summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64InstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64InstrInfo.cpp')
-rw-r--r--lib/Target/AArch64/AArch64InstrInfo.cpp805
1 files changed, 805 insertions, 0 deletions
diff --git a/lib/Target/AArch64/AArch64InstrInfo.cpp b/lib/Target/AArch64/AArch64InstrInfo.cpp
new file mode 100644
index 0000000000..967960c1e5
--- /dev/null
+++ b/lib/Target/AArch64/AArch64InstrInfo.cpp
@@ -0,0 +1,805 @@
+//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "AArch64TargetMachine.h"
+#include "MCTargetDesc/AArch64BaseInfo.h"
+#include "MCTargetDesc/AArch64MCTargetDesc.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+#include <algorithm>
+
+#define GET_INSTRINFO_CTOR
+#include "AArch64GenInstrInfo.inc"
+
+using namespace llvm;
+
+AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
+ : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
+ RI(*this, STI), Subtarget(STI) {}
+
+void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned Opc = 0;
+ unsigned ZeroReg = 0;
+ if (DestReg == AArch64::XSP || SrcReg == AArch64::XSP) {
+ // E.g. ADD xDst, xsp, #0 (, lsl #0)
+ BuildMI(MBB, I, DL, get(AArch64::ADDxxi_lsl0_s), DestReg)
+ .addReg(SrcReg)
+ .addImm(0);
+ return;
+ } else if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
+ // E.g. ADD wDST, wsp, #0 (, lsl #0)
+ BuildMI(MBB, I, DL, get(AArch64::ADDwwi_lsl0_s), DestReg)
+ .addReg(SrcReg)
+ .addImm(0);
+ return;
+ } else if (DestReg == AArch64::NZCV) {
+ assert(AArch64::GPR64RegClass.contains(SrcReg));
+ // E.g. MSR NZCV, xDST
+ BuildMI(MBB, I, DL, get(AArch64::MSRix))
+ .addImm(A64SysReg::NZCV)
+ .addReg(SrcReg);
+ } else if (SrcReg == AArch64::NZCV) {
+ assert(AArch64::GPR64RegClass.contains(DestReg));
+ // E.g. MRS xDST, NZCV
+ BuildMI(MBB, I, DL, get(AArch64::MRSxi), DestReg)
+ .addImm(A64SysReg::NZCV);
+ } else if (AArch64::GPR64RegClass.contains(DestReg)) {
+ assert(AArch64::GPR64RegClass.contains(SrcReg));
+ Opc = AArch64::ORRxxx_lsl;
+ ZeroReg = AArch64::XZR;
+ } else if (AArch64::GPR32RegClass.contains(DestReg)) {
+ assert(AArch64::GPR32RegClass.contains(SrcReg));
+ Opc = AArch64::ORRwww_lsl;
+ ZeroReg = AArch64::WZR;
+ } else if (AArch64::FPR32RegClass.contains(DestReg)) {
+ assert(AArch64::FPR32RegClass.contains(SrcReg));
+ BuildMI(MBB, I, DL, get(AArch64::FMOVss), DestReg)
+ .addReg(SrcReg);
+ return;
+ } else if (AArch64::FPR64RegClass.contains(DestReg)) {
+ assert(AArch64::FPR64RegClass.contains(SrcReg));
+ BuildMI(MBB, I, DL, get(AArch64::FMOVdd), DestReg)
+ .addReg(SrcReg);
+ return;
+ } else if (AArch64::FPR128RegClass.contains(DestReg)) {
+ assert(AArch64::FPR128RegClass.contains(SrcReg));
+
+ // FIXME: there's no good way to do this, at least without NEON:
+ // + There's no single move instruction for q-registers
+ // + We can't create a spill slot and use normal STR/LDR because stack
+ // allocation has already happened
+ // + We can't go via X-registers with FMOV because register allocation has
+ // already happened.
+ // This may not be efficient, but at least it works.
+ BuildMI(MBB, I, DL, get(AArch64::LSFP128_PreInd_STR), AArch64::XSP)
+ .addReg(SrcReg)
+ .addReg(AArch64::XSP)
+ .addImm(0x1ff & -16);
+
+ BuildMI(MBB, I, DL, get(AArch64::LSFP128_PostInd_LDR), DestReg)
+ .addReg(AArch64::XSP, RegState::Define)
+ .addReg(AArch64::XSP)
+ .addImm(16);
+ return;
+ } else {
+ llvm_unreachable("Unknown register class in copyPhysReg");
+ }
+
+ // E.g. ORR xDst, xzr, xSrc, lsl #0
+ BuildMI(MBB, I, DL, get(Opc), DestReg)
+ .addReg(ZeroReg)
+ .addReg(SrcReg)
+ .addImm(0);
+}
+
+MachineInstr *
+AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
+ uint64_t Offset, const MDNode *MDPtr,
+ DebugLoc DL) const {
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
+ .addFrameIndex(FrameIx).addImm(0)
+ .addImm(Offset)
+ .addMetadata(MDPtr);
+ return &*MIB;
+}
+
+/// Does the Opcode represent a conditional branch that we can remove and re-add
+/// at the end of a basic block?
+static bool isCondBranch(unsigned Opc) {
+ return Opc == AArch64::Bcc || Opc == AArch64::CBZw || Opc == AArch64::CBZx ||
+ Opc == AArch64::CBNZw || Opc == AArch64::CBNZx ||
+ Opc == AArch64::TBZwii || Opc == AArch64::TBZxii ||
+ Opc == AArch64::TBNZwii || Opc == AArch64::TBNZxii;
+}
+
+/// Takes apart a given conditional branch MachineInstr (see isCondBranch),
+/// setting TBB to the destination basic block and populating the Cond vector
+/// with data necessary to recreate the conditional branch at a later
+/// date. First element will be the opcode, and subsequent ones define the
+/// conditions being branched on in an instruction-specific manner.
+static void classifyCondBranch(MachineInstr *I, MachineBasicBlock *&TBB,
+ SmallVectorImpl<MachineOperand> &Cond) {
+ switch(I->getOpcode()) {
+ case AArch64::Bcc:
+ case AArch64::CBZw:
+ case AArch64::CBZx:
+ case AArch64::CBNZw:
+ case AArch64::CBNZx:
+ // These instructions just have one predicate operand in position 0 (either
+ // a condition code or a register being compared).
+ Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
+ Cond.push_back(I->getOperand(0));
+ TBB = I->getOperand(1).getMBB();
+ return;
+ case AArch64::TBZwii:
+ case AArch64::TBZxii:
+ case AArch64::TBNZwii:
+ case AArch64::TBNZxii:
+ // These have two predicate operands: a register and a bit position.
+ Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
+ Cond.push_back(I->getOperand(0));
+ Cond.push_back(I->getOperand(1));
+ TBB = I->getOperand(2).getMBB();
+ return;
+ default:
+ llvm_unreachable("Unknown conditional branch to classify");
+ }
+}
+
+
+bool
+AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ unsigned LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (LastOpc == AArch64::Bimm) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ if (isCondBranch(LastOpc)) {
+ classifyCondBranch(LastInst, TBB, Cond);
+ return false;
+ }
+ return true; // Can't handle indirect branch.
+ }
+
+ // Get the instruction before it if it is a terminator.
+ MachineInstr *SecondLastInst = I;
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+
+ // If AllowModify is true and the block ends with two or more unconditional
+ // branches, delete all but the first unconditional branch.
+ if (AllowModify && LastOpc == AArch64::Bimm) {
+ while (SecondLastOpc == AArch64::Bimm) {
+ LastInst->eraseFromParent();
+ LastInst = SecondLastInst;
+ LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ // Return now the only terminator is an unconditional branch.
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else {
+ SecondLastInst = I;
+ SecondLastOpc = SecondLastInst->getOpcode();
+ }
+ }
+ }
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with a B and a Bcc, handle it.
+ if (LastOpc == AArch64::Bimm) {
+ if (SecondLastOpc == AArch64::Bcc) {
+ TBB = SecondLastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(AArch64::Bcc));
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (isCondBranch(SecondLastOpc)) {
+ classifyCondBranch(SecondLastInst, TBB, Cond);
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ }
+
+ // If the block ends with two unconditional branches, handle it. The second
+ // one is not executed, so remove it.
+ if (SecondLastOpc == AArch64::Bimm && LastOpc == AArch64::Bimm) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+bool AArch64InstrInfo::ReverseBranchCondition(
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ switch (Cond[0].getImm()) {
+ case AArch64::Bcc: {
+ A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(Cond[1].getImm());
+ CC = A64InvertCondCode(CC);
+ Cond[1].setImm(CC);
+ return false;
+ }
+ case AArch64::CBZw:
+ Cond[0].setImm(AArch64::CBNZw);
+ return false;
+ case AArch64::CBZx:
+ Cond[0].setImm(AArch64::CBNZx);
+ return false;
+ case AArch64::CBNZw:
+ Cond[0].setImm(AArch64::CBZw);
+ return false;
+ case AArch64::CBNZx:
+ Cond[0].setImm(AArch64::CBZx);
+ return false;
+ case AArch64::TBZwii:
+ Cond[0].setImm(AArch64::TBNZwii);
+ return false;
+ case AArch64::TBZxii:
+ Cond[0].setImm(AArch64::TBNZxii);
+ return false;
+ case AArch64::TBNZwii:
+ Cond[0].setImm(AArch64::TBZwii);
+ return false;
+ case AArch64::TBNZxii:
+ Cond[0].setImm(AArch64::TBZxii);
+ return false;
+ default:
+ llvm_unreachable("Unknown branch type");
+ }
+}
+
+
+unsigned
+AArch64InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ if (FBB == 0 && Cond.empty()) {
+ BuildMI(&MBB, DL, get(AArch64::Bimm)).addMBB(TBB);
+ return 1;
+ } else if (FBB == 0) {
+ MachineInstrBuilder MIB = BuildMI(&MBB, DL, get(Cond[0].getImm()));
+ for (int i = 1, e = Cond.size(); i != e; ++i)
+ MIB.addOperand(Cond[i]);
+ MIB.addMBB(TBB);
+ return 1;
+ }
+
+ MachineInstrBuilder MIB = BuildMI(&MBB, DL, get(Cond[0].getImm()));
+ for (int i = 1, e = Cond.size(); i != e; ++i)
+ MIB.addOperand(Cond[i]);
+ MIB.addMBB(TBB);
+
+ BuildMI(&MBB, DL, get(AArch64::Bimm)).addMBB(FBB);
+ return 2;
+}
+
+unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (I->getOpcode() != AArch64::Bimm && !isCondBranch(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (!isCondBranch(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+bool
+AArch64InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MBBI) const {
+ MachineInstr &MI = *MBBI;
+ MachineBasicBlock &MBB = *MI.getParent();
+
+ unsigned Opcode = MI.getOpcode();
+ switch (Opcode) {
+ case AArch64::TLSDESC_BLRx: {
+ MachineInstr *NewMI =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), get(AArch64::TLSDESCCALL))
+ .addOperand(MI.getOperand(1));
+ MI.setDesc(get(AArch64::BLRx));
+
+ llvm::finalizeBundle(MBB, NewMI, *++MBBI);
+ return true;
+ }
+ default:
+ return false;
+ }
+
+ return false;
+}
+
+void
+AArch64InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill,
+ int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBB.findDebugLoc(MBBI);
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FrameIdx);
+
+ MachineMemOperand *MMO
+ = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FrameIdx),
+ Align);
+
+ unsigned StoreOp = 0;
+ if (RC->hasType(MVT::i64) || RC->hasType(MVT::i32)) {
+ switch(RC->getSize()) {
+ case 4: StoreOp = AArch64::LS32_STR; break;
+ case 8: StoreOp = AArch64::LS64_STR; break;
+ default:
+ llvm_unreachable("Unknown size for regclass");
+ }
+ } else {
+ assert((RC->hasType(MVT::f32) || RC->hasType(MVT::f64) ||
+ RC->hasType(MVT::f128))
+ && "Expected integer or floating type for store");
+ switch (RC->getSize()) {
+ case 4: StoreOp = AArch64::LSFP32_STR; break;
+ case 8: StoreOp = AArch64::LSFP64_STR; break;
+ case 16: StoreOp = AArch64::LSFP128_STR; break;
+ default:
+ llvm_unreachable("Unknown size for regclass");
+ }
+ }
+
+ MachineInstrBuilder NewMI = BuildMI(MBB, MBBI, DL, get(StoreOp));
+ NewMI.addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FrameIdx)
+ .addImm(0)
+ .addMemOperand(MMO);
+
+}
+
+void
+AArch64InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBB.findDebugLoc(MBBI);
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FrameIdx);
+
+ MachineMemOperand *MMO
+ = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FrameIdx),
+ Align);
+
+ unsigned LoadOp = 0;
+ if (RC->hasType(MVT::i64) || RC->hasType(MVT::i32)) {
+ switch(RC->getSize()) {
+ case 4: LoadOp = AArch64::LS32_LDR; break;
+ case 8: LoadOp = AArch64::LS64_LDR; break;
+ default:
+ llvm_unreachable("Unknown size for regclass");
+ }
+ } else {
+ assert((RC->hasType(MVT::f32) || RC->hasType(MVT::f64)
+ || RC->hasType(MVT::f128))
+ && "Expected integer or floating type for store");
+ switch (RC->getSize()) {
+ case 4: LoadOp = AArch64::LSFP32_LDR; break;
+ case 8: LoadOp = AArch64::LSFP64_LDR; break;
+ case 16: LoadOp = AArch64::LSFP128_LDR; break;
+ default:
+ llvm_unreachable("Unknown size for regclass");
+ }
+ }
+
+ MachineInstrBuilder NewMI = BuildMI(MBB, MBBI, DL, get(LoadOp), DestReg);
+ NewMI.addFrameIndex(FrameIdx)
+ .addImm(0)
+ .addMemOperand(MMO);
+}
+
+unsigned AArch64InstrInfo::estimateRSStackLimit(MachineFunction &MF) const {
+ unsigned Limit = (1 << 16) - 1;
+ for (MachineFunction::iterator BB = MF.begin(),E = MF.end(); BB != E; ++BB) {
+ for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ if (!I->getOperand(i).isFI()) continue;
+
+ // When using ADDxxi_lsl0_s to get the address of a stack object, 0xfff
+ // is the largest offset guaranteed to fit in the immediate offset.
+ if (I->getOpcode() == AArch64::ADDxxi_lsl0_s) {
+ Limit = std::min(Limit, 0xfffu);
+ break;
+ }
+
+ int AccessScale, MinOffset, MaxOffset;
+ getAddressConstraints(*I, AccessScale, MinOffset, MaxOffset);
+ Limit = std::min(Limit, static_cast<unsigned>(MaxOffset));
+
+ break; // At most one FI per instruction
+ }
+ }
+ }
+
+ return Limit;
+}
+void AArch64InstrInfo::getAddressConstraints(const MachineInstr &MI,
+ int &AccessScale, int &MinOffset,
+ int &MaxOffset) const {
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("Unkown load/store kind");
+ case TargetOpcode::DBG_VALUE:
+ AccessScale = 1;
+ MinOffset = INT_MIN;
+ MaxOffset = INT_MAX;
+ return;
+ case AArch64::LS8_LDR: case AArch64::LS8_STR:
+ case AArch64::LSFP8_LDR: case AArch64::LSFP8_STR:
+ case AArch64::LDRSBw:
+ case AArch64::LDRSBx:
+ AccessScale = 1;
+ MinOffset = 0;
+ MaxOffset = 0xfff;
+ return;
+ case AArch64::LS16_LDR: case AArch64::LS16_STR:
+ case AArch64::LSFP16_LDR: case AArch64::LSFP16_STR:
+ case AArch64::LDRSHw:
+ case AArch64::LDRSHx:
+ AccessScale = 2;
+ MinOffset = 0;
+ MaxOffset = 0xfff * AccessScale;
+ return;
+ case AArch64::LS32_LDR: case AArch64::LS32_STR:
+ case AArch64::LSFP32_LDR: case AArch64::LSFP32_STR:
+ case AArch64::LDRSWx:
+ case AArch64::LDPSWx:
+ AccessScale = 4;
+ MinOffset = 0;
+ MaxOffset = 0xfff * AccessScale;
+ return;
+ case AArch64::LS64_LDR: case AArch64::LS64_STR:
+ case AArch64::LSFP64_LDR: case AArch64::LSFP64_STR:
+ case AArch64::PRFM:
+ AccessScale = 8;
+ MinOffset = 0;
+ MaxOffset = 0xfff * AccessScale;
+ return;
+ case AArch64::LSFP128_LDR: case AArch64::LSFP128_STR:
+ AccessScale = 16;
+ MinOffset = 0;
+ MaxOffset = 0xfff * AccessScale;
+ return;
+ case AArch64::LSPair32_LDR: case AArch64::LSPair32_STR:
+ case AArch64::LSFPPair32_LDR: case AArch64::LSFPPair32_STR:
+ AccessScale = 4;
+ MinOffset = -0x40 * AccessScale;
+ MaxOffset = 0x3f * AccessScale;
+ return;
+ case AArch64::LSPair64_LDR: case AArch64::LSPair64_STR:
+ case AArch64::LSFPPair64_LDR: case AArch64::LSFPPair64_STR:
+ AccessScale = 8;
+ MinOffset = -0x40 * AccessScale;
+ MaxOffset = 0x3f * AccessScale;
+ return;
+ case AArch64::LSFPPair128_LDR: case AArch64::LSFPPair128_STR:
+ AccessScale = 16;
+ MinOffset = -0x40 * AccessScale;
+ MaxOffset = 0x3f * AccessScale;
+ return;
+ }
+}
+
+unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
+ const MCInstrDesc &MCID = MI.getDesc();
+ const MachineBasicBlock &MBB = *MI.getParent();
+ const MachineFunction &MF = *MBB.getParent();
+ const MCAsmInfo &MAI = *MF.getTarget().getMCAsmInfo();
+
+ if (MCID.getSize())
+ return MCID.getSize();
+
+ if (MI.getOpcode() == AArch64::INLINEASM)
+ return getInlineAsmLength(MI.getOperand(0).getSymbolName(), MAI);
+
+ if (MI.isLabel())
+ return 0;
+
+ switch (MI.getOpcode()) {
+ case TargetOpcode::BUNDLE:
+ return getInstBundleLength(MI);
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ case TargetOpcode::PROLOG_LABEL:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::DBG_VALUE:
+ return 0;
+ case AArch64::CONSTPOOL_ENTRY:
+ return MI.getOperand(2).getImm();
+ case AArch64::TLSDESCCALL:
+ return 0;
+ default:
+ llvm_unreachable("Unknown instruction class");
+ }
+}
+
+unsigned AArch64InstrInfo::getInstBundleLength(const MachineInstr &MI) const {
+ unsigned Size = 0;
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ assert(!I->isBundle() && "No nested bundle!");
+ Size += getInstSizeInBytes(*I);
+ }
+ return Size;
+}
+
+bool llvm::rewriteA64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const AArch64InstrInfo &TII) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+
+ MFI.getObjectOffset(FrameRegIdx);
+ llvm_unreachable("Unimplemented rewriteFrameIndex");
+}
+
+void llvm::emitRegUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ DebugLoc dl, const TargetInstrInfo &TII,
+ unsigned DstReg, unsigned SrcReg, unsigned ScratchReg,
+ int64_t NumBytes, MachineInstr::MIFlag MIFlags) {
+ if (NumBytes == 0 && DstReg == SrcReg)
+ return;
+ else if (abs(NumBytes) & ~0xffffff) {
+ // Generically, we have to materialize the offset into a temporary register
+ // and subtract it. There are a couple of ways this could be done, for now
+ // we'll go for a literal-pool load.
+ MachineFunction &MF = *MBB.getParent();
+ MachineConstantPool *MCP = MF.getConstantPool();
+ const Constant *C
+ = ConstantInt::get(Type::getInt64Ty(MF.getFunction()->getContext()),
+ abs(NumBytes));
+ unsigned CPI = MCP->getConstantPoolIndex(C, 8);
+
+ // LDR xTMP, .LITPOOL
+ BuildMI(MBB, MBBI, dl, TII.get(AArch64::LDRx_lit), ScratchReg)
+ .addConstantPoolIndex(CPI)
+ .setMIFlag(MIFlags);
+
+ // ADD DST, SRC, xTMP (, lsl #0)
+ unsigned AddOp = NumBytes > 0 ? AArch64::ADDxxx_uxtx : AArch64::SUBxxx_uxtx;
+ BuildMI(MBB, MBBI, dl, TII.get(AddOp), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(0)
+ .setMIFlag(MIFlags);
+ return;
+ }
+
+ // Now we know that the adjustment can be done in at most two add/sub
+ // (immediate) instructions, which is always more efficient than a
+ // literal-pool load, or even a hypothetical movz/movk/add sequence
+
+ // Decide whether we're doing addition or subtraction
+ unsigned LowOp, HighOp;
+ if (NumBytes >= 0) {
+ LowOp = AArch64::ADDxxi_lsl0_s;
+ HighOp = AArch64::ADDxxi_lsl12_s;
+ } else {
+ LowOp = AArch64::SUBxxi_lsl0_s;
+ HighOp = AArch64::SUBxxi_lsl12_s;
+ NumBytes = abs(NumBytes);
+ }
+
+ // If we're here, at the very least a move needs to be produced, which just
+ // happens to be materializable by an ADD.
+ if ((NumBytes & 0xfff) || NumBytes == 0) {
+ BuildMI(MBB, MBBI, dl, TII.get(LowOp), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(NumBytes & 0xfff)
+ .setMIFlag(MIFlags);
+
+ // Next update should use the register we've just defined.
+ SrcReg = DstReg;
+ }
+
+ if (NumBytes & 0xfff000) {
+ BuildMI(MBB, MBBI, dl, TII.get(HighOp), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(NumBytes >> 12)
+ .setMIFlag(MIFlags);
+ }
+}
+
+void llvm::emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ DebugLoc dl, const TargetInstrInfo &TII,
+ unsigned ScratchReg, int64_t NumBytes,
+ MachineInstr::MIFlag MIFlags) {
+ emitRegUpdate(MBB, MI, dl, TII, AArch64::XSP, AArch64::XSP, AArch64::X16,
+ NumBytes, MIFlags);
+}
+
+
+namespace {
+ struct LDTLSCleanup : public MachineFunctionPass {
+ static char ID;
+ LDTLSCleanup() : MachineFunctionPass(ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF) {
+ AArch64MachineFunctionInfo* MFI = MF.getInfo<AArch64MachineFunctionInfo>();
+ if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
+ // No point folding accesses if there isn't at least two.
+ return false;
+ }
+
+ MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
+ return VisitNode(DT->getRootNode(), 0);
+ }
+
+ // Visit the dominator subtree rooted at Node in pre-order.
+ // If TLSBaseAddrReg is non-null, then use that to replace any
+ // TLS_base_addr instructions. Otherwise, create the register
+ // when the first such instruction is seen, and then use it
+ // as we encounter more instructions.
+ bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
+ MachineBasicBlock *BB = Node->getBlock();
+ bool Changed = false;
+
+ // Traverse the current block.
+ for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
+ ++I) {
+ switch (I->getOpcode()) {
+ case AArch64::TLSDESC_BLRx:
+ // Make sure it's a local dynamic access.
+ if (!I->getOperand(1).isSymbol() ||
+ strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_"))
+ break;
+
+ if (TLSBaseAddrReg)
+ I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
+ else
+ I = SetRegister(I, &TLSBaseAddrReg);
+ Changed = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Visit the children of this block in the dominator tree.
+ for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
+ I != E; ++I) {
+ Changed |= VisitNode(*I, TLSBaseAddrReg);
+ }
+
+ return Changed;
+ }
+
+ // Replace the TLS_base_addr instruction I with a copy from
+ // TLSBaseAddrReg, returning the new instruction.
+ MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
+ unsigned TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const AArch64TargetMachine *TM =
+ static_cast<const AArch64TargetMachine *>(&MF->getTarget());
+ const AArch64InstrInfo *TII = TM->getInstrInfo();
+
+ // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
+ // code sequence assumes the address will be.
+ MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ AArch64::X0)
+ .addReg(TLSBaseAddrReg);
+
+ // Erase the TLS_base_addr instruction.
+ I->eraseFromParent();
+
+ return Copy;
+ }
+
+ // Create a virtal register in *TLSBaseAddrReg, and populate it by
+ // inserting a copy instruction after I. Returns the new instruction.
+ MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const AArch64TargetMachine *TM =
+ static_cast<const AArch64TargetMachine *>(&MF->getTarget());
+ const AArch64InstrInfo *TII = TM->getInstrInfo();
+
+ // Create a virtual register for the TLS base address.
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass);
+
+ // Insert a copy from X0 to TLSBaseAddrReg for later.
+ MachineInstr *Next = I->getNextNode();
+ MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ *TLSBaseAddrReg)
+ .addReg(AArch64::X0);
+
+ return Copy;
+ }
+
+ virtual const char *getPassName() const {
+ return "Local Dynamic TLS Access Clean-up";
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+char LDTLSCleanup::ID = 0;
+FunctionPass*
+llvm::createAArch64CleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }