summaryrefslogtreecommitdiff
path: root/include/llvm/IR/Type.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/IR/Type.h')
-rw-r--r--include/llvm/IR/Type.h458
1 files changed, 458 insertions, 0 deletions
diff --git a/include/llvm/IR/Type.h b/include/llvm/IR/Type.h
new file mode 100644
index 0000000000..def45750dd
--- /dev/null
+++ b/include/llvm/IR/Type.h
@@ -0,0 +1,458 @@
+//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the Type class. For more "Type"
+// stuff, look in DerivedTypes.h.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TYPE_H
+#define LLVM_TYPE_H
+
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class PointerType;
+class IntegerType;
+class raw_ostream;
+class Module;
+class LLVMContext;
+class LLVMContextImpl;
+class StringRef;
+template<class GraphType> struct GraphTraits;
+
+/// The instances of the Type class are immutable: once they are created,
+/// they are never changed. Also note that only one instance of a particular
+/// type is ever created. Thus seeing if two types are equal is a matter of
+/// doing a trivial pointer comparison. To enforce that no two equal instances
+/// are created, Type instances can only be created via static factory methods
+/// in class Type and in derived classes. Once allocated, Types are never
+/// free'd.
+///
+class Type {
+public:
+ //===--------------------------------------------------------------------===//
+ /// Definitions of all of the base types for the Type system. Based on this
+ /// value, you can cast to a class defined in DerivedTypes.h.
+ /// Note: If you add an element to this, you need to add an element to the
+ /// Type::getPrimitiveType function, or else things will break!
+ /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
+ ///
+ enum TypeID {
+ // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
+ VoidTyID = 0, ///< 0: type with no size
+ HalfTyID, ///< 1: 16-bit floating point type
+ FloatTyID, ///< 2: 32-bit floating point type
+ DoubleTyID, ///< 3: 64-bit floating point type
+ X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
+ FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
+ PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
+ LabelTyID, ///< 7: Labels
+ MetadataTyID, ///< 8: Metadata
+ X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
+
+ // Derived types... see DerivedTypes.h file.
+ // Make sure FirstDerivedTyID stays up to date!
+ IntegerTyID, ///< 10: Arbitrary bit width integers
+ FunctionTyID, ///< 11: Functions
+ StructTyID, ///< 12: Structures
+ ArrayTyID, ///< 13: Arrays
+ PointerTyID, ///< 14: Pointers
+ VectorTyID, ///< 15: SIMD 'packed' format, or other vector type
+
+ NumTypeIDs, // Must remain as last defined ID
+ LastPrimitiveTyID = X86_MMXTyID,
+ FirstDerivedTyID = IntegerTyID
+ };
+
+private:
+ /// Context - This refers to the LLVMContext in which this type was uniqued.
+ LLVMContext &Context;
+
+ // Due to Ubuntu GCC bug 910363:
+ // https://bugs.launchpad.net/ubuntu/+source/gcc-4.5/+bug/910363
+ // Bitpack ID and SubclassData manually.
+ // Note: TypeID : low 8 bit; SubclassData : high 24 bit.
+ uint32_t IDAndSubclassData;
+
+protected:
+ friend class LLVMContextImpl;
+ explicit Type(LLVMContext &C, TypeID tid)
+ : Context(C), IDAndSubclassData(0),
+ NumContainedTys(0), ContainedTys(0) {
+ setTypeID(tid);
+ }
+ ~Type() {}
+
+ void setTypeID(TypeID ID) {
+ IDAndSubclassData = (ID & 0xFF) | (IDAndSubclassData & 0xFFFFFF00);
+ assert(getTypeID() == ID && "TypeID data too large for field");
+ }
+
+ unsigned getSubclassData() const { return IDAndSubclassData >> 8; }
+
+ void setSubclassData(unsigned val) {
+ IDAndSubclassData = (IDAndSubclassData & 0xFF) | (val << 8);
+ // Ensure we don't have any accidental truncation.
+ assert(getSubclassData() == val && "Subclass data too large for field");
+ }
+
+ /// NumContainedTys - Keeps track of how many Type*'s there are in the
+ /// ContainedTys list.
+ unsigned NumContainedTys;
+
+ /// ContainedTys - A pointer to the array of Types contained by this Type.
+ /// For example, this includes the arguments of a function type, the elements
+ /// of a structure, the pointee of a pointer, the element type of an array,
+ /// etc. This pointer may be 0 for types that don't contain other types
+ /// (Integer, Double, Float).
+ Type * const *ContainedTys;
+
+public:
+ void print(raw_ostream &O) const;
+ void dump() const;
+
+ /// getContext - Return the LLVMContext in which this type was uniqued.
+ LLVMContext &getContext() const { return Context; }
+
+ //===--------------------------------------------------------------------===//
+ // Accessors for working with types.
+ //
+
+ /// getTypeID - Return the type id for the type. This will return one
+ /// of the TypeID enum elements defined above.
+ ///
+ TypeID getTypeID() const { return (TypeID)(IDAndSubclassData & 0xFF); }
+
+ /// isVoidTy - Return true if this is 'void'.
+ bool isVoidTy() const { return getTypeID() == VoidTyID; }
+
+ /// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
+ bool isHalfTy() const { return getTypeID() == HalfTyID; }
+
+ /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
+ bool isFloatTy() const { return getTypeID() == FloatTyID; }
+
+ /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
+ bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
+
+ /// isX86_FP80Ty - Return true if this is x86 long double.
+ bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
+
+ /// isFP128Ty - Return true if this is 'fp128'.
+ bool isFP128Ty() const { return getTypeID() == FP128TyID; }
+
+ /// isPPC_FP128Ty - Return true if this is powerpc long double.
+ bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
+
+ /// isFloatingPointTy - Return true if this is one of the six floating point
+ /// types
+ bool isFloatingPointTy() const {
+ return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
+ getTypeID() == DoubleTyID ||
+ getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
+ getTypeID() == PPC_FP128TyID;
+ }
+
+ /// isX86_MMXTy - Return true if this is X86 MMX.
+ bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
+
+ /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
+ ///
+ bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
+
+ /// isLabelTy - Return true if this is 'label'.
+ bool isLabelTy() const { return getTypeID() == LabelTyID; }
+
+ /// isMetadataTy - Return true if this is 'metadata'.
+ bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
+
+ /// isIntegerTy - True if this is an instance of IntegerType.
+ ///
+ bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
+
+ /// isIntegerTy - Return true if this is an IntegerType of the given width.
+ bool isIntegerTy(unsigned Bitwidth) const;
+
+ /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
+ /// integer types.
+ ///
+ bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
+
+ /// isFunctionTy - True if this is an instance of FunctionType.
+ ///
+ bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
+
+ /// isStructTy - True if this is an instance of StructType.
+ ///
+ bool isStructTy() const { return getTypeID() == StructTyID; }
+
+ /// isArrayTy - True if this is an instance of ArrayType.
+ ///
+ bool isArrayTy() const { return getTypeID() == ArrayTyID; }
+
+ /// isPointerTy - True if this is an instance of PointerType.
+ ///
+ bool isPointerTy() const { return getTypeID() == PointerTyID; }
+
+ /// isPtrOrPtrVectorTy - Return true if this is a pointer type or a vector of
+ /// pointer types.
+ ///
+ bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
+
+ /// isVectorTy - True if this is an instance of VectorType.
+ ///
+ bool isVectorTy() const { return getTypeID() == VectorTyID; }
+
+ /// canLosslesslyBitCastTo - Return true if this type could be converted
+ /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
+ /// are valid for types of the same size only where no re-interpretation of
+ /// the bits is done.
+ /// @brief Determine if this type could be losslessly bitcast to Ty
+ bool canLosslesslyBitCastTo(Type *Ty) const;
+
+ /// isEmptyTy - Return true if this type is empty, that is, it has no
+ /// elements or all its elements are empty.
+ bool isEmptyTy() const;
+
+ /// Here are some useful little methods to query what type derived types are
+ /// Note that all other types can just compare to see if this == Type::xxxTy;
+ ///
+ bool isPrimitiveType() const { return getTypeID() <= LastPrimitiveTyID; }
+ bool isDerivedType() const { return getTypeID() >= FirstDerivedTyID; }
+
+ /// isFirstClassType - Return true if the type is "first class", meaning it
+ /// is a valid type for a Value.
+ ///
+ bool isFirstClassType() const {
+ return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
+ }
+
+ /// isSingleValueType - Return true if the type is a valid type for a
+ /// register in codegen. This includes all first-class types except struct
+ /// and array types.
+ ///
+ bool isSingleValueType() const {
+ return (getTypeID() != VoidTyID && isPrimitiveType()) ||
+ getTypeID() == IntegerTyID || getTypeID() == PointerTyID ||
+ getTypeID() == VectorTyID;
+ }
+
+ /// isAggregateType - Return true if the type is an aggregate type. This
+ /// means it is valid as the first operand of an insertvalue or
+ /// extractvalue instruction. This includes struct and array types, but
+ /// does not include vector types.
+ ///
+ bool isAggregateType() const {
+ return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
+ }
+
+ /// isSized - Return true if it makes sense to take the size of this type. To
+ /// get the actual size for a particular target, it is reasonable to use the
+ /// DataLayout subsystem to do this.
+ ///
+ bool isSized() const {
+ // If it's a primitive, it is always sized.
+ if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
+ getTypeID() == PointerTyID ||
+ getTypeID() == X86_MMXTyID)
+ return true;
+ // If it is not something that can have a size (e.g. a function or label),
+ // it doesn't have a size.
+ if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
+ getTypeID() != VectorTyID)
+ return false;
+ // Otherwise we have to try harder to decide.
+ return isSizedDerivedType();
+ }
+
+ /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
+ /// primitive type. These are fixed by LLVM and are not target dependent.
+ /// This will return zero if the type does not have a size or is not a
+ /// primitive type.
+ ///
+ /// Note that this may not reflect the size of memory allocated for an
+ /// instance of the type or the number of bytes that are written when an
+ /// instance of the type is stored to memory. The DataLayout class provides
+ /// additional query functions to provide this information.
+ ///
+ unsigned getPrimitiveSizeInBits() const;
+
+ /// getScalarSizeInBits - If this is a vector type, return the
+ /// getPrimitiveSizeInBits value for the element type. Otherwise return the
+ /// getPrimitiveSizeInBits value for this type.
+ unsigned getScalarSizeInBits();
+
+ /// getFPMantissaWidth - Return the width of the mantissa of this type. This
+ /// is only valid on floating point types. If the FP type does not
+ /// have a stable mantissa (e.g. ppc long double), this method returns -1.
+ int getFPMantissaWidth() const;
+
+ /// getScalarType - If this is a vector type, return the element type,
+ /// otherwise return 'this'.
+ const Type *getScalarType() const;
+ Type *getScalarType();
+
+ //===--------------------------------------------------------------------===//
+ // Type Iteration support.
+ //
+ typedef Type * const *subtype_iterator;
+ subtype_iterator subtype_begin() const { return ContainedTys; }
+ subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
+
+ /// getContainedType - This method is used to implement the type iterator
+ /// (defined a the end of the file). For derived types, this returns the
+ /// types 'contained' in the derived type.
+ ///
+ Type *getContainedType(unsigned i) const {
+ assert(i < NumContainedTys && "Index out of range!");
+ return ContainedTys[i];
+ }
+
+ /// getNumContainedTypes - Return the number of types in the derived type.
+ ///
+ unsigned getNumContainedTypes() const { return NumContainedTys; }
+
+ //===--------------------------------------------------------------------===//
+ // Helper methods corresponding to subclass methods. This forces a cast to
+ // the specified subclass and calls its accessor. "getVectorNumElements" (for
+ // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
+ // only intended to cover the core methods that are frequently used, helper
+ // methods should not be added here.
+
+ unsigned getIntegerBitWidth() const;
+
+ Type *getFunctionParamType(unsigned i) const;
+ unsigned getFunctionNumParams() const;
+ bool isFunctionVarArg() const;
+
+ StringRef getStructName() const;
+ unsigned getStructNumElements() const;
+ Type *getStructElementType(unsigned N) const;
+
+ Type *getSequentialElementType() const;
+
+ uint64_t getArrayNumElements() const;
+ Type *getArrayElementType() const { return getSequentialElementType(); }
+
+ unsigned getVectorNumElements() const;
+ Type *getVectorElementType() const { return getSequentialElementType(); }
+
+ Type *getPointerElementType() const { return getSequentialElementType(); }
+
+ /// \brief Get the address space of this pointer or pointer vector type.
+ unsigned getPointerAddressSpace() const;
+
+ //===--------------------------------------------------------------------===//
+ // Static members exported by the Type class itself. Useful for getting
+ // instances of Type.
+ //
+
+ /// getPrimitiveType - Return a type based on an identifier.
+ static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
+
+ //===--------------------------------------------------------------------===//
+ // These are the builtin types that are always available.
+ //
+ static Type *getVoidTy(LLVMContext &C);
+ static Type *getLabelTy(LLVMContext &C);
+ static Type *getHalfTy(LLVMContext &C);
+ static Type *getFloatTy(LLVMContext &C);
+ static Type *getDoubleTy(LLVMContext &C);
+ static Type *getMetadataTy(LLVMContext &C);
+ static Type *getX86_FP80Ty(LLVMContext &C);
+ static Type *getFP128Ty(LLVMContext &C);
+ static Type *getPPC_FP128Ty(LLVMContext &C);
+ static Type *getX86_MMXTy(LLVMContext &C);
+ static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
+ static IntegerType *getInt1Ty(LLVMContext &C);
+ static IntegerType *getInt8Ty(LLVMContext &C);
+ static IntegerType *getInt16Ty(LLVMContext &C);
+ static IntegerType *getInt32Ty(LLVMContext &C);
+ static IntegerType *getInt64Ty(LLVMContext &C);
+
+ //===--------------------------------------------------------------------===//
+ // Convenience methods for getting pointer types with one of the above builtin
+ // types as pointee.
+ //
+ static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
+ static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
+
+ /// getPointerTo - Return a pointer to the current type. This is equivalent
+ /// to PointerType::get(Foo, AddrSpace).
+ PointerType *getPointerTo(unsigned AddrSpace = 0);
+
+private:
+ /// isSizedDerivedType - Derived types like structures and arrays are sized
+ /// iff all of the members of the type are sized as well. Since asking for
+ /// their size is relatively uncommon, move this operation out of line.
+ bool isSizedDerivedType() const;
+};
+
+// Printing of types.
+static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
+ T.print(OS);
+ return OS;
+}
+
+// allow isa<PointerType>(x) to work without DerivedTypes.h included.
+template <> struct isa_impl<PointerType, Type> {
+ static inline bool doit(const Type &Ty) {
+ return Ty.getTypeID() == Type::PointerTyID;
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+// Provide specializations of GraphTraits to be able to treat a type as a
+// graph of sub types.
+
+
+template <> struct GraphTraits<Type*> {
+ typedef Type NodeType;
+ typedef Type::subtype_iterator ChildIteratorType;
+
+ static inline NodeType *getEntryNode(Type *T) { return T; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return N->subtype_begin();
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return N->subtype_end();
+ }
+};
+
+template <> struct GraphTraits<const Type*> {
+ typedef const Type NodeType;
+ typedef Type::subtype_iterator ChildIteratorType;
+
+ static inline NodeType *getEntryNode(NodeType *T) { return T; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return N->subtype_begin();
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return N->subtype_end();
+ }
+};
+
+} // End llvm namespace
+
+#endif