summaryrefslogtreecommitdiff
path: root/include/llvm/Transforms/Utils/CodeExtractor.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Transforms/Utils/CodeExtractor.h')
-rw-r--r--include/llvm/Transforms/Utils/CodeExtractor.h110
1 files changed, 110 insertions, 0 deletions
diff --git a/include/llvm/Transforms/Utils/CodeExtractor.h b/include/llvm/Transforms/Utils/CodeExtractor.h
new file mode 100644
index 0000000000..7268a3c6b6
--- /dev/null
+++ b/include/llvm/Transforms/Utils/CodeExtractor.h
@@ -0,0 +1,110 @@
+//===-- Transform/Utils/CodeExtractor.h - Code extraction util --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// A utility to support extracting code from one function into its own
+// stand-alone function.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_UTILS_CODE_EXTRACTOR_H
+#define LLVM_TRANSFORMS_UTILS_CODE_EXTRACTOR_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SetVector.h"
+
+namespace llvm {
+ class BasicBlock;
+ class DominatorTree;
+ class Function;
+ class Loop;
+ class Module;
+ class Type;
+ class Value;
+
+ /// \brief Utility class for extracting code into a new function.
+ ///
+ /// This utility provides a simple interface for extracting some sequence of
+ /// code into its own function, replacing it with a call to that function. It
+ /// also provides various methods to query about the nature and result of
+ /// such a transformation.
+ ///
+ /// The rough algorithm used is:
+ /// 1) Find both the inputs and outputs for the extracted region.
+ /// 2) Pass the inputs as arguments, remapping them within the extracted
+ /// function to arguments.
+ /// 3) Add allocas for any scalar outputs, adding all of the outputs' allocas
+ /// as arguments, and inserting stores to the arguments for any scalars.
+ class CodeExtractor {
+ typedef SetVector<Value *> ValueSet;
+
+ // Various bits of state computed on construction.
+ DominatorTree *const DT;
+ const bool AggregateArgs;
+
+ // Bits of intermediate state computed at various phases of extraction.
+ SetVector<BasicBlock *> Blocks;
+ unsigned NumExitBlocks;
+ Type *RetTy;
+
+ public:
+ /// \brief Create a code extractor for a single basic block.
+ ///
+ /// In this formation, we don't require a dominator tree. The given basic
+ /// block is set up for extraction.
+ CodeExtractor(BasicBlock *BB, bool AggregateArgs = false);
+
+ /// \brief Create a code extractor for a sequence of blocks.
+ ///
+ /// Given a sequence of basic blocks where the first block in the sequence
+ /// dominates the rest, prepare a code extractor object for pulling this
+ /// sequence out into its new function. When a DominatorTree is also given,
+ /// extra checking and transformations are enabled.
+ CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT = 0,
+ bool AggregateArgs = false);
+
+ /// \brief Create a code extractor for a loop body.
+ ///
+ /// Behaves just like the generic code sequence constructor, but uses the
+ /// block sequence of the loop.
+ CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs = false);
+
+ /// \brief Perform the extraction, returning the new function.
+ ///
+ /// Returns zero when called on a CodeExtractor instance where isEligible
+ /// returns false.
+ Function *extractCodeRegion();
+
+ /// \brief Test whether this code extractor is eligible.
+ ///
+ /// Based on the blocks used when constructing the code extractor,
+ /// determine whether it is eligible for extraction.
+ bool isEligible() { return !Blocks.empty(); };
+
+ private:
+ void severSplitPHINodes(BasicBlock *&Header);
+ void splitReturnBlocks();
+ void findInputsOutputs(ValueSet &inputs, ValueSet &outputs);
+
+ Function *constructFunction(const ValueSet &inputs,
+ const ValueSet &outputs,
+ BasicBlock *header,
+ BasicBlock *newRootNode, BasicBlock *newHeader,
+ Function *oldFunction, Module *M);
+
+ void moveCodeToFunction(Function *newFunction);
+
+ void emitCallAndSwitchStatement(Function *newFunction,
+ BasicBlock *newHeader,
+ ValueSet &inputs,
+ ValueSet &outputs);
+
+ };
+}
+
+#endif