise.
+ /// @brief Determine if the predicate is an unsigned operation.
+ static bool isUnsigned(unsigned short predicate);
+
+ /// @returns true if the predicate is signed, false otherwise.
+ /// @brief Determine if the predicate is an signed operation.
+ static bool isSigned(unsigned short predicate);
+
+ /// @brief Determine if the predicate is an ordered operation.
+ static bool isOrdered(unsigned short predicate);
+
+ /// @brief Determine if the predicate is an unordered operation.
+ static bool isUnordered(unsigned short predicate);
+
+ /// Determine if the predicate is true when comparing a value with itself.
+ static bool isTrueWhenEqual(unsigned short predicate);
+
+ /// Determine if the predicate is false when comparing a value with itself.
+ static bool isFalseWhenEqual(unsigned short predicate);
+
+ /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const Instruction *I) {
+ return I->getOpcode() == Instruction::ICmp ||
+ I->getOpcode() == Instruction::FCmp;
+ }
+ static inline bool classof(const Value *V) {
+ return isa<Instruction>(V) && classof(cast<Instruction>(V));
+ }
+
+ /// @brief Create a result type for fcmp/icmp
+ static Type* makeCmpResultType(Type* opnd_type) {
+ if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
+ return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
+ vt->getNumElements());
+ }
+ return Type::getInt1Ty(opnd_type->getContext());
+ }
+private:
+ // Shadow Value::setValueSubclassData with a private forwarding method so that
+ // subclasses cannot accidentally use it.
+ void setValueSubclassData(unsigned short D) {
+ Value::setValueSubclassData(D);
+ }
+};
+
+
+// FIXME: these are redundant if CmpInst < BinaryOperator
+template <>
+struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)
+
+} // End llvm namespace
+
+#endif