summaryrefslogtreecommitdiff
path: root/lib/Bytecode/Analyzer/Parser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Bytecode/Analyzer/Parser.cpp')
-rw-r--r--lib/Bytecode/Analyzer/Parser.cpp877
1 files changed, 877 insertions, 0 deletions
diff --git a/lib/Bytecode/Analyzer/Parser.cpp b/lib/Bytecode/Analyzer/Parser.cpp
new file mode 100644
index 0000000000..d236b64aae
--- /dev/null
+++ b/lib/Bytecode/Analyzer/Parser.cpp
@@ -0,0 +1,877 @@
+//===- Reader.cpp - Code to read bytecode files ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This library implements the functionality defined in llvm/Bytecode/Reader.h
+//
+// Note that this library should be as fast as possible, reentrant, and
+// threadsafe!!
+//
+// TODO: Allow passing in an option to ignore the symbol table
+//
+//===----------------------------------------------------------------------===//
+
+#include "AnalyzerInternals.h"
+#include "llvm/Module.h"
+#include "llvm/Bytecode/Format.h"
+#include "Support/StringExtras.h"
+#include <iostream>
+#include <sstream>
+
+using namespace llvm;
+
+#define PARSE_ERROR(inserters) \
+ { \
+ std::ostringstream errormsg; \
+ errormsg << inserters; \
+ if ( ! handler->handleError( errormsg.str() ) ) \
+ throw std::string(errormsg.str()); \
+ }
+
+const Type *AbstractBytecodeParser::getType(unsigned ID) {
+ //cerr << "Looking up Type ID: " << ID << "\n";
+
+ if (ID < Type::FirstDerivedTyID)
+ if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
+ return T; // Asked for a primitive type...
+
+ // Otherwise, derived types need offset...
+ ID -= Type::FirstDerivedTyID;
+
+ if (!CompactionTypeTable.empty()) {
+ if (ID >= CompactionTypeTable.size())
+ PARSE_ERROR("Type ID out of range for compaction table!");
+ return CompactionTypeTable[ID];
+ }
+
+ // Is it a module-level type?
+ if (ID < ModuleTypes.size())
+ return ModuleTypes[ID].get();
+
+ // Nope, is it a function-level type?
+ ID -= ModuleTypes.size();
+ if (ID < FunctionTypes.size())
+ return FunctionTypes[ID].get();
+
+ PARSE_ERROR("Illegal type reference!");
+ return Type::VoidTy;
+}
+
+bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf,
+ std::vector<unsigned> &Operands) {
+ Operands.clear();
+ unsigned iType = 0;
+ unsigned Opcode = 0;
+ unsigned Op = read(Buf, EndBuf);
+
+ // bits Instruction format: Common to all formats
+ // --------------------------
+ // 01-00: Opcode type, fixed to 1.
+ // 07-02: Opcode
+ Opcode = (Op >> 2) & 63;
+ Operands.resize((Op >> 0) & 03);
+
+ switch (Operands.size()) {
+ case 1:
+ // bits Instruction format:
+ // --------------------------
+ // 19-08: Resulting type plane
+ // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
+ //
+ iType = (Op >> 8) & 4095;
+ Operands[0] = (Op >> 20) & 4095;
+ if (Operands[0] == 4095) // Handle special encoding for 0 operands...
+ Operands.resize(0);
+ break;
+ case 2:
+ // bits Instruction format:
+ // --------------------------
+ // 15-08: Resulting type plane
+ // 23-16: Operand #1
+ // 31-24: Operand #2
+ //
+ iType = (Op >> 8) & 255;
+ Operands[0] = (Op >> 16) & 255;
+ Operands[1] = (Op >> 24) & 255;
+ break;
+ case 3:
+ // bits Instruction format:
+ // --------------------------
+ // 13-08: Resulting type plane
+ // 19-14: Operand #1
+ // 25-20: Operand #2
+ // 31-26: Operand #3
+ //
+ iType = (Op >> 8) & 63;
+ Operands[0] = (Op >> 14) & 63;
+ Operands[1] = (Op >> 20) & 63;
+ Operands[2] = (Op >> 26) & 63;
+ break;
+ case 0:
+ Buf -= 4; // Hrm, try this again...
+ Opcode = read_vbr_uint(Buf, EndBuf);
+ Opcode >>= 2;
+ iType = read_vbr_uint(Buf, EndBuf);
+
+ unsigned NumOperands = read_vbr_uint(Buf, EndBuf);
+ Operands.resize(NumOperands);
+
+ if (NumOperands == 0)
+ PARSE_ERROR("Zero-argument instruction found; this is invalid.");
+
+ for (unsigned i = 0; i != NumOperands; ++i)
+ Operands[i] = read_vbr_uint(Buf, EndBuf);
+ align32(Buf, EndBuf);
+ break;
+ }
+
+ return handler->handleInstruction(Opcode, getType(iType), Operands);
+}
+
+/// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one
+/// basicblock at a time. This method reads in one of the basicblock packets.
+void AbstractBytecodeParser::ParseBasicBlock(BufPtr &Buf,
+ BufPtr EndBuf,
+ unsigned BlockNo) {
+ handler->handleBasicBlockBegin( BlockNo );
+
+ std::vector<unsigned> Args;
+ bool is_terminating = false;
+ while (Buf < EndBuf)
+ is_terminating = ParseInstruction(Buf, EndBuf, Args);
+
+ if ( ! is_terminating )
+ PARSE_ERROR(
+ "Failed to recognize instruction as terminating at end of block");
+
+ handler->handleBasicBlockEnd( BlockNo );
+}
+
+
+/// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the
+/// body of a function. In post 1.0 bytecode files, we no longer emit basic
+/// block individually, in order to avoid per-basic-block overhead.
+unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf, BufPtr EndBuf) {
+ unsigned BlockNo = 0;
+ std::vector<unsigned> Args;
+
+ while (Buf < EndBuf) {
+ handler->handleBasicBlockBegin( BlockNo );
+
+ // Read instructions into this basic block until we get to a terminator
+ bool is_terminating = false;
+ while (Buf < EndBuf && !is_terminating )
+ is_terminating = ParseInstruction(Buf, EndBuf, Args ) ;
+
+ if (!is_terminating)
+ PARSE_ERROR( "Non-terminated basic block found!");
+
+ handler->handleBasicBlockEnd( BlockNo );
+ ++BlockNo;
+ }
+ return BlockNo;
+}
+
+void AbstractBytecodeParser::ParseSymbolTable(BufPtr &Buf, BufPtr EndBuf) {
+ handler->handleSymbolTableBegin();
+
+ while (Buf < EndBuf) {
+ // Symtab block header: [num entries][type id number]
+ unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
+ unsigned Typ = read_vbr_uint(Buf, EndBuf);
+ const Type *Ty = getType(Typ);
+
+ handler->handleSymbolTablePlane( Typ, NumEntries, Ty );
+
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ // Symtab entry: [def slot #][name]
+ unsigned slot = read_vbr_uint(Buf, EndBuf);
+ std::string Name = read_str(Buf, EndBuf);
+
+ if (Typ == Type::TypeTyID)
+ handler->handleSymbolTableType( i, slot, Name );
+ else
+ handler->handleSymbolTableValue( i, slot, Name );
+ }
+ }
+
+ if (Buf > EndBuf)
+ PARSE_ERROR("Tried to read past end of buffer while reading symbol table.");
+
+ handler->handleSymbolTableEnd();
+}
+
+void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) {
+ if (FunctionSignatureList.empty())
+ throw std::string("FunctionSignatureList empty!");
+
+ const Type *FType = FunctionSignatureList.back();
+ FunctionSignatureList.pop_back();
+
+ // Save the information for future reading of the function
+ LazyFunctionLoadMap[FType] = LazyFunctionInfo(Buf, EndBuf);
+ // Pretend we've `parsed' this function
+ Buf = EndBuf;
+}
+
+void AbstractBytecodeParser::ParseNextFunction(Type* FType) {
+ // Find {start, end} pointers and slot in the map. If not there, we're done.
+ LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(FType);
+
+ // Make sure we found it
+ if ( Fi == LazyFunctionLoadMap.end() ) {
+ PARSE_ERROR("Unrecognized function of type " << FType->getDescription());
+ return;
+ }
+
+ BufPtr Buf = Fi->second.Buf;
+ BufPtr EndBuf = Fi->second.EndBuf;
+ assert(Fi->first == FType);
+
+ LazyFunctionLoadMap.erase(Fi);
+
+ this->ParseFunctionBody( FType, Buf, EndBuf );
+}
+
+void AbstractBytecodeParser::ParseFunctionBody(const Type* FType,
+ BufPtr &Buf, BufPtr EndBuf ) {
+
+ GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
+
+ unsigned LinkageType = read_vbr_uint(Buf, EndBuf);
+ switch (LinkageType) {
+ case 0: Linkage = GlobalValue::ExternalLinkage; break;
+ case 1: Linkage = GlobalValue::WeakLinkage; break;
+ case 2: Linkage = GlobalValue::AppendingLinkage; break;
+ case 3: Linkage = GlobalValue::InternalLinkage; break;
+ case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
+ default:
+ PARSE_ERROR("Invalid linkage type for Function.");
+ Linkage = GlobalValue::InternalLinkage;
+ break;
+ }
+
+ handler->handleFunctionBegin(FType,Linkage);
+
+ // Keep track of how many basic blocks we have read in...
+ unsigned BlockNum = 0;
+ bool InsertedArguments = false;
+
+ while (Buf < EndBuf) {
+ unsigned Type, Size;
+ BufPtr OldBuf = Buf;
+ readBlock(Buf, EndBuf, Type, Size);
+
+ switch (Type) {
+ case BytecodeFormat::ConstantPool:
+ ParseConstantPool(Buf, Buf+Size, FunctionTypes );
+ break;
+
+ case BytecodeFormat::CompactionTable:
+ ParseCompactionTable(Buf, Buf+Size);
+ break;
+
+ case BytecodeFormat::BasicBlock:
+ ParseBasicBlock(Buf, Buf+Size, BlockNum++);
+ break;
+
+ case BytecodeFormat::InstructionList:
+ if (BlockNum)
+ PARSE_ERROR("InstructionList must come before basic blocks!");
+ BlockNum = ParseInstructionList(Buf, Buf+Size);
+ break;
+
+ case BytecodeFormat::SymbolTable:
+ ParseSymbolTable(Buf, Buf+Size );
+ break;
+
+ default:
+ Buf += Size;
+ if (OldBuf > Buf)
+ PARSE_ERROR("Wrapped around reading bytecode");
+ break;
+ }
+
+ // Malformed bc file if read past end of block.
+ align32(Buf, EndBuf);
+ }
+
+ handler->handleFunctionEnd(FType);
+
+ // Clear out function-level types...
+ FunctionTypes.clear();
+ CompactionTypeTable.clear();
+}
+
+void AbstractBytecodeParser::ParseAllFunctionBodies() {
+ LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
+ LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
+
+ while ( Fi != Fe ) {
+ const Type* FType = Fi->first;
+ this->ParseFunctionBody(FType, Fi->second.Buf, Fi->second.EndBuf);
+ }
+}
+
+void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) {
+
+ handler->handleCompactionTableBegin();
+
+ while (Buf != End) {
+ unsigned NumEntries = read_vbr_uint(Buf, End);
+ unsigned Ty;
+
+ if ((NumEntries & 3) == 3) {
+ NumEntries >>= 2;
+ Ty = read_vbr_uint(Buf, End);
+ } else {
+ Ty = NumEntries >> 2;
+ NumEntries &= 3;
+ }
+
+ handler->handleCompactionTablePlane( Ty, NumEntries );
+
+ if (Ty == Type::TypeTyID) {
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ unsigned TypeSlot = read_vbr_uint(Buf,End);
+ const Type *Typ = getGlobalTableType(TypeSlot);
+ handler->handleCompactionTableType( i, TypeSlot, Typ );
+ }
+ } else {
+ const Type *Typ = getType(Ty);
+ // Push the implicit zero
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ unsigned ValSlot = read_vbr_uint(Buf, End);
+ handler->handleCompactionTableValue( i, ValSlot, Typ );
+ }
+ }
+ }
+ handler->handleCompactionTableEnd();
+}
+
+const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
+ const unsigned char *EndBuf) {
+ unsigned PrimType = read_vbr_uint(Buf, EndBuf);
+
+ const Type *Val = 0;
+ if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
+ return Val;
+
+ switch (PrimType) {
+ case Type::FunctionTyID: {
+ const Type *RetType = getType(read_vbr_uint(Buf, EndBuf));
+
+ unsigned NumParams = read_vbr_uint(Buf, EndBuf);
+
+ std::vector<const Type*> Params;
+ while (NumParams--)
+ Params.push_back(getType(read_vbr_uint(Buf, EndBuf)));
+
+ bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
+ if (isVarArg) Params.pop_back();
+
+ Type* result = FunctionType::get(RetType, Params, isVarArg);
+ handler->handleType( result );
+ return result;
+ }
+ case Type::ArrayTyID: {
+ unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
+ const Type *ElementType = getType(ElTyp);
+
+ unsigned NumElements = read_vbr_uint(Buf, EndBuf);
+
+ BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size="
+ << NumElements << "\n");
+ Type* result = ArrayType::get(ElementType, NumElements);
+ handler->handleType( result );
+ return result;
+ }
+ case Type::StructTyID: {
+ std::vector<const Type*> Elements;
+ unsigned Typ = read_vbr_uint(Buf, EndBuf);
+ while (Typ) { // List is terminated by void/0 typeid
+ Elements.push_back(getType(Typ));
+ Typ = read_vbr_uint(Buf, EndBuf);
+ }
+
+ Type* result = StructType::get(Elements);
+ handler->handleType( result );
+ return result;
+ }
+ case Type::PointerTyID: {
+ unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
+ BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
+ Type* result = PointerType::get(getType(ElTyp));
+ handler->handleType( result );
+ return result;
+ }
+
+ case Type::OpaqueTyID: {
+ Type* result = OpaqueType::get();
+ handler->handleType( result );
+ return result;
+ }
+
+ default:
+ PARSE_ERROR("Don't know how to deserialize primitive type" << PrimType << "\n");
+ return Val;
+ }
+}
+
+// ParseTypeConstants - We have to use this weird code to handle recursive
+// types. We know that recursive types will only reference the current slab of
+// values in the type plane, but they can forward reference types before they
+// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
+// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
+// this ugly problem, we pessimistically insert an opaque type for each type we
+// are about to read. This means that forward references will resolve to
+// something and when we reread the type later, we can replace the opaque type
+// with a new resolved concrete type.
+//
+void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
+ const unsigned char *EndBuf,
+ TypeListTy &Tab,
+ unsigned NumEntries) {
+ assert(Tab.size() == 0 && "should not have read type constants in before!");
+
+ // Insert a bunch of opaque types to be resolved later...
+ Tab.reserve(NumEntries);
+ for (unsigned i = 0; i != NumEntries; ++i)
+ Tab.push_back(OpaqueType::get());
+
+ // Loop through reading all of the types. Forward types will make use of the
+ // opaque types just inserted.
+ //
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ const Type *NewTy = ParseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
+ if (NewTy == 0) throw std::string("Couldn't parse type!");
+ BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
+ "' Replacing: " << OldTy << "\n");
+
+ // Don't insertValue the new type... instead we want to replace the opaque
+ // type with the new concrete value...
+ //
+
+ // Refine the abstract type to the new type. This causes all uses of the
+ // abstract type to use NewTy. This also will cause the opaque type to be
+ // deleted...
+ //
+ cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
+
+ // This should have replace the old opaque type with the new type in the
+ // value table... or with a preexisting type that was already in the system
+ assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
+ }
+
+ BCR_TRACE(5, "Resulting types:\n");
+ for (unsigned i = 0; i < NumEntries; ++i) {
+ BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
+ }
+}
+
+
+void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
+ const unsigned char *EndBuf,
+ unsigned TypeID) {
+
+ // We must check for a ConstantExpr before switching by type because
+ // a ConstantExpr can be of any type, and has no explicit value.
+ //
+ // 0 if not expr; numArgs if is expr
+ unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf);
+
+ if (isExprNumArgs) {
+ unsigned Opcode = read_vbr_uint(Buf, EndBuf);
+ const Type* Typ = getType(TypeID);
+
+ // FIXME: Encoding of constant exprs could be much more compact!
+ std::vector<std::pair<const Type*,unsigned> > ArgVec;
+ ArgVec.reserve(isExprNumArgs);
+
+ // Read the slot number and types of each of the arguments
+ for (unsigned i = 0; i != isExprNumArgs; ++i) {
+ unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf);
+ unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf);
+ BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot)
+ << "' slot: " << ArgValSlot << "\n");
+
+ // Get the arg value from its slot if it exists, otherwise a placeholder
+ ArgVec.push_back(std::make_pair(getType(ArgTypeSlot), ArgValSlot));
+ }
+
+ handler->handleConstantExpression( Opcode, Typ, ArgVec );
+ return;
+ }
+
+ // Ok, not an ConstantExpr. We now know how to read the given type...
+ const Type *Ty = getType(TypeID);
+ switch (Ty->getPrimitiveID()) {
+ case Type::BoolTyID: {
+ unsigned Val = read_vbr_uint(Buf, EndBuf);
+ if (Val != 0 && Val != 1)
+ PARSE_ERROR("Invalid boolean value read.");
+
+ handler->handleConstantValue( ConstantBool::get(Val == 1));
+ break;
+ }
+
+ case Type::UByteTyID: // Unsigned integer types...
+ case Type::UShortTyID:
+ case Type::UIntTyID: {
+ unsigned Val = read_vbr_uint(Buf, EndBuf);
+ if (!ConstantUInt::isValueValidForType(Ty, Val))
+ throw std::string("Invalid unsigned byte/short/int read.");
+ handler->handleConstantValue( ConstantUInt::get(Ty, Val) );
+ break;
+ }
+
+ case Type::ULongTyID: {
+ handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf)) );
+ break;
+ }
+
+ case Type::SByteTyID: // Signed integer types...
+ case Type::ShortTyID:
+ case Type::IntTyID: {
+ case Type::LongTyID:
+ int64_t Val = read_vbr_int64(Buf, EndBuf);
+ if (!ConstantSInt::isValueValidForType(Ty, Val))
+ throw std::string("Invalid signed byte/short/int/long read.");
+ handler->handleConstantValue( ConstantSInt::get(Ty, Val) );
+ break;
+ }
+
+ case Type::FloatTyID: {
+ float F;
+ input_data(Buf, EndBuf, &F, &F+1);
+ handler->handleConstantValue( ConstantFP::get(Ty, F) );
+ break;
+ }
+
+ case Type::DoubleTyID: {
+ double Val;
+ input_data(Buf, EndBuf, &Val, &Val+1);
+ handler->handleConstantValue( ConstantFP::get(Ty, Val) );
+ break;
+ }
+
+ case Type::TypeTyID:
+ PARSE_ERROR("Type constants shouldn't live in constant table!");
+ break;
+
+ case Type::ArrayTyID: {
+ const ArrayType *AT = cast<ArrayType>(Ty);
+ unsigned NumElements = AT->getNumElements();
+ std::vector<unsigned> Elements;
+ Elements.reserve(NumElements);
+ while (NumElements--) // Read all of the elements of the constant.
+ Elements.push_back(read_vbr_uint(Buf, EndBuf));
+
+ handler->handleConstantArray( AT, Elements );
+ break;
+ }
+
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(Ty);
+ std::vector<unsigned> Elements;
+ Elements.reserve(ST->getNumElements());
+ for (unsigned i = 0; i != ST->getNumElements(); ++i)
+ Elements.push_back(read_vbr_uint(Buf, EndBuf));
+
+ handler->handleConstantStruct( ST, Elements );
+ }
+
+ case Type::PointerTyID: { // ConstantPointerRef value...
+ const PointerType *PT = cast<PointerType>(Ty);
+ unsigned Slot = read_vbr_uint(Buf, EndBuf);
+ handler->handleConstantPointer( PT, Slot );
+ }
+
+ default:
+ PARSE_ERROR("Don't know how to deserialize constant value of type '"+
+ Ty->getDescription());
+ }
+}
+
+void AbstractBytecodeParser::ParseGlobalTypes(const unsigned char *&Buf,
+ const unsigned char *EndBuf) {
+ ParseConstantPool(Buf, EndBuf, ModuleTypes);
+}
+
+void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
+ const unsigned char *EndBuf,
+ unsigned NumEntries ){
+ for (; NumEntries; --NumEntries) {
+ unsigned Typ = read_vbr_uint(Buf, EndBuf);
+ const Type *Ty = getType(Typ);
+ if (!isa<ArrayType>(Ty))
+ throw std::string("String constant data invalid!");
+
+ const ArrayType *ATy = cast<ArrayType>(Ty);
+ if (ATy->getElementType() != Type::SByteTy &&
+ ATy->getElementType() != Type::UByteTy)
+ throw std::string("String constant data invalid!");
+
+ // Read character data. The type tells us how long the string is.
+ char Data[ATy->getNumElements()];
+ input_data(Buf, EndBuf, Data, Data+ATy->getNumElements());
+
+ std::vector<Constant*> Elements(ATy->getNumElements());
+ if (ATy->getElementType() == Type::SByteTy)
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+ Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
+ else
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+ Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
+
+ // Create the constant, inserting it as needed.
+ ConstantArray *C = cast<ConstantArray>( ConstantArray::get(ATy, Elements) );
+ handler->handleConstantString( C );
+ }
+}
+
+
+void AbstractBytecodeParser::ParseConstantPool(const unsigned char *&Buf,
+ const unsigned char *EndBuf,
+ TypeListTy &TypeTab) {
+ while (Buf < EndBuf) {
+ unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
+ unsigned Typ = read_vbr_uint(Buf, EndBuf);
+ if (Typ == Type::TypeTyID) {
+ ParseTypeConstants(Buf, EndBuf, TypeTab, NumEntries);
+ } else if (Typ == Type::VoidTyID) {
+ ParseStringConstants(Buf, EndBuf, NumEntries);
+ } else {
+ BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: "
+ << NumEntries << "\n");
+
+ for (unsigned i = 0; i < NumEntries; ++i) {
+ ParseConstantValue(Buf, EndBuf, Typ);
+ }
+ }
+ }
+
+ if (Buf > EndBuf) PARSE_ERROR("Read past end of buffer.");
+}
+
+void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
+
+ handler->handleModuleGlobalsBegin();
+
+ // Read global variables...
+ unsigned VarType = read_vbr_uint(Buf, End);
+ while (VarType != Type::VoidTyID) { // List is terminated by Void
+ // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
+ // Linkage, bit4+ = slot#
+ unsigned SlotNo = VarType >> 5;
+ unsigned LinkageID = (VarType >> 2) & 7;
+ bool isConstant = VarType & 1;
+ bool hasInitializer = VarType & 2;
+ GlobalValue::LinkageTypes Linkage;
+
+ switch (LinkageID) {
+ case 0: Linkage = GlobalValue::ExternalLinkage; break;
+ case 1: Linkage = GlobalValue::WeakLinkage; break;
+ case 2: Linkage = GlobalValue::AppendingLinkage; break;
+ case 3: Linkage = GlobalValue::InternalLinkage; break;
+ case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
+ default:
+ PARSE_ERROR("Unknown linkage type: " << LinkageID);
+ Linkage = GlobalValue::InternalLinkage;
+ break;
+ }
+
+ const Type *Ty = getType(SlotNo);
+ if ( !Ty ) {
+ PARSE_ERROR("Global has no type! SlotNo=" << SlotNo);
+ }
+
+ if ( !isa<PointerType>(Ty)) {
+ PARSE_ERROR("Global not a pointer type! Ty= " << Ty->getDescription());
+ }
+
+ const Type *ElTy = cast<PointerType>(Ty)->getElementType();
+
+ // Create the global variable...
+ if (hasInitializer)
+ handler->handleGlobalVariable( ElTy, isConstant, Linkage );
+ else {
+ unsigned initSlot = read_vbr_uint(Buf,End);
+ handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot );
+ }
+
+ // Get next item
+ VarType = read_vbr_uint(Buf, End);
+ }
+
+ // Read the function objects for all of the functions that are coming
+ unsigned FnSignature = read_vbr_uint(Buf, End);
+ while (FnSignature != Type::VoidTyID) { // List is terminated by Void
+ const Type *Ty = getType(FnSignature);
+ if (!isa<PointerType>(Ty) ||
+ !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
+ PARSE_ERROR( "Function not a pointer to function type! Ty = " +
+ Ty->getDescription());
+ // FIXME: what should Ty be if handler continues?
+ }
+
+ // We create functions by passing the underlying FunctionType to create...
+ Ty = cast<PointerType>(Ty)->getElementType();
+
+ // Save this for later so we know type of lazily instantiated functions
+ FunctionSignatureList.push_back(Ty);
+
+ handler->handleFunctionDeclaration(Ty);
+
+ // Get Next function signature
+ FnSignature = read_vbr_uint(Buf, End);
+ }
+
+ if (hasInconsistentModuleGlobalInfo)
+ align32(Buf, End);
+
+ // This is for future proofing... in the future extra fields may be added that
+ // we don't understand, so we transparently ignore them.
+ //
+ Buf = End;
+
+ handler->handleModuleGlobalsEnd();
+}
+
+void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) {
+ unsigned Version = read_vbr_uint(Buf, EndBuf);
+
+ // Unpack version number: low four bits are for flags, top bits = version
+ Module::Endianness Endianness;
+ Module::PointerSize PointerSize;
+ Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
+ PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
+
+ bool hasNoEndianness = Version & 4;
+ bool hasNoPointerSize = Version & 8;
+
+ RevisionNum = Version >> 4;
+
+ // Default values for the current bytecode version
+ hasInconsistentModuleGlobalInfo = false;
+ hasExplicitPrimitiveZeros = false;
+ hasRestrictedGEPTypes = false;
+
+ switch (RevisionNum) {
+ case 0: // LLVM 1.0, 1.1 release version
+ // Base LLVM 1.0 bytecode format.
+ hasInconsistentModuleGlobalInfo = true;
+ hasExplicitPrimitiveZeros = true;
+ // FALL THROUGH
+ case 1: // LLVM 1.2 release version
+ // LLVM 1.2 added explicit support for emitting strings efficiently.
+
+ // Also, it fixed the problem where the size of the ModuleGlobalInfo block
+ // included the size for the alignment at the end, where the rest of the
+ // blocks did not.
+
+ // LLVM 1.2 and before required that GEP indices be ubyte constants for
+ // structures and longs for sequential types.
+ hasRestrictedGEPTypes = true;
+
+ // FALL THROUGH
+ case 2: // LLVM 1.3 release version
+ break;
+
+ default:
+ PARSE_ERROR("Unknown bytecode version number: " << RevisionNum);
+ }
+
+ if (hasNoEndianness) Endianness = Module::AnyEndianness;
+ if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
+
+ handler->handleVersionInfo(RevisionNum, Endianness, PointerSize );
+}
+
+void AbstractBytecodeParser::ParseModule(BufPtr &Buf, BufPtr EndBuf ) {
+ unsigned Type, Size;
+ readBlock(Buf, EndBuf, Type, Size);
+ if (Type != BytecodeFormat::Module || Buf+Size != EndBuf)
+ // Hrm, not a class?
+ PARSE_ERROR("Expected Module block! B: " << unsigned(intptr_t(Buf)) <<
+ ", S: " << Size << " E: " << unsigned(intptr_t(EndBuf)));
+
+ // Read into instance variables...
+ ParseVersionInfo(Buf, EndBuf);
+ align32(Buf, EndBuf);
+
+ bool SeenModuleGlobalInfo = false;
+ bool SeenGlobalTypePlane = false;
+ while (Buf < EndBuf) {
+ BufPtr OldBuf = Buf;
+ readBlock(Buf, EndBuf, Type, Size);
+
+ switch (Type) {
+
+ case BytecodeFormat::GlobalTypePlane:
+ if ( SeenGlobalTypePlane )
+ PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");
+
+ ParseGlobalTypes(Buf, Buf+Size);
+ SeenGlobalTypePlane = true;
+ break;
+
+ case BytecodeFormat::ModuleGlobalInfo:
+ if ( SeenModuleGlobalInfo )
+ PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
+ ParseModuleGlobalInfo(Buf, Buf+Size);
+ SeenModuleGlobalInfo = true;
+ break;
+
+ case BytecodeFormat::ConstantPool:
+ ParseConstantPool(Buf, Buf+Size, ModuleTypes);
+ break;
+
+ case BytecodeFormat::Function:
+ ParseFunctionLazily(Buf, Buf+Size);
+ break;
+
+ case BytecodeFormat::SymbolTable:
+ ParseSymbolTable(Buf, Buf+Size );
+ break;
+
+ default:
+ Buf += Size;
+ if (OldBuf > Buf)
+ {
+ PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
+ }
+ break;
+ }
+ align32(Buf, EndBuf);
+ }
+}
+
+void AbstractBytecodeParser::ParseBytecode(
+ BufPtr Buf, unsigned Length,
+ const std::string &ModuleID) {
+
+ handler->handleStart();
+ unsigned char *EndBuf = (unsigned char*)(Buf + Length);
+
+ // Read and check signature...
+ unsigned Sig = read(Buf, EndBuf);
+ if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
+ PARSE_ERROR("Invalid bytecode signature: " << Sig);
+ }
+
+ handler->handleModuleBegin(ModuleID);
+
+ this->ParseModule(Buf, EndBuf);
+
+ handler->handleModuleEnd(ModuleID);
+
+ handler->handleFinish();
+}
+
+// vim: sw=2