summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64InstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64InstrInfo.td')
-rw-r--r--lib/Target/AArch64/AArch64InstrInfo.td5388
1 files changed, 0 insertions, 5388 deletions
diff --git a/lib/Target/AArch64/AArch64InstrInfo.td b/lib/Target/AArch64/AArch64InstrInfo.td
deleted file mode 100644
index 4d3c80152c..0000000000
--- a/lib/Target/AArch64/AArch64InstrInfo.td
+++ /dev/null
@@ -1,5388 +0,0 @@
-//===----- AArch64InstrInfo.td - AArch64 Instruction Info ----*- tablegen -*-=//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file describes the AArch64 scalar instructions in TableGen format.
-//
-//===----------------------------------------------------------------------===//
-
-//===----------------------------------------------------------------------===//
-// ARM Instruction Predicate Definitions.
-//
-def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
- AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
-def HasNEON : Predicate<"Subtarget->hasNEON()">,
- AssemblerPredicate<"FeatureNEON", "neon">;
-def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
- AssemblerPredicate<"FeatureCrypto","crypto">;
-
-// Use fused MAC if more precision in FP computation is allowed.
-def UseFusedMAC : Predicate<"(TM.Options.AllowFPOpFusion =="
- " FPOpFusion::Fast)">;
-include "AArch64InstrFormats.td"
-
-//===----------------------------------------------------------------------===//
-// AArch64 specific pattern fragments.
-//
-// An 'fmul' node with a single use.
-def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
- return N->hasOneUse();
-}]>;
-
-
-//===----------------------------------------------------------------------===//
-// Target-specific ISD nodes and profiles
-//===----------------------------------------------------------------------===//
-
-def SDT_A64ret : SDTypeProfile<0, 0, []>;
-def A64ret : SDNode<"AArch64ISD::Ret", SDT_A64ret, [SDNPHasChain,
- SDNPOptInGlue,
- SDNPVariadic]>;
-
-// (ins NZCV, Condition, Dest)
-def SDT_A64br_cc : SDTypeProfile<0, 3, [SDTCisVT<0, i32>]>;
-def A64br_cc : SDNode<"AArch64ISD::BR_CC", SDT_A64br_cc, [SDNPHasChain]>;
-
-// (outs Result), (ins NZCV, IfTrue, IfFalse, Condition)
-def SDT_A64select_cc : SDTypeProfile<1, 4, [SDTCisVT<1, i32>,
- SDTCisSameAs<0, 2>,
- SDTCisSameAs<2, 3>]>;
-def A64select_cc : SDNode<"AArch64ISD::SELECT_CC", SDT_A64select_cc>;
-
-// (outs NZCV), (ins LHS, RHS, Condition)
-def SDT_A64setcc : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
- SDTCisSameAs<1, 2>]>;
-def A64setcc : SDNode<"AArch64ISD::SETCC", SDT_A64setcc>;
-
-
-// (outs GPR64), (ins)
-def A64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
-
-// A64 compares don't care about the cond really (they set all flags) so a
-// simple binary operator is useful.
-def A64cmp : PatFrag<(ops node:$lhs, node:$rhs),
- (A64setcc node:$lhs, node:$rhs, cond)>;
-
-
-// When matching a notional (CMP op1, (sub 0, op2)), we'd like to use a CMN
-// instruction on the grounds that "op1 - (-op2) == op1 + op2". However, the C
-// and V flags can be set differently by this operation. It comes down to
-// whether "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are
-// then everything is fine. If not then the optimization is wrong. Thus general
-// comparisons are only valid if op2 != 0.
-
-// So, finally, the only LLVM-native comparisons that don't mention C and V are
-// SETEQ and SETNE. They're the only ones we can safely use CMN for in the
-// absence of information about op2.
-def equality_cond : PatLeaf<(cond), [{
- return N->get() == ISD::SETEQ || N->get() == ISD::SETNE;
-}]>;
-
-def A64cmn : PatFrag<(ops node:$lhs, node:$rhs),
- (A64setcc node:$lhs, (sub 0, node:$rhs), equality_cond)>;
-
-// There are two layers of indirection here, driven by the following
-// considerations.
-// + TableGen does not know CodeModel or Reloc so that decision should be
-// made for a variable/address at ISelLowering.
-// + The output of ISelLowering should be selectable (hence the Wrapper,
-// rather than a bare target opcode)
-def SDTAArch64WrapperLarge : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
- SDTCisSameAs<0, 2>,
- SDTCisSameAs<0, 3>,
- SDTCisSameAs<0, 4>,
- SDTCisPtrTy<0>]>;
-
-def A64WrapperLarge :SDNode<"AArch64ISD::WrapperLarge", SDTAArch64WrapperLarge>;
-
-def SDTAArch64WrapperSmall : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
- SDTCisSameAs<1, 2>,
- SDTCisVT<3, i32>,
- SDTCisPtrTy<0>]>;
-
-def A64WrapperSmall :SDNode<"AArch64ISD::WrapperSmall", SDTAArch64WrapperSmall>;
-
-
-def SDTAArch64GOTLoad : SDTypeProfile<1, 1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
-def A64GOTLoad : SDNode<"AArch64ISD::GOTLoad", SDTAArch64GOTLoad,
- [SDNPHasChain]>;
-
-
-// (A64BFI LHS, RHS, LSB, Width)
-def SDTA64BFI : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
- SDTCisSameAs<1, 2>,
- SDTCisVT<3, i64>,
- SDTCisVT<4, i64>]>;
-
-def A64Bfi : SDNode<"AArch64ISD::BFI", SDTA64BFI>;
-
-// (A64EXTR HiReg, LoReg, LSB)
-def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
- SDTCisVT<3, i64>]>;
-def A64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>;
-
-// (A64[SU]BFX Field, ImmR, ImmS).
-//
-// Note that ImmR and ImmS are already encoded for the actual instructions. The
-// more natural LSB and Width mix together to form ImmR and ImmS, something
-// which TableGen can't handle.
-def SDTA64BFX : SDTypeProfile<1, 3, [SDTCisVT<2, i64>, SDTCisVT<3, i64>]>;
-def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>;
-
-def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>;
-
-class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
-
-//===----------------------------------------------------------------------===//
-// Call sequence pseudo-instructions
-//===----------------------------------------------------------------------===//
-
-
-def SDT_AArch64Call : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
-def AArch64Call : SDNode<"AArch64ISD::Call", SDT_AArch64Call,
- [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
-
-def AArch64tcret : SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64Call,
- [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
-
-// The TLSDESCCALL node is a variant call which goes to an indirectly calculated
-// destination but needs a relocation against a fixed symbol. As such it has two
-// certain operands: the callee and the relocated variable.
-//
-// The TLS ABI only allows it to be selected to a BLR instructin (with
-// appropriate relocation).
-def SDTTLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
-
-def A64tlsdesc_blr : SDNode<"AArch64ISD::TLSDESCCALL", SDTTLSDescCall,
- [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
- SDNPVariadic]>;
-
-
-def SDT_AArch64CallSeqStart : SDCallSeqStart<[ SDTCisPtrTy<0> ]>;
-def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AArch64CallSeqStart,
- [SDNPHasChain, SDNPOutGlue]>;
-
-def SDT_AArch64CallSeqEnd : SDCallSeqEnd<[ SDTCisPtrTy<0>, SDTCisPtrTy<1> ]>;
-def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AArch64CallSeqEnd,
- [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
-
-
-
-// These pseudo-instructions have special semantics by virtue of being passed to
-// the InstrInfo constructor. CALLSEQ_START/CALLSEQ_END are produced by
-// LowerCall to (in our case) tell the back-end about stack adjustments for
-// arguments passed on the stack. Here we select those markers to
-// pseudo-instructions which explicitly set the stack, and finally in the
-// RegisterInfo we convert them to a true stack adjustment.
-let Defs = [XSP], Uses = [XSP] in {
- def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i64imm:$amt),
- [(AArch64callseq_start timm:$amt)]>;
-
- def ADJCALLSTACKUP : PseudoInst<(outs), (ins i64imm:$amt1, i64imm:$amt2),
- [(AArch64callseq_end timm:$amt1, timm:$amt2)]>;
-}
-
-//===----------------------------------------------------------------------===//
-// Atomic operation pseudo-instructions
-//===----------------------------------------------------------------------===//
-
-// These get selected from C++ code as a pretty much direct translation from the
-// generic DAG nodes. The one exception is the AtomicOrdering is added as an
-// operand so that the eventual lowering can make use of it and choose
-// acquire/release operations when required.
-
-let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1 in {
-multiclass AtomicSizes {
- def _I8 : PseudoInst<(outs GPR32:$dst),
- (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
- def _I16 : PseudoInst<(outs GPR32:$dst),
- (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
- def _I32 : PseudoInst<(outs GPR32:$dst),
- (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
- def _I64 : PseudoInst<(outs GPR64:$dst),
- (ins GPR64xsp:$ptr, GPR64:$incr, i32imm:$ordering), []>;
-}
-}
-
-defm ATOMIC_LOAD_ADD : AtomicSizes;
-defm ATOMIC_LOAD_SUB : AtomicSizes;
-defm ATOMIC_LOAD_AND : AtomicSizes;
-defm ATOMIC_LOAD_OR : AtomicSizes;
-defm ATOMIC_LOAD_XOR : AtomicSizes;
-defm ATOMIC_LOAD_NAND : AtomicSizes;
-defm ATOMIC_SWAP : AtomicSizes;
-let Defs = [NZCV] in {
- // These operations need a CMP to calculate the correct value
- defm ATOMIC_LOAD_MIN : AtomicSizes;
- defm ATOMIC_LOAD_MAX : AtomicSizes;
- defm ATOMIC_LOAD_UMIN : AtomicSizes;
- defm ATOMIC_LOAD_UMAX : AtomicSizes;
-}
-
-class AtomicCmpSwap<RegisterClass GPRData>
- : PseudoInst<(outs GPRData:$dst),
- (ins GPR64xsp:$ptr, GPRData:$old, GPRData:$new,
- i32imm:$ordering), []> {
- let usesCustomInserter = 1;
- let hasCtrlDep = 1;
- let mayLoad = 1;
- let mayStore = 1;
- let Defs = [NZCV];
-}
-
-def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<GPR32>;
-def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<GPR32>;
-def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<GPR32>;
-def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<GPR64>;
-
-//===----------------------------------------------------------------------===//
-// Add-subtract (extended register) instructions
-//===----------------------------------------------------------------------===//
-// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP
-
-// The RHS of these operations is conceptually a sign/zero-extended
-// register, optionally shifted left by 1-4. The extension can be a
-// NOP (e.g. "sxtx" sign-extending a 64-bit register to 64-bits) but
-// must be specified with one exception:
-
-// If one of the registers is sp/wsp then LSL is an alias for UXTW in
-// 32-bit instructions and UXTX in 64-bit versions, the shift amount
-// is not optional in that case (but can explicitly be 0), and the
-// entire suffix can be skipped (e.g. "add sp, x3, x2").
-
-multiclass extend_operands<string PREFIX, string Diag> {
- def _asmoperand : AsmOperandClass {
- let Name = PREFIX;
- let RenderMethod = "addRegExtendOperands";
- let PredicateMethod = "isRegExtend<A64SE::" # PREFIX # ">";
- let DiagnosticType = "AddSubRegExtend" # Diag;
- }
-
- def _operand : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 4; }]> {
- let PrintMethod = "printRegExtendOperand<A64SE::" # PREFIX # ">";
- let DecoderMethod = "DecodeRegExtendOperand";
- let ParserMatchClass = !cast<AsmOperandClass>(PREFIX # "_asmoperand");
- }
-}
-
-defm UXTB : extend_operands<"UXTB", "Small">;
-defm UXTH : extend_operands<"UXTH", "Small">;
-defm UXTW : extend_operands<"UXTW", "Small">;
-defm UXTX : extend_operands<"UXTX", "Large">;
-defm SXTB : extend_operands<"SXTB", "Small">;
-defm SXTH : extend_operands<"SXTH", "Small">;
-defm SXTW : extend_operands<"SXTW", "Small">;
-defm SXTX : extend_operands<"SXTX", "Large">;
-
-def LSL_extasmoperand : AsmOperandClass {
- let Name = "RegExtendLSL";
- let RenderMethod = "addRegExtendOperands";
- let DiagnosticType = "AddSubRegExtendLarge";
-}
-
-def LSL_extoperand : Operand<i64> {
- let ParserMatchClass = LSL_extasmoperand;
-}
-
-
-// The patterns for various sign-extensions are a little ugly and
-// non-uniform because everything has already been promoted to the
-// legal i64 and i32 types. We'll wrap the various variants up in a
-// class for use later.
-class extend_types {
- dag uxtb; dag uxth; dag uxtw; dag uxtx;
- dag sxtb; dag sxth; dag sxtw; dag sxtx;
- ValueType ty;
- RegisterClass GPR;
-}
-
-def extends_to_i64 : extend_types {
- let uxtb = (and (anyext i32:$Rm), 255);
- let uxth = (and (anyext i32:$Rm), 65535);
- let uxtw = (zext i32:$Rm);
- let uxtx = (i64 $Rm);
-
- let sxtb = (sext_inreg (anyext i32:$Rm), i8);
- let sxth = (sext_inreg (anyext i32:$Rm), i16);
- let sxtw = (sext i32:$Rm);
- let sxtx = (i64 $Rm);
-
- let ty = i64;
- let GPR = GPR64xsp;
-}
-
-
-def extends_to_i32 : extend_types {
- let uxtb = (and i32:$Rm, 255);
- let uxth = (and i32:$Rm, 65535);
- let uxtw = (i32 i32:$Rm);
- let uxtx = (i32 i32:$Rm);
-
- let sxtb = (sext_inreg i32:$Rm, i8);
- let sxth = (sext_inreg i32:$Rm, i16);
- let sxtw = (i32 i32:$Rm);
- let sxtx = (i32 i32:$Rm);
-
- let ty = i32;
- let GPR = GPR32wsp;
-}
-
-// Now, six of the extensions supported are easy and uniform: if the source size
-// is 32-bits or less, then Rm is always a 32-bit register. We'll instantiate
-// those instructions in one block.
-
-// The uxtx/sxtx could potentially be merged in, but three facts dissuaded me:
-// + It would break the naming scheme: either ADDxx_uxtx or ADDww_uxtx would
-// be impossible.
-// + Patterns are very different as well.
-// + Passing different registers would be ugly (more fields in extend_types
-// would probably be the best option).
-multiclass addsub_exts<bit sf, bit op, bit S, string asmop,
- SDPatternOperator opfrag,
- dag outs, extend_types exts> {
- def w_uxtb : A64I_addsubext<sf, op, S, 0b00, 0b000,
- outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTB_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [(opfrag exts.ty:$Rn, (shl exts.uxtb, UXTB_operand:$Imm3))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- def w_uxth : A64I_addsubext<sf, op, S, 0b00, 0b001,
- outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTH_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [(opfrag exts.ty:$Rn, (shl exts.uxth, UXTH_operand:$Imm3))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- def w_uxtw : A64I_addsubext<sf, op, S, 0b00, 0b010,
- outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTW_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [(opfrag exts.ty:$Rn, (shl exts.uxtw, UXTW_operand:$Imm3))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def w_sxtb : A64I_addsubext<sf, op, S, 0b00, 0b100,
- outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTB_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [(opfrag exts.ty:$Rn, (shl exts.sxtb, SXTB_operand:$Imm3))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- def w_sxth : A64I_addsubext<sf, op, S, 0b00, 0b101,
- outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTH_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [(opfrag exts.ty:$Rn, (shl exts.sxth, SXTH_operand:$Imm3))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- def w_sxtw : A64I_addsubext<sf, op, S, 0b00, 0b110,
- outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTW_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [(opfrag exts.ty:$Rn, (shl exts.sxtw, SXTW_operand:$Imm3))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-}
-
-// These two could be merge in with the above, but their patterns aren't really
-// necessary and the naming-scheme would necessarily break:
-multiclass addsub_xxtx<bit op, bit S, string asmop, SDPatternOperator opfrag,
- dag outs> {
- def x_uxtx : A64I_addsubext<0b1, op, S, 0b00, 0b011,
- outs,
- (ins GPR64xsp:$Rn, GPR64:$Rm, UXTX_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [(opfrag i64:$Rn, (shl i64:$Rm, UXTX_operand:$Imm3))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def x_sxtx : A64I_addsubext<0b1, op, S, 0b00, 0b111,
- outs,
- (ins GPR64xsp:$Rn, GPR64:$Rm, SXTX_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [/* No Pattern: same as uxtx */],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-}
-
-multiclass addsub_wxtx<bit op, bit S, string asmop, dag outs> {
- def w_uxtx : A64I_addsubext<0b0, op, S, 0b00, 0b011,
- outs, (ins GPR32wsp:$Rn, GPR32:$Rm, UXTX_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [/* No pattern: probably same as uxtw */],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def w_sxtx : A64I_addsubext<0b0, op, S, 0b00, 0b111,
- outs, (ins GPR32wsp:$Rn, GPR32:$Rm, SXTX_operand:$Imm3),
- !strconcat(asmop, "$Rn, $Rm, $Imm3"),
- [/* No Pattern: probably same as uxtw */],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-}
-
-class SetRD<RegisterClass RC, SDPatternOperator op>
- : PatFrag<(ops node:$lhs, node:$rhs), (set RC:$Rd, (op node:$lhs, node:$rhs))>;
-class SetNZCV<SDPatternOperator op>
- : PatFrag<(ops node:$lhs, node:$rhs), (set NZCV, (op node:$lhs, node:$rhs))>;
-
-defm ADDxx :addsub_exts<0b1, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
- (outs GPR64xsp:$Rd), extends_to_i64>,
- addsub_xxtx< 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
- (outs GPR64xsp:$Rd)>;
-defm ADDww :addsub_exts<0b0, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR32wsp, add>,
- (outs GPR32wsp:$Rd), extends_to_i32>,
- addsub_wxtx< 0b0, 0b0, "add\t$Rd, ",
- (outs GPR32wsp:$Rd)>;
-defm SUBxx :addsub_exts<0b1, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
- (outs GPR64xsp:$Rd), extends_to_i64>,
- addsub_xxtx< 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
- (outs GPR64xsp:$Rd)>;
-defm SUBww :addsub_exts<0b0, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR32wsp, sub>,
- (outs GPR32wsp:$Rd), extends_to_i32>,
- addsub_wxtx< 0b1, 0b0, "sub\t$Rd, ",
- (outs GPR32wsp:$Rd)>;
-
-let Defs = [NZCV] in {
-defm ADDSxx :addsub_exts<0b1, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
- (outs GPR64:$Rd), extends_to_i64>,
- addsub_xxtx< 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
- (outs GPR64:$Rd)>;
-defm ADDSww :addsub_exts<0b0, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR32, addc>,
- (outs GPR32:$Rd), extends_to_i32>,
- addsub_wxtx< 0b0, 0b1, "adds\t$Rd, ",
- (outs GPR32:$Rd)>;
-defm SUBSxx :addsub_exts<0b1, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
- (outs GPR64:$Rd), extends_to_i64>,
- addsub_xxtx< 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
- (outs GPR64:$Rd)>;
-defm SUBSww :addsub_exts<0b0, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR32, subc>,
- (outs GPR32:$Rd), extends_to_i32>,
- addsub_wxtx< 0b1, 0b1, "subs\t$Rd, ",
- (outs GPR32:$Rd)>;
-
-
-let SchedRW = [WriteCMP, ReadCMP, ReadCMP], Rd = 0b11111, isCompare = 1 in {
-defm CMNx : addsub_exts<0b1, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
- (outs), extends_to_i64>,
- addsub_xxtx< 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, (outs)>;
-defm CMNw : addsub_exts<0b0, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
- (outs), extends_to_i32>,
- addsub_wxtx< 0b0, 0b1, "cmn\t", (outs)>;
-defm CMPx : addsub_exts<0b1, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
- (outs), extends_to_i64>,
- addsub_xxtx< 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, (outs)>;
-defm CMPw : addsub_exts<0b0, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
- (outs), extends_to_i32>,
- addsub_wxtx< 0b1, 0b1, "cmp\t", (outs)>;
-}
-}
-
-// Now patterns for the operation without a shift being needed. No patterns are
-// created for uxtx/sxtx since they're non-uniform and it's expected that
-// add/sub (shifted register) will handle those cases anyway.
-multiclass addsubext_noshift_patterns<string prefix, SDPatternOperator nodeop,
- extend_types exts> {
- def : Pat<(nodeop exts.ty:$Rn, exts.uxtb),
- (!cast<Instruction>(prefix # "w_uxtb") $Rn, $Rm, 0)>;
- def : Pat<(nodeop exts.ty:$Rn, exts.uxth),
- (!cast<Instruction>(prefix # "w_uxth") $Rn, $Rm, 0)>;
- def : Pat<(nodeop exts.ty:$Rn, exts.uxtw),
- (!cast<Instruction>(prefix # "w_uxtw") $Rn, $Rm, 0)>;
-
- def : Pat<(nodeop exts.ty:$Rn, exts.sxtb),
- (!cast<Instruction>(prefix # "w_sxtb") $Rn, $Rm, 0)>;
- def : Pat<(nodeop exts.ty:$Rn, exts.sxth),
- (!cast<Instruction>(prefix # "w_sxth") $Rn, $Rm, 0)>;
- def : Pat<(nodeop exts.ty:$Rn, exts.sxtw),
- (!cast<Instruction>(prefix # "w_sxtw") $Rn, $Rm, 0)>;
-}
-
-defm : addsubext_noshift_patterns<"ADDxx", add, extends_to_i64>;
-defm : addsubext_noshift_patterns<"ADDww", add, extends_to_i32>;
-defm : addsubext_noshift_patterns<"SUBxx", sub, extends_to_i64>;
-defm : addsubext_noshift_patterns<"SUBww", sub, extends_to_i32>;
-
-defm : addsubext_noshift_patterns<"CMNx", A64cmn, extends_to_i64>;
-defm : addsubext_noshift_patterns<"CMNw", A64cmn, extends_to_i32>;
-defm : addsubext_noshift_patterns<"CMPx", A64cmp, extends_to_i64>;
-defm : addsubext_noshift_patterns<"CMPw", A64cmp, extends_to_i32>;
-
-// An extend of "lsl #imm" is valid if and only if one of Rn and Rd is
-// sp/wsp. It is synonymous with uxtx/uxtw depending on the size of the
-// operation. Also permitted in this case is complete omission of the argument,
-// which implies "lsl #0".
-multiclass lsl_aliases<string asmop, Instruction inst, RegisterClass GPR_Rd,
- RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
- def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
- (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
-
- def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm, $LSL"),
- (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL),
- 0>;
-
-}
-
-defm : lsl_aliases<"add", ADDxxx_uxtx, Rxsp, GPR64xsp, GPR64>;
-defm : lsl_aliases<"add", ADDxxx_uxtx, GPR64xsp, Rxsp, GPR64>;
-defm : lsl_aliases<"add", ADDwww_uxtw, Rwsp, GPR32wsp, GPR32>;
-defm : lsl_aliases<"add", ADDwww_uxtw, GPR32wsp, Rwsp, GPR32>;
-defm : lsl_aliases<"sub", SUBxxx_uxtx, Rxsp, GPR64xsp, GPR64>;
-defm : lsl_aliases<"sub", SUBxxx_uxtx, GPR64xsp, Rxsp, GPR64>;
-defm : lsl_aliases<"sub", SUBwww_uxtw, Rwsp, GPR32wsp, GPR32>;
-defm : lsl_aliases<"sub", SUBwww_uxtw, GPR32wsp, Rwsp, GPR32>;
-
-// Rd cannot be sp for flag-setting variants so only half of the aliases are
-// needed.
-defm : lsl_aliases<"adds", ADDSxxx_uxtx, GPR64, Rxsp, GPR64>;
-defm : lsl_aliases<"adds", ADDSwww_uxtw, GPR32, Rwsp, GPR32>;
-defm : lsl_aliases<"subs", SUBSxxx_uxtx, GPR64, Rxsp, GPR64>;
-defm : lsl_aliases<"subs", SUBSwww_uxtw, GPR32, Rwsp, GPR32>;
-
-// CMP unfortunately has to be different because the instruction doesn't have a
-// dest register.
-multiclass cmp_lsl_aliases<string asmop, Instruction inst,
- RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
- def : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
- (inst GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
-
- def : InstAlias<!strconcat(asmop, " $Rn, $Rm, $LSL"),
- (inst GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
-}
-
-defm : cmp_lsl_aliases<"cmp", CMPxx_uxtx, Rxsp, GPR64>;
-defm : cmp_lsl_aliases<"cmp", CMPww_uxtw, Rwsp, GPR32>;
-defm : cmp_lsl_aliases<"cmn", CMNxx_uxtx, Rxsp, GPR64>;
-defm : cmp_lsl_aliases<"cmn", CMNww_uxtw, Rwsp, GPR32>;
-
-//===----------------------------------------------------------------------===//
-// Add-subtract (immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, MOV
-
-// These instructions accept a 12-bit unsigned immediate, optionally shifted
-// left by 12 bits. Official assembly format specifies a 12 bit immediate with
-// one of "", "LSL #0", "LSL #12" supplementary operands.
-
-// There are surprisingly few ways to make this work with TableGen, so this
-// implementation has separate instructions for the "LSL #0" and "LSL #12"
-// variants.
-
-// If the MCInst retained a single combined immediate (which could be 0x123000,
-// for example) then both components (imm & shift) would have to be delegated to
-// a single assembly operand. This would entail a separate operand parser
-// (because the LSL would have to live in the same AArch64Operand as the
-// immediate to be accessible); assembly parsing is rather complex and
-// error-prone C++ code.
-//
-// By splitting the immediate, we can delegate handling this optional operand to
-// an InstAlias. Supporting functions to generate the correct MCInst are still
-// required, but these are essentially trivial and parsing can remain generic.
-//
-// Rejected plans with rationale:
-// ------------------------------
-//
-// In an ideal world you'de have two first class immediate operands (in
-// InOperandList, specifying imm12 and shift). Unfortunately this is not
-// selectable by any means I could discover.
-//
-// An Instruction with two MCOperands hidden behind a single entry in
-// InOperandList (expanded by ComplexPatterns and MIOperandInfo) was functional,
-// but required more C++ code to handle encoding/decoding. Parsing (the intended
-// main beneficiary) ended up equally complex because of the optional nature of
-// "LSL #0".
-//
-// Attempting to circumvent the need for a custom OperandParser above by giving
-// InstAliases without the "lsl #0" failed. add/sub could be accommodated but
-// the cmp/cmn aliases didn't use the MIOperandInfo to determine how operands
-// should be parsed: there was no way to accommodate an "lsl #12".
-
-let ParserMethod = "ParseImmWithLSLOperand",
- RenderMethod = "addImmWithLSLOperands" in {
- // Derived PredicateMethod fields are different for each
- def addsubimm_lsl0_asmoperand : AsmOperandClass {
- let Name = "AddSubImmLSL0";
- // If an error is reported against this operand, instruction could also be a
- // register variant.
- let DiagnosticType = "AddSubSecondSource";
- }
-
- def addsubimm_lsl12_asmoperand : AsmOperandClass {
- let Name = "AddSubImmLSL12";
- let DiagnosticType = "AddSubSecondSource";
- }
-}
-
-def shr_12_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(N->getSExtValue() >> 12, MVT::i32);
-}]>;
-
-def shr_12_neg_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant((-N->getSExtValue()) >> 12, MVT::i32);
-}]>;
-
-def neg_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(-N->getSExtValue(), MVT::i32);
-}]>;
-
-
-multiclass addsub_imm_operands<ValueType ty> {
- let PrintMethod = "printAddSubImmLSL0Operand",
- EncoderMethod = "getAddSubImmOpValue",
- ParserMatchClass = addsubimm_lsl0_asmoperand in {
- def _posimm_lsl0 : Operand<ty>,
- ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff) == 0; }]>;
- def _negimm_lsl0 : Operand<ty>,
- ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff) == 0; }],
- neg_XFORM>;
- }
-
- let PrintMethod = "printAddSubImmLSL12Operand",
- EncoderMethod = "getAddSubImmOpValue",
- ParserMatchClass = addsubimm_lsl12_asmoperand in {
- def _posimm_lsl12 : Operand<ty>,
- ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff000) == 0; }],
- shr_12_XFORM>;
-
- def _negimm_lsl12 : Operand<ty>,
- ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff000) == 0; }],
- shr_12_neg_XFORM>;
- }
-}
-
-// The add operands don't need any transformation
-defm addsubimm_operand_i32 : addsub_imm_operands<i32>;
-defm addsubimm_operand_i64 : addsub_imm_operands<i64>;
-
-multiclass addsubimm_varieties<string prefix, bit sf, bit op, bits<2> shift,
- string asmop, string cmpasmop,
- Operand imm_operand, Operand cmp_imm_operand,
- RegisterClass GPR, RegisterClass GPRsp,
- AArch64Reg ZR, ValueType Ty> {
- // All registers for non-S variants allow SP
- def _s : A64I_addsubimm<sf, op, 0b0, shift,
- (outs GPRsp:$Rd),
- (ins GPRsp:$Rn, imm_operand:$Imm12),
- !strconcat(asmop, "\t$Rd, $Rn, $Imm12"),
- [(set Ty:$Rd, (add Ty:$Rn, imm_operand:$Imm12))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
-
-
- // S variants can read SP but would write to ZR
- def _S : A64I_addsubimm<sf, op, 0b1, shift,
- (outs GPR:$Rd),
- (ins GPRsp:$Rn, imm_operand:$Imm12),
- !strconcat(asmop, "s\t$Rd, $Rn, $Imm12"),
- [(set Ty:$Rd, (addc Ty:$Rn, imm_operand:$Imm12))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- let Defs = [NZCV];
- }
-
- // Note that the pattern here for ADDS is subtle. Canonically CMP
- // a, b becomes SUBS a, b. If b < 0 then this is equivalent to
- // ADDS a, (-b). This is not true in general.
- def _cmp : A64I_addsubimm<sf, op, 0b1, shift,
- (outs), (ins GPRsp:$Rn, imm_operand:$Imm12),
- !strconcat(cmpasmop, " $Rn, $Imm12"),
- [(set NZCV,
- (A64cmp Ty:$Rn, cmp_imm_operand:$Imm12))],
- NoItinerary>,
- Sched<[WriteCMP, ReadCMP]> {
- let Rd = 0b11111;
- let Defs = [NZCV];
- let isCompare = 1;
- }
-}
-
-
-multiclass addsubimm_shifts<string prefix, bit sf, bit op,
- string asmop, string cmpasmop, string operand, string cmpoperand,
- RegisterClass GPR, RegisterClass GPRsp, AArch64Reg ZR,
- ValueType Ty> {
- defm _lsl0 : addsubimm_varieties<prefix # "_lsl0", sf, op, 0b00,
- asmop, cmpasmop,
- !cast<Operand>(operand # "_lsl0"),
- !cast<Operand>(cmpoperand # "_lsl0"),
- GPR, GPRsp, ZR, Ty>;
-
- defm _lsl12 : addsubimm_varieties<prefix # "_lsl12", sf, op, 0b01,
- asmop, cmpasmop,
- !cast<Operand>(operand # "_lsl12"),
- !cast<Operand>(cmpoperand # "_lsl12"),
- GPR, GPRsp, ZR, Ty>;
-}
-
-defm ADDwwi : addsubimm_shifts<"ADDwi", 0b0, 0b0, "add", "cmn",
- "addsubimm_operand_i32_posimm",
- "addsubimm_operand_i32_negimm",
- GPR32, GPR32wsp, WZR, i32>;
-defm ADDxxi : addsubimm_shifts<"ADDxi", 0b1, 0b0, "add", "cmn",
- "addsubimm_operand_i64_posimm",
- "addsubimm_operand_i64_negimm",
- GPR64, GPR64xsp, XZR, i64>;
-defm SUBwwi : addsubimm_shifts<"SUBwi", 0b0, 0b1, "sub", "cmp",
- "addsubimm_operand_i32_negimm",
- "addsubimm_operand_i32_posimm",
- GPR32, GPR32wsp, WZR, i32>;
-defm SUBxxi : addsubimm_shifts<"SUBxi", 0b1, 0b1, "sub", "cmp",
- "addsubimm_operand_i64_negimm",
- "addsubimm_operand_i64_posimm",
- GPR64, GPR64xsp, XZR, i64>;
-
-multiclass MOVsp<RegisterClass GPRsp, RegisterClass SP, Instruction addop> {
- def _fromsp : InstAlias<"mov $Rd, $Rn",
- (addop GPRsp:$Rd, SP:$Rn, 0),
- 0b1>;
-
- def _tosp : InstAlias<"mov $Rd, $Rn",
- (addop SP:$Rd, GPRsp:$Rn, 0),
- 0b1>;
-}
-
-// Recall Rxsp is a RegisterClass containing *just* xsp.
-defm MOVxx : MOVsp<GPR64xsp, Rxsp, ADDxxi_lsl0_s>;
-defm MOVww : MOVsp<GPR32wsp, Rwsp, ADDwwi_lsl0_s>;
-
-//===----------------------------------------------------------------------===//
-// Add-subtract (shifted register) instructions
-//===----------------------------------------------------------------------===//
-// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, NEG, NEGS
-
-//===-------------------------------
-// 1. The "shifted register" operands. Shared with logical insts.
-//===-------------------------------
-
-multiclass shift_operands<string prefix, string form> {
- def _asmoperand_i32 : AsmOperandClass {
- let Name = "Shift" # form # "i32";
- let RenderMethod = "addShiftOperands";
- let PredicateMethod = "isShift<A64SE::" # form # ", false>";
- let DiagnosticType = "AddSubRegShift32";
- }
-
- // Note that the operand type is intentionally i64 because the DAGCombiner
- // puts these into a canonical form.
- def _i32 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
- let ParserMatchClass
- = !cast<AsmOperandClass>(prefix # "_asmoperand_i32");
- let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
- let DecoderMethod = "Decode32BitShiftOperand";
- }
-
- def _asmoperand_i64 : AsmOperandClass {
- let Name = "Shift" # form # "i64";
- let RenderMethod = "addShiftOperands";
- let PredicateMethod = "isShift<A64SE::" # form # ", true>";
- let DiagnosticType = "AddSubRegShift64";
- }
-
- def _i64 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
- let ParserMatchClass
- = !cast<AsmOperandClass>(prefix # "_asmoperand_i64");
- let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
- }
-}
-
-defm lsl_operand : shift_operands<"lsl_operand", "LSL">;
-defm lsr_operand : shift_operands<"lsr_operand", "LSR">;
-defm asr_operand : shift_operands<"asr_operand", "ASR">;
-
-// Not used for add/sub, but defined here for completeness. The "logical
-// (shifted register)" instructions *do* have an ROR variant.
-defm ror_operand : shift_operands<"ror_operand", "ROR">;
-
-//===-------------------------------
-// 2. The basic 3.5-operand ADD/SUB/ADDS/SUBS instructions.
-//===-------------------------------
-
-// N.b. the commutable parameter is just !N. It will be first against the wall
-// when the revolution comes.
-multiclass addsub_shifts<string prefix, bit sf, bit op, bit s, bit commutable,
- string asmop, SDPatternOperator opfrag, ValueType ty,
- RegisterClass GPR, list<Register> defs> {
- let isCommutable = commutable, Defs = defs in {
- def _lsl : A64I_addsubshift<sf, op, s, 0b00,
- (outs GPR:$Rd),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
- [(set GPR:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
-
- def _lsr : A64I_addsubshift<sf, op, s, 0b01,
- (outs GPR:$Rd),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
- [(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
-
- def _asr : A64I_addsubshift<sf, op, s, 0b10,
- (outs GPR:$Rd),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
- [(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
- }
-
- def _noshift
- : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
- (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
- GPR:$Rm, 0)>;
-
- def : Pat<(opfrag ty:$Rn, ty:$Rm),
- (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
-}
-
-multiclass addsub_sizes<string prefix, bit op, bit s, bit commutable,
- string asmop, SDPatternOperator opfrag,
- list<Register> defs> {
- defm xxx : addsub_shifts<prefix # "xxx", 0b1, op, s,
- commutable, asmop, opfrag, i64, GPR64, defs>;
- defm www : addsub_shifts<prefix # "www", 0b0, op, s,
- commutable, asmop, opfrag, i32, GPR32, defs>;
-}
-
-
-defm ADD : addsub_sizes<"ADD", 0b0, 0b0, 0b1, "add", add, []>;
-defm SUB : addsub_sizes<"SUB", 0b1, 0b0, 0b0, "sub", sub, []>;
-
-defm ADDS : addsub_sizes<"ADDS", 0b0, 0b1, 0b1, "adds", addc, [NZCV]>;
-defm SUBS : addsub_sizes<"SUBS", 0b1, 0b1, 0b0, "subs", subc, [NZCV]>;
-
-//===-------------------------------
-// 1. The NEG/NEGS aliases
-//===-------------------------------
-
-multiclass neg_alias<Instruction INST, RegisterClass GPR, Register ZR,
- ValueType ty, Operand shift_operand, SDNode shiftop> {
- def : InstAlias<"neg $Rd, $Rm, $Imm6",
- (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
-
- def : Pat<(sub 0, (shiftop ty:$Rm, shift_operand:$Imm6)),
- (INST ZR, $Rm, shift_operand:$Imm6)>;
-}
-
-defm : neg_alias<SUBwww_lsl, GPR32, WZR, i32, lsl_operand_i32, shl>;
-defm : neg_alias<SUBwww_lsr, GPR32, WZR, i32, lsr_operand_i32, srl>;
-defm : neg_alias<SUBwww_asr, GPR32, WZR, i32, asr_operand_i32, sra>;
-def : InstAlias<"neg $Rd, $Rm", (SUBwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
-def : Pat<(sub 0, i32:$Rm), (SUBwww_lsl WZR, $Rm, 0)>;
-
-defm : neg_alias<SUBxxx_lsl, GPR64, XZR, i64, lsl_operand_i64, shl>;
-defm : neg_alias<SUBxxx_lsr, GPR64, XZR, i64, lsr_operand_i64, srl>;
-defm : neg_alias<SUBxxx_asr, GPR64, XZR, i64, asr_operand_i64, sra>;
-def : InstAlias<"neg $Rd, $Rm", (SUBxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
-def : Pat<(sub 0, i64:$Rm), (SUBxxx_lsl XZR, $Rm, 0)>;
-
-// NEGS doesn't get any patterns yet: defining multiple outputs means C++ has to
-// be involved.
-class negs_alias<Instruction INST, RegisterClass GPR,
- Register ZR, Operand shift_operand, SDNode shiftop>
- : InstAlias<"negs $Rd, $Rm, $Imm6",
- (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
-
-def : negs_alias<SUBSwww_lsl, GPR32, WZR, lsl_operand_i32, shl>;
-def : negs_alias<SUBSwww_lsr, GPR32, WZR, lsr_operand_i32, srl>;
-def : negs_alias<SUBSwww_asr, GPR32, WZR, asr_operand_i32, sra>;
-def : InstAlias<"negs $Rd, $Rm", (SUBSwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
-
-def : negs_alias<SUBSxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>;
-def : negs_alias<SUBSxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>;
-def : negs_alias<SUBSxxx_asr, GPR64, XZR, asr_operand_i64, sra>;
-def : InstAlias<"negs $Rd, $Rm", (SUBSxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
-
-//===-------------------------------
-// 1. The CMP/CMN aliases
-//===-------------------------------
-
-multiclass cmp_shifts<string prefix, bit sf, bit op, bit commutable,
- string asmop, SDPatternOperator opfrag, ValueType ty,
- RegisterClass GPR> {
- let isCommutable = commutable, Rd = 0b11111, Defs = [NZCV] in {
- def _lsl : A64I_addsubshift<sf, op, 0b1, 0b00,
- (outs),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
- [(set NZCV, (opfrag ty:$Rn, (shl ty:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteCMP, ReadCMP, ReadCMP]>;
-
- def _lsr : A64I_addsubshift<sf, op, 0b1, 0b01,
- (outs),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
- [(set NZCV, (opfrag ty:$Rn, (srl ty:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteCMP, ReadCMP, ReadCMP]>;
-
- def _asr : A64I_addsubshift<sf, op, 0b1, 0b10,
- (outs),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
- [(set NZCV, (opfrag ty:$Rn, (sra ty:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteCMP, ReadCMP, ReadCMP]>;
- }
-
- def _noshift
- : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
- (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
-
- def : Pat<(opfrag ty:$Rn, ty:$Rm),
- (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
-}
-
-defm CMPww : cmp_shifts<"CMPww", 0b0, 0b1, 0b0, "cmp", A64cmp, i32, GPR32>;
-defm CMPxx : cmp_shifts<"CMPxx", 0b1, 0b1, 0b0, "cmp", A64cmp, i64, GPR64>;
-
-defm CMNww : cmp_shifts<"CMNww", 0b0, 0b0, 0b1, "cmn", A64cmn, i32, GPR32>;
-defm CMNxx : cmp_shifts<"CMNxx", 0b1, 0b0, 0b1, "cmn", A64cmn, i64, GPR64>;
-
-//===----------------------------------------------------------------------===//
-// Add-subtract (with carry) instructions
-//===----------------------------------------------------------------------===//
-// Contains: ADC, ADCS, SBC, SBCS + aliases NGC, NGCS
-
-multiclass A64I_addsubcarrySizes<bit op, bit s, string asmop> {
- let Uses = [NZCV] in {
- def www : A64I_addsubcarry<0b0, op, s, 0b000000,
- (outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def xxx : A64I_addsubcarry<0b1, op, s, 0b000000,
- (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- }
-}
-
-let isCommutable = 1 in {
- defm ADC : A64I_addsubcarrySizes<0b0, 0b0, "adc">;
-}
-
-defm SBC : A64I_addsubcarrySizes<0b1, 0b0, "sbc">;
-
-let Defs = [NZCV] in {
- let isCommutable = 1 in {
- defm ADCS : A64I_addsubcarrySizes<0b0, 0b1, "adcs">;
- }
-
- defm SBCS : A64I_addsubcarrySizes<0b1, 0b1, "sbcs">;
-}
-
-def : InstAlias<"ngc $Rd, $Rm", (SBCwww GPR32:$Rd, WZR, GPR32:$Rm)>;
-def : InstAlias<"ngc $Rd, $Rm", (SBCxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
-def : InstAlias<"ngcs $Rd, $Rm", (SBCSwww GPR32:$Rd, WZR, GPR32:$Rm)>;
-def : InstAlias<"ngcs $Rd, $Rm", (SBCSxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
-
-// Note that adde and sube can form a chain longer than two (e.g. for 256-bit
-// addition). So the flag-setting instructions are appropriate.
-def : Pat<(adde i32:$Rn, i32:$Rm), (ADCSwww $Rn, $Rm)>;
-def : Pat<(adde i64:$Rn, i64:$Rm), (ADCSxxx $Rn, $Rm)>;
-def : Pat<(sube i32:$Rn, i32:$Rm), (SBCSwww $Rn, $Rm)>;
-def : Pat<(sube i64:$Rn, i64:$Rm), (SBCSxxx $Rn, $Rm)>;
-
-//===----------------------------------------------------------------------===//
-// Bitfield
-//===----------------------------------------------------------------------===//
-// Contains: SBFM, BFM, UBFM, [SU]XT[BHW], ASR, LSR, LSL, SBFI[ZX], BFI, BFXIL,
-// UBFIZ, UBFX
-
-// Because of the rather complicated nearly-overlapping aliases, the decoding of
-// this range of instructions is handled manually. The architectural
-// instructions are BFM, SBFM and UBFM but a disassembler should never produce
-// these.
-//
-// In the end, the best option was to use BFM instructions for decoding under
-// almost all circumstances, but to create aliasing *Instructions* for each of
-// the canonical forms and specify a completely custom decoder which would
-// substitute the correct MCInst as needed.
-//
-// This also simplifies instruction selection, parsing etc because the MCInsts
-// have a shape that's closer to their use in code.
-
-//===-------------------------------
-// 1. The architectural BFM instructions
-//===-------------------------------
-
-def uimm5_asmoperand : AsmOperandClass {
- let Name = "UImm5";
- let PredicateMethod = "isUImm<5>";
- let RenderMethod = "addImmOperands";
- let DiagnosticType = "UImm5";
-}
-
-def uimm6_asmoperand : AsmOperandClass {
- let Name = "UImm6";
- let PredicateMethod = "isUImm<6>";
- let RenderMethod = "addImmOperands";
- let DiagnosticType = "UImm6";
-}
-
-def bitfield32_imm : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 0 && Imm < 32; }]> {
- let ParserMatchClass = uimm5_asmoperand;
-
- let DecoderMethod = "DecodeBitfield32ImmOperand";
-}
-
-
-def bitfield64_imm : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> {
- let ParserMatchClass = uimm6_asmoperand;
-
- // Default decoder works in 64-bit case: the 6-bit field can take any value.
-}
-
-multiclass A64I_bitfieldSizes<bits<2> opc, string asmop> {
- def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
- (ins GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- let DecoderMethod = "DecodeBitfieldInstruction";
- }
-
- def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
- (ins GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- let DecoderMethod = "DecodeBitfieldInstruction";
- }
-}
-
-defm SBFM : A64I_bitfieldSizes<0b00, "sbfm">;
-defm UBFM : A64I_bitfieldSizes<0b10, "ubfm">;
-
-// BFM instructions modify the destination register rather than defining it
-// completely.
-def BFMwwii :
- A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
- (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
- "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]> {
- let DecoderMethod = "DecodeBitfieldInstruction";
- let Constraints = "$src = $Rd";
-}
-
-def BFMxxii :
- A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
- (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
- "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]> {
- let DecoderMethod = "DecodeBitfieldInstruction";
- let Constraints = "$src = $Rd";
-}
-
-
-//===-------------------------------
-// 2. Extend aliases to 64-bit dest
-//===-------------------------------
-
-// Unfortunately the extensions that end up as 64-bits cannot be handled by an
-// instruction alias: their syntax is (for example) "SXTB x0, w0", which needs
-// to be mapped to "SBFM x0, x0, #0, 7" (changing the class of Rn). InstAlias is
-// not capable of such a map as far as I'm aware
-
-// Note that these instructions are strictly more specific than the
-// BFM ones (in ImmR) so they can handle their own decoding.
-class A64I_bf_ext<bit sf, bits<2> opc, RegisterClass GPRDest, ValueType dty,
- string asmop, bits<6> imms, dag pattern>
- : A64I_bitfield<sf, opc, sf,
- (outs GPRDest:$Rd), (ins GPR32:$Rn),
- !strconcat(asmop, "\t$Rd, $Rn"),
- [(set dty:$Rd, pattern)], NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- let ImmR = 0b000000;
- let ImmS = imms;
-}
-
-// Signed extensions
-def SXTBxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtb", 7,
- (sext_inreg (anyext i32:$Rn), i8)>;
-def SXTBww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxtb", 7,
- (sext_inreg i32:$Rn, i8)>;
-def SXTHxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxth", 15,
- (sext_inreg (anyext i32:$Rn), i16)>;
-def SXTHww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxth", 15,
- (sext_inreg i32:$Rn, i16)>;
-def SXTWxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtw", 31, (sext i32:$Rn)>;
-
-// Unsigned extensions
-def UXTBww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxtb", 7,
- (and i32:$Rn, 255)>;
-def UXTHww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxth", 15,
- (and i32:$Rn, 65535)>;
-
-// The 64-bit unsigned variants are not strictly architectural but recommended
-// for consistency.
-let isAsmParserOnly = 1 in {
- def UXTBxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxtb", 7,
- (and (anyext i32:$Rn), 255)>;
- def UXTHxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxth", 15,
- (and (anyext i32:$Rn), 65535)>;
-}
-
-// Extra patterns for when the source register is actually 64-bits
-// too. There's no architectural difference here, it's just LLVM
-// shinanigans. There's no need for equivalent zero-extension patterns
-// because they'll already be caught by logical (immediate) matching.
-def : Pat<(sext_inreg i64:$Rn, i8),
- (SXTBxw (EXTRACT_SUBREG $Rn, sub_32))>;
-def : Pat<(sext_inreg i64:$Rn, i16),
- (SXTHxw (EXTRACT_SUBREG $Rn, sub_32))>;
-def : Pat<(sext_inreg i64:$Rn, i32),
- (SXTWxw (EXTRACT_SUBREG $Rn, sub_32))>;
-
-
-//===-------------------------------
-// 3. Aliases for ASR and LSR (the simple shifts)
-//===-------------------------------
-
-// These also handle their own decoding because ImmS being set makes
-// them take precedence over BFM.
-multiclass A64I_shift<bits<2> opc, string asmop, SDNode opnode> {
- def wwi : A64I_bitfield<0b0, opc, 0b0,
- (outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
- [(set i32:$Rd, (opnode i32:$Rn, bitfield32_imm:$ImmR))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- let ImmS = 31;
- }
-
- def xxi : A64I_bitfield<0b1, opc, 0b1,
- (outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
- [(set i64:$Rd, (opnode i64:$Rn, bitfield64_imm:$ImmR))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- let ImmS = 63;
- }
-
-}
-
-defm ASR : A64I_shift<0b00, "asr", sra>;
-defm LSR : A64I_shift<0b10, "lsr", srl>;
-
-//===-------------------------------
-// 4. Aliases for LSL
-//===-------------------------------
-
-// Unfortunately LSL and subsequent aliases are much more complicated. We need
-// to be able to say certain output instruction fields depend in a complex
-// manner on combinations of input assembly fields).
-//
-// MIOperandInfo *might* have been able to do it, but at the cost of
-// significantly more C++ code.
-
-// N.b. contrary to usual practice these operands store the shift rather than
-// the machine bits in an MCInst. The complexity overhead of consistency
-// outweighed the benefits in this case (custom asmparser, printer and selection
-// vs custom encoder).
-def bitfield32_lsl_imm : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
- let ParserMatchClass = uimm5_asmoperand;
- let EncoderMethod = "getBitfield32LSLOpValue";
-}
-
-def bitfield64_lsl_imm : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
- let ParserMatchClass = uimm6_asmoperand;
- let EncoderMethod = "getBitfield64LSLOpValue";
-}
-
-class A64I_bitfield_lsl<bit sf, RegisterClass GPR, ValueType ty,
- Operand operand>
- : A64I_bitfield<sf, 0b10, sf, (outs GPR:$Rd), (ins GPR:$Rn, operand:$FullImm),
- "lsl\t$Rd, $Rn, $FullImm",
- [(set ty:$Rd, (shl ty:$Rn, operand:$FullImm))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- bits<12> FullImm;
- let ImmR = FullImm{5-0};
- let ImmS = FullImm{11-6};
-
- // No disassembler allowed because it would overlap with BFM which does the
- // actual work.
- let isAsmParserOnly = 1;
-}
-
-def LSLwwi : A64I_bitfield_lsl<0b0, GPR32, i32, bitfield32_lsl_imm>;
-def LSLxxi : A64I_bitfield_lsl<0b1, GPR64, i64, bitfield64_lsl_imm>;
-
-//===-------------------------------
-// 5. Aliases for bitfield extract instructions
-//===-------------------------------
-
-def bfx32_width_asmoperand : AsmOperandClass {
- let Name = "BFX32Width";
- let PredicateMethod = "isBitfieldWidth<32>";
- let RenderMethod = "addBFXWidthOperands";
- let DiagnosticType = "Width32";
-}
-
-def bfx32_width : Operand<i64>, ImmLeaf<i64, [{ return true; }]> {
- let PrintMethod = "printBFXWidthOperand";
- let ParserMatchClass = bfx32_width_asmoperand;
-}
-
-def bfx64_width_asmoperand : AsmOperandClass {
- let Name = "BFX64Width";
- let PredicateMethod = "isBitfieldWidth<64>";
- let RenderMethod = "addBFXWidthOperands";
- let DiagnosticType = "Width64";
-}
-
-def bfx64_width : Operand<i64> {
- let PrintMethod = "printBFXWidthOperand";
- let ParserMatchClass = bfx64_width_asmoperand;
-}
-
-
-multiclass A64I_bitfield_extract<bits<2> opc, string asmop, SDNode op> {
- def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
- (ins GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
- [(set i32:$Rd, (op i32:$Rn, imm:$ImmR, imm:$ImmS))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- }
-
- def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
- (ins GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
- [(set i64:$Rd, (op i64:$Rn, imm:$ImmR, imm:$ImmS))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- }
-}
-
-defm SBFX : A64I_bitfield_extract<0b00, "sbfx", A64Sbfx>;
-defm UBFX : A64I_bitfield_extract<0b10, "ubfx", A64Ubfx>;
-
-// Again, variants based on BFM modify Rd so need it as an input too.
-def BFXILwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
- (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
- "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- let Constraints = "$src = $Rd";
-}
-
-def BFXILxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
- (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
- "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- let Constraints = "$src = $Rd";
-}
-
-// SBFX instructions can do a 1-instruction sign-extension of boolean values.
-def : Pat<(sext_inreg i64:$Rn, i1), (SBFXxxii $Rn, 0, 0)>;
-def : Pat<(sext_inreg i32:$Rn, i1), (SBFXwwii $Rn, 0, 0)>;
-def : Pat<(i64 (sext_inreg (anyext i32:$Rn), i1)),
- (SBFXxxii (SUBREG_TO_REG (i64 0), $Rn, sub_32), 0, 0)>;
-
-// UBFX makes sense as an implementation of a 64-bit zero-extension too. Could
-// use either 64-bit or 32-bit variant, but 32-bit might be more efficient.
-def : Pat<(i64 (zext i32:$Rn)), (SUBREG_TO_REG (i64 0), (UBFXwwii $Rn, 0, 31),
- sub_32)>;
-
-//===-------------------------------
-// 6. Aliases for bitfield insert instructions
-//===-------------------------------
-
-def bfi32_lsb_asmoperand : AsmOperandClass {
- let Name = "BFI32LSB";
- let PredicateMethod = "isUImm<5>";
- let RenderMethod = "addBFILSBOperands<32>";
- let DiagnosticType = "UImm5";
-}
-
-def bfi32_lsb : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
- let PrintMethod = "printBFILSBOperand<32>";
- let ParserMatchClass = bfi32_lsb_asmoperand;
-}
-
-def bfi64_lsb_asmoperand : AsmOperandClass {
- let Name = "BFI64LSB";
- let PredicateMethod = "isUImm<6>";
- let RenderMethod = "addBFILSBOperands<64>";
- let DiagnosticType = "UImm6";
-}
-
-def bfi64_lsb : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
- let PrintMethod = "printBFILSBOperand<64>";
- let ParserMatchClass = bfi64_lsb_asmoperand;
-}
-
-// Width verification is performed during conversion so width operand can be
-// shared between 32/64-bit cases. Still needed for the print method though
-// because ImmR encodes "width - 1".
-def bfi32_width_asmoperand : AsmOperandClass {
- let Name = "BFI32Width";
- let PredicateMethod = "isBitfieldWidth<32>";
- let RenderMethod = "addBFIWidthOperands";
- let DiagnosticType = "Width32";
-}
-
-def bfi32_width : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 32; }]> {
- let PrintMethod = "printBFIWidthOperand";
- let ParserMatchClass = bfi32_width_asmoperand;
-}
-
-def bfi64_width_asmoperand : AsmOperandClass {
- let Name = "BFI64Width";
- let PredicateMethod = "isBitfieldWidth<64>";
- let RenderMethod = "addBFIWidthOperands";
- let DiagnosticType = "Width64";
-}
-
-def bfi64_width : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 64; }]> {
- let PrintMethod = "printBFIWidthOperand";
- let ParserMatchClass = bfi64_width_asmoperand;
-}
-
-multiclass A64I_bitfield_insert<bits<2> opc, string asmop> {
- def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
- (ins GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- }
-
- def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
- (ins GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
- !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- }
-}
-
-defm SBFIZ : A64I_bitfield_insert<0b00, "sbfiz">;
-defm UBFIZ : A64I_bitfield_insert<0b10, "ubfiz">;
-
-
-def BFIwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
- (ins GPR32:$src, GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
- "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- let Constraints = "$src = $Rd";
-}
-
-def BFIxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
- (ins GPR64:$src, GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
- "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]> {
- // As above, no disassembler allowed.
- let isAsmParserOnly = 1;
- let Constraints = "$src = $Rd";
-}
-
-//===----------------------------------------------------------------------===//
-// Compare and branch (immediate)
-//===----------------------------------------------------------------------===//
-// Contains: CBZ, CBNZ
-
-class label_asmoperand<int width, int scale> : AsmOperandClass {
- let Name = "Label" # width # "_" # scale;
- let PredicateMethod = "isLabel<" # width # "," # scale # ">";
- let RenderMethod = "addLabelOperands<" # width # ", " # scale # ">";
- let DiagnosticType = "Label";
-}
-
-def label_wid19_scal4_asmoperand : label_asmoperand<19, 4>;
-
-// All conditional immediate branches are the same really: 19 signed bits scaled
-// by the instruction-size (4).
-def bcc_target : Operand<OtherVT> {
- // This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
- let ParserMatchClass = label_wid19_scal4_asmoperand;
- let PrintMethod = "printLabelOperand<19, 4>";
- let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_condbr>";
- let OperandType = "OPERAND_PCREL";
-}
-
-multiclass cmpbr_sizes<bit op, string asmop, ImmLeaf SETOP> {
- let isBranch = 1, isTerminator = 1 in {
- def x : A64I_cmpbr<0b1, op,
- (outs),
- (ins GPR64:$Rt, bcc_target:$Label),
- !strconcat(asmop,"\t$Rt, $Label"),
- [(A64br_cc (A64cmp i64:$Rt, 0), SETOP, bb:$Label)],
- NoItinerary>,
- Sched<[WriteBr, ReadBr]>;
-
- def w : A64I_cmpbr<0b0, op,
- (outs),
- (ins GPR32:$Rt, bcc_target:$Label),
- !strconcat(asmop,"\t$Rt, $Label"),
- [(A64br_cc (A64cmp i32:$Rt, 0), SETOP, bb:$Label)],
- NoItinerary>,
- Sched<[WriteBr, ReadBr]>;
- }
-}
-
-defm CBZ : cmpbr_sizes<0b0, "cbz", ImmLeaf<i32, [{
- return Imm == A64CC::EQ;
-}]> >;
-defm CBNZ : cmpbr_sizes<0b1, "cbnz", ImmLeaf<i32, [{
- return Imm == A64CC::NE;
-}]> >;
-
-//===----------------------------------------------------------------------===//
-// Conditional branch (immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: B.cc
-
-def cond_code_asmoperand : AsmOperandClass {
- let Name = "CondCode";
- let DiagnosticType = "CondCode";
-}
-
-def cond_code : Operand<i32>, ImmLeaf<i32, [{
- return Imm >= 0 && Imm <= 15;
-}]> {
- let PrintMethod = "printCondCodeOperand";
- let ParserMatchClass = cond_code_asmoperand;
-}
-
-def Bcc : A64I_condbr<0b0, 0b0, (outs),
- (ins cond_code:$Cond, bcc_target:$Label),
- "b.$Cond $Label", [(A64br_cc NZCV, (i32 imm:$Cond), bb:$Label)],
- NoItinerary>,
- Sched<[WriteBr]> {
- let Uses = [NZCV];
- let isBranch = 1;
- let isTerminator = 1;
-}
-
-//===----------------------------------------------------------------------===//
-// Conditional compare (immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: CCMN, CCMP
-
-def uimm4_asmoperand : AsmOperandClass {
- let Name = "UImm4";
- let PredicateMethod = "isUImm<4>";
- let RenderMethod = "addImmOperands";
- let DiagnosticType = "UImm4";
-}
-
-def uimm4 : Operand<i32> {
- let ParserMatchClass = uimm4_asmoperand;
-}
-
-def uimm5 : Operand<i32> {
- let ParserMatchClass = uimm5_asmoperand;
-}
-
-// The only difference between this operand and the one for instructions like
-// B.cc is that it's parsed manually. The other get parsed implicitly as part of
-// the mnemonic handling.
-def cond_code_op_asmoperand : AsmOperandClass {
- let Name = "CondCodeOp";
- let RenderMethod = "addCondCodeOperands";
- let PredicateMethod = "isCondCode";
- let ParserMethod = "ParseCondCodeOperand";
- let DiagnosticType = "CondCode";
-}
-
-def cond_code_op : Operand<i32> {
- let PrintMethod = "printCondCodeOperand";
- let ParserMatchClass = cond_code_op_asmoperand;
-}
-
-class A64I_condcmpimmImpl<bit sf, bit op, RegisterClass GPR, string asmop>
- : A64I_condcmpimm<sf, op, 0b0, 0b0, 0b1, (outs),
- (ins GPR:$Rn, uimm5:$UImm5, uimm4:$NZCVImm, cond_code_op:$Cond),
- !strconcat(asmop, "\t$Rn, $UImm5, $NZCVImm, $Cond"),
- [], NoItinerary>,
- Sched<[WriteCMP, ReadCMP]> {
- let Defs = [NZCV];
-}
-
-def CCMNwi : A64I_condcmpimmImpl<0b0, 0b0, GPR32, "ccmn">;
-def CCMNxi : A64I_condcmpimmImpl<0b1, 0b0, GPR64, "ccmn">;
-def CCMPwi : A64I_condcmpimmImpl<0b0, 0b1, GPR32, "ccmp">;
-def CCMPxi : A64I_condcmpimmImpl<0b1, 0b1, GPR64, "ccmp">;
-
-//===----------------------------------------------------------------------===//
-// Conditional compare (register) instructions
-//===----------------------------------------------------------------------===//
-// Contains: CCMN, CCMP
-
-class A64I_condcmpregImpl<bit sf, bit op, RegisterClass GPR, string asmop>
- : A64I_condcmpreg<sf, op, 0b0, 0b0, 0b1,
- (outs),
- (ins GPR:$Rn, GPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
- !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
- [], NoItinerary>,
- Sched<[WriteCMP, ReadCMP, ReadCMP]> {
- let Defs = [NZCV];
-}
-
-def CCMNww : A64I_condcmpregImpl<0b0, 0b0, GPR32, "ccmn">;
-def CCMNxx : A64I_condcmpregImpl<0b1, 0b0, GPR64, "ccmn">;
-def CCMPww : A64I_condcmpregImpl<0b0, 0b1, GPR32, "ccmp">;
-def CCMPxx : A64I_condcmpregImpl<0b1, 0b1, GPR64, "ccmp">;
-
-//===----------------------------------------------------------------------===//
-// Conditional select instructions
-//===----------------------------------------------------------------------===//
-// Contains: CSEL, CSINC, CSINV, CSNEG + aliases CSET, CSETM, CINC, CINV, CNEG
-
-// Condition code which is encoded as the inversion (semantically rather than
-// bitwise) in the instruction.
-def inv_cond_code_op_asmoperand : AsmOperandClass {
- let Name = "InvCondCodeOp";
- let RenderMethod = "addInvCondCodeOperands";
- let PredicateMethod = "isCondCode";
- let ParserMethod = "ParseCondCodeOperand";
- let DiagnosticType = "CondCode";
-}
-
-def inv_cond_code_op : Operand<i32> {
- let ParserMatchClass = inv_cond_code_op_asmoperand;
- let PrintMethod = "printInverseCondCodeOperand";
-}
-
-// Having a separate operand for the selectable use-case is debatable, but gives
-// consistency with cond_code.
-def inv_cond_XFORM : SDNodeXForm<imm, [{
- A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(N->getZExtValue());
- return CurDAG->getTargetConstant(A64InvertCondCode(CC), MVT::i32);
-}]>;
-
-def inv_cond_code
- : ImmLeaf<i32, [{ return Imm >= 0 && Imm <= 15; }], inv_cond_XFORM>;
-
-
-multiclass A64I_condselSizes<bit op, bits<2> op2, string asmop,
- SDPatternOperator select> {
- let Uses = [NZCV] in {
- def wwwc : A64I_condsel<0b0, op, 0b0, op2,
- (outs GPR32:$Rd),
- (ins GPR32:$Rn, GPR32:$Rm, cond_code_op:$Cond),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
- [(set i32:$Rd, (select i32:$Rn, i32:$Rm))],
- NoItinerary>,
- Sched<[WriteCMP, ReadCMP, ReadCMP]>;
-
-
- def xxxc : A64I_condsel<0b1, op, 0b0, op2,
- (outs GPR64:$Rd),
- (ins GPR64:$Rn, GPR64:$Rm, cond_code_op:$Cond),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
- [(set i64:$Rd, (select i64:$Rn, i64:$Rm))],
- NoItinerary>,
- Sched<[WriteCMP, ReadCMP, ReadCMP]>;
- }
-}
-
-def simple_select
- : PatFrag<(ops node:$lhs, node:$rhs),
- (A64select_cc NZCV, node:$lhs, node:$rhs, (i32 imm:$Cond))>;
-
-class complex_select<SDPatternOperator opnode>
- : PatFrag<(ops node:$lhs, node:$rhs),
- (A64select_cc NZCV, node:$lhs, (opnode node:$rhs), (i32 imm:$Cond))>;
-
-
-defm CSEL : A64I_condselSizes<0b0, 0b00, "csel", simple_select>;
-defm CSINC : A64I_condselSizes<0b0, 0b01, "csinc",
- complex_select<PatFrag<(ops node:$val),
- (add node:$val, 1)>>>;
-defm CSINV : A64I_condselSizes<0b1, 0b00, "csinv", complex_select<not>>;
-defm CSNEG : A64I_condselSizes<0b1, 0b01, "csneg", complex_select<ineg>>;
-
-// Now the instruction aliases, which fit nicely into LLVM's model:
-
-def : InstAlias<"cset $Rd, $Cond",
- (CSINCwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
-def : InstAlias<"cset $Rd, $Cond",
- (CSINCxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
-def : InstAlias<"csetm $Rd, $Cond",
- (CSINVwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
-def : InstAlias<"csetm $Rd, $Cond",
- (CSINVxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
-def : InstAlias<"cinc $Rd, $Rn, $Cond",
- (CSINCwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
-def : InstAlias<"cinc $Rd, $Rn, $Cond",
- (CSINCxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
-def : InstAlias<"cinv $Rd, $Rn, $Cond",
- (CSINVwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
-def : InstAlias<"cinv $Rd, $Rn, $Cond",
- (CSINVxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
-def : InstAlias<"cneg $Rd, $Rn, $Cond",
- (CSNEGwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
-def : InstAlias<"cneg $Rd, $Rn, $Cond",
- (CSNEGxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
-
-// Finally some helper patterns.
-
-// For CSET (a.k.a. zero-extension of icmp)
-def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
- (CSINCwwwc WZR, WZR, cond_code:$Cond)>;
-def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
- (CSINCwwwc WZR, WZR, inv_cond_code:$Cond)>;
-
-def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
- (CSINCxxxc XZR, XZR, cond_code:$Cond)>;
-def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
- (CSINCxxxc XZR, XZR, inv_cond_code:$Cond)>;
-
-// For CSETM (a.k.a. sign-extension of icmp)
-def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
- (CSINVwwwc WZR, WZR, cond_code:$Cond)>;
-def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
- (CSINVwwwc WZR, WZR, inv_cond_code:$Cond)>;
-
-def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
- (CSINVxxxc XZR, XZR, cond_code:$Cond)>;
-def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
- (CSINVxxxc XZR, XZR, inv_cond_code:$Cond)>;
-
-// CINC, CINV and CNEG get dealt with automatically, which leaves the issue of
-// commutativity. The instructions are to complex for isCommutable to be used,
-// so we have to create the patterns manually:
-
-// No commutable pattern for CSEL since the commuted version is isomorphic.
-
-// CSINC
-def :Pat<(A64select_cc NZCV, (add i32:$Rm, 1), i32:$Rn, inv_cond_code:$Cond),
- (CSINCwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
-def :Pat<(A64select_cc NZCV, (add i64:$Rm, 1), i64:$Rn, inv_cond_code:$Cond),
- (CSINCxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
-
-// CSINV
-def :Pat<(A64select_cc NZCV, (not i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
- (CSINVwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
-def :Pat<(A64select_cc NZCV, (not i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
- (CSINVxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
-
-// CSNEG
-def :Pat<(A64select_cc NZCV, (ineg i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
- (CSNEGwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
-def :Pat<(A64select_cc NZCV, (ineg i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
- (CSNEGxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
-
-//===----------------------------------------------------------------------===//
-// Data Processing (1 source) instructions
-//===----------------------------------------------------------------------===//
-// Contains: RBIT, REV16, REV, REV32, CLZ, CLS.
-
-// We define an unary operator which always fails. We will use this to
-// define unary operators that cannot be matched.
-
-class A64I_dp_1src_impl<bit sf, bits<6> opcode, string asmop,
- list<dag> patterns, RegisterClass GPRrc,
- InstrItinClass itin>:
- A64I_dp_1src<sf,
- 0,
- 0b00000,
- opcode,
- !strconcat(asmop, "\t$Rd, $Rn"),
- (outs GPRrc:$Rd),
- (ins GPRrc:$Rn),
- patterns,
- itin>,
- Sched<[WriteALU, ReadALU]>;
-
-multiclass A64I_dp_1src <bits<6> opcode, string asmop> {
- let hasSideEffects = 0 in {
- def ww : A64I_dp_1src_impl<0b0, opcode, asmop, [], GPR32, NoItinerary>;
- def xx : A64I_dp_1src_impl<0b1, opcode, asmop, [], GPR64, NoItinerary>;
- }
-}
-
-defm RBIT : A64I_dp_1src<0b000000, "rbit">;
-defm CLS : A64I_dp_1src<0b000101, "cls">;
-defm CLZ : A64I_dp_1src<0b000100, "clz">;
-
-def : Pat<(ctlz i32:$Rn), (CLZww $Rn)>;
-def : Pat<(ctlz i64:$Rn), (CLZxx $Rn)>;
-def : Pat<(ctlz_zero_undef i32:$Rn), (CLZww $Rn)>;
-def : Pat<(ctlz_zero_undef i64:$Rn), (CLZxx $Rn)>;
-
-def : Pat<(cttz i32:$Rn), (CLZww (RBITww $Rn))>;
-def : Pat<(cttz i64:$Rn), (CLZxx (RBITxx $Rn))>;
-def : Pat<(cttz_zero_undef i32:$Rn), (CLZww (RBITww $Rn))>;
-def : Pat<(cttz_zero_undef i64:$Rn), (CLZxx (RBITxx $Rn))>;
-
-
-def REVww : A64I_dp_1src_impl<0b0, 0b000010, "rev",
- [(set i32:$Rd, (bswap i32:$Rn))],
- GPR32, NoItinerary>;
-def REVxx : A64I_dp_1src_impl<0b1, 0b000011, "rev",
- [(set i64:$Rd, (bswap i64:$Rn))],
- GPR64, NoItinerary>;
-def REV32xx : A64I_dp_1src_impl<0b1, 0b000010, "rev32",
- [(set i64:$Rd, (bswap (rotr i64:$Rn, (i64 32))))],
- GPR64, NoItinerary>;
-def REV16ww : A64I_dp_1src_impl<0b0, 0b000001, "rev16",
- [(set i32:$Rd, (bswap (rotr i32:$Rn, (i64 16))))],
- GPR32,
- NoItinerary>;
-def REV16xx : A64I_dp_1src_impl<0b1, 0b000001, "rev16", [], GPR64, NoItinerary>;
-
-//===----------------------------------------------------------------------===//
-// Data Processing (2 sources) instructions
-//===----------------------------------------------------------------------===//
-// Contains: CRC32C?[BHWX], UDIV, SDIV, LSLV, LSRV, ASRV, RORV + aliases LSL,
-// LSR, ASR, ROR
-
-
-class dp_2src_impl<bit sf, bits<6> opcode, string asmop, list<dag> patterns,
- RegisterClass GPRsp,
- InstrItinClass itin>:
- A64I_dp_2src<sf,
- opcode,
- 0,
- !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
- (outs GPRsp:$Rd),
- (ins GPRsp:$Rn, GPRsp:$Rm),
- patterns,
- itin>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
-multiclass dp_2src_crc<bit c, string asmop> {
- def B_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 0},
- !strconcat(asmop, "b"), [], GPR32, NoItinerary>;
- def H_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 1},
- !strconcat(asmop, "h"), [], GPR32, NoItinerary>;
- def W_www : dp_2src_impl<0b0, {0, 1, 0, c, 1, 0},
- !strconcat(asmop, "w"), [], GPR32, NoItinerary>;
- def X_wwx : A64I_dp_2src<0b1, {0, 1, 0, c, 1, 1}, 0b0,
- !strconcat(asmop, "x\t$Rd, $Rn, $Rm"),
- (outs GPR32:$Rd), (ins GPR32:$Rn, GPR64:$Rm), [],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-}
-
-multiclass dp_2src_zext <bits<6> opcode, string asmop, SDPatternOperator op> {
- def www : dp_2src_impl<0b0,
- opcode,
- asmop,
- [(set i32:$Rd,
- (op i32:$Rn, (i64 (zext i32:$Rm))))],
- GPR32,
- NoItinerary>;
- def xxx : dp_2src_impl<0b1,
- opcode,
- asmop,
- [(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
- GPR64,
- NoItinerary>;
-}
-
-
-multiclass dp_2src <bits<6> opcode, string asmop, SDPatternOperator op> {
- def www : dp_2src_impl<0b0,
- opcode,
- asmop,
- [(set i32:$Rd, (op i32:$Rn, i32:$Rm))],
- GPR32,
- NoItinerary>;
- def xxx : dp_2src_impl<0b1,
- opcode,
- asmop,
- [(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
- GPR64,
- NoItinerary>;
-}
-
-// Here we define the data processing 2 source instructions.
-defm CRC32 : dp_2src_crc<0b0, "crc32">;
-defm CRC32C : dp_2src_crc<0b1, "crc32c">;
-
-let SchedRW = [WriteDiv, ReadDiv, ReadDiv] in {
- defm UDIV : dp_2src<0b000010, "udiv", udiv>;
- defm SDIV : dp_2src<0b000011, "sdiv", sdiv>;
-}
-
-let SchedRW = [WriteALUs, ReadALU, ReadALU] in {
- defm LSLV : dp_2src_zext<0b001000, "lsl", shl>;
- defm LSRV : dp_2src_zext<0b001001, "lsr", srl>;
- defm ASRV : dp_2src_zext<0b001010, "asr", sra>;
- defm RORV : dp_2src_zext<0b001011, "ror", rotr>;
-}
-
-// Extra patterns for an incoming 64-bit value for a 32-bit
-// operation. Since the LLVM operations are undefined (as in C) if the
-// RHS is out of range, it's perfectly permissible to discard the high
-// bits of the GPR64.
-def : Pat<(shl i32:$Rn, i64:$Rm),
- (LSLVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
-def : Pat<(srl i32:$Rn, i64:$Rm),
- (LSRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
-def : Pat<(sra i32:$Rn, i64:$Rm),
- (ASRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
-def : Pat<(rotr i32:$Rn, i64:$Rm),
- (RORVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
-
-// Here we define the aliases for the data processing 2 source instructions.
-def LSL_mnemonic : MnemonicAlias<"lslv", "lsl">;
-def LSR_mnemonic : MnemonicAlias<"lsrv", "lsr">;
-def ASR_menmonic : MnemonicAlias<"asrv", "asr">;
-def ROR_menmonic : MnemonicAlias<"rorv", "ror">;
-
-//===----------------------------------------------------------------------===//
-// Data Processing (3 sources) instructions
-//===----------------------------------------------------------------------===//
-// Contains: MADD, MSUB, SMADDL, SMSUBL, SMULH, UMADDL, UMSUBL, UMULH
-// + aliases MUL, MNEG, SMULL, SMNEGL, UMULL, UMNEGL
-
-class A64I_dp3_4operand<bit sf, bits<6> opcode, RegisterClass AccReg,
- ValueType AccTy, RegisterClass SrcReg,
- string asmop, dag pattern>
- : A64I_dp3<sf, opcode,
- (outs AccReg:$Rd), (ins SrcReg:$Rn, SrcReg:$Rm, AccReg:$Ra),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Ra"),
- [(set AccTy:$Rd, pattern)], NoItinerary>,
- Sched<[WriteMAC, ReadMAC, ReadMAC, ReadMAC]> {
- bits<5> Ra;
- let Inst{14-10} = Ra;
-
- RegisterClass AccGPR = AccReg;
- RegisterClass SrcGPR = SrcReg;
-}
-
-def MADDwwww : A64I_dp3_4operand<0b0, 0b000000, GPR32, i32, GPR32, "madd",
- (add i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
-def MADDxxxx : A64I_dp3_4operand<0b1, 0b000000, GPR64, i64, GPR64, "madd",
- (add i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
-
-def MSUBwwww : A64I_dp3_4operand<0b0, 0b000001, GPR32, i32, GPR32, "msub",
- (sub i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
-def MSUBxxxx : A64I_dp3_4operand<0b1, 0b000001, GPR64, i64, GPR64, "msub",
- (sub i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
-
-def SMADDLxwwx : A64I_dp3_4operand<0b1, 0b000010, GPR64, i64, GPR32, "smaddl",
- (add i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
-def SMSUBLxwwx : A64I_dp3_4operand<0b1, 0b000011, GPR64, i64, GPR32, "smsubl",
- (sub i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
-
-def UMADDLxwwx : A64I_dp3_4operand<0b1, 0b001010, GPR64, i64, GPR32, "umaddl",
- (add i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
-def UMSUBLxwwx : A64I_dp3_4operand<0b1, 0b001011, GPR64, i64, GPR32, "umsubl",
- (sub i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
-
-let isCommutable = 1, PostEncoderMethod = "fixMulHigh" in {
- def UMULHxxx : A64I_dp3<0b1, 0b001100, (outs GPR64:$Rd),
- (ins GPR64:$Rn, GPR64:$Rm),
- "umulh\t$Rd, $Rn, $Rm",
- [(set i64:$Rd, (mulhu i64:$Rn, i64:$Rm))],
- NoItinerary>,
- Sched<[WriteMAC, ReadMAC, ReadMAC]>;
-
- def SMULHxxx : A64I_dp3<0b1, 0b000100, (outs GPR64:$Rd),
- (ins GPR64:$Rn, GPR64:$Rm),
- "smulh\t$Rd, $Rn, $Rm",
- [(set i64:$Rd, (mulhs i64:$Rn, i64:$Rm))],
- NoItinerary>,
- Sched<[WriteMAC, ReadMAC, ReadMAC]>;
-}
-
-multiclass A64I_dp3_3operand<string asmop, A64I_dp3_4operand INST,
- Register ZR, dag pattern> {
- def : InstAlias<asmop # " $Rd, $Rn, $Rm",
- (INST INST.AccGPR:$Rd, INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>;
-
- def : Pat<pattern, (INST $Rn, $Rm, ZR)>;
-}
-
-defm : A64I_dp3_3operand<"mul", MADDwwww, WZR, (mul i32:$Rn, i32:$Rm)>;
-defm : A64I_dp3_3operand<"mul", MADDxxxx, XZR, (mul i64:$Rn, i64:$Rm)>;
-
-defm : A64I_dp3_3operand<"mneg", MSUBwwww, WZR,
- (sub 0, (mul i32:$Rn, i32:$Rm))>;
-defm : A64I_dp3_3operand<"mneg", MSUBxxxx, XZR,
- (sub 0, (mul i64:$Rn, i64:$Rm))>;
-
-defm : A64I_dp3_3operand<"smull", SMADDLxwwx, XZR,
- (mul (i64 (sext i32:$Rn)), (sext i32:$Rm))>;
-defm : A64I_dp3_3operand<"smnegl", SMSUBLxwwx, XZR,
- (sub 0, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
-
-defm : A64I_dp3_3operand<"umull", UMADDLxwwx, XZR,
- (mul (i64 (zext i32:$Rn)), (zext i32:$Rm))>;
-defm : A64I_dp3_3operand<"umnegl", UMSUBLxwwx, XZR,
- (sub 0, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
-
-
-//===----------------------------------------------------------------------===//
-// Exception generation
-//===----------------------------------------------------------------------===//
-// Contains: SVC, HVC, SMC, BRK, HLT, DCPS1, DCPS2, DCPS3
-
-def uimm16_asmoperand : AsmOperandClass {
- let Name = "UImm16";
- let PredicateMethod = "isUImm<16>";
- let RenderMethod = "addImmOperands";
- let DiagnosticType = "UImm16";
-}
-
-def uimm16 : Operand<i32> {
- let ParserMatchClass = uimm16_asmoperand;
-}
-
-class A64I_exceptImpl<bits<3> opc, bits<2> ll, string asmop>
- : A64I_exception<opc, 0b000, ll, (outs), (ins uimm16:$UImm16),
- !strconcat(asmop, "\t$UImm16"), [], NoItinerary>,
- Sched<[WriteBr]> {
- let isBranch = 1;
- let isTerminator = 1;
-}
-
-def SVCi : A64I_exceptImpl<0b000, 0b01, "svc">;
-def HVCi : A64I_exceptImpl<0b000, 0b10, "hvc">;
-def SMCi : A64I_exceptImpl<0b000, 0b11, "smc">;
-def BRKi : A64I_exceptImpl<0b001, 0b00, "brk">;
-def HLTi : A64I_exceptImpl<0b010, 0b00, "hlt">;
-
-def DCPS1i : A64I_exceptImpl<0b101, 0b01, "dcps1">;
-def DCPS2i : A64I_exceptImpl<0b101, 0b10, "dcps2">;
-def DCPS3i : A64I_exceptImpl<0b101, 0b11, "dcps3">;
-
-// The immediate is optional for the DCPS instructions, defaulting to 0.
-def : InstAlias<"dcps1", (DCPS1i 0)>;
-def : InstAlias<"dcps2", (DCPS2i 0)>;
-def : InstAlias<"dcps3", (DCPS3i 0)>;
-
-//===----------------------------------------------------------------------===//
-// Extract (immediate)
-//===----------------------------------------------------------------------===//
-// Contains: EXTR + alias ROR
-
-def EXTRwwwi : A64I_extract<0b0, 0b000, 0b0,
- (outs GPR32:$Rd),
- (ins GPR32:$Rn, GPR32:$Rm, bitfield32_imm:$LSB),
- "extr\t$Rd, $Rn, $Rm, $LSB",
- [(set i32:$Rd,
- (A64Extr i32:$Rn, i32:$Rm, imm:$LSB))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-def EXTRxxxi : A64I_extract<0b1, 0b000, 0b1,
- (outs GPR64:$Rd),
- (ins GPR64:$Rn, GPR64:$Rm, bitfield64_imm:$LSB),
- "extr\t$Rd, $Rn, $Rm, $LSB",
- [(set i64:$Rd,
- (A64Extr i64:$Rn, i64:$Rm, imm:$LSB))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
-def : InstAlias<"ror $Rd, $Rs, $LSB",
- (EXTRwwwi GPR32:$Rd, GPR32:$Rs, GPR32:$Rs, bitfield32_imm:$LSB)>;
-def : InstAlias<"ror $Rd, $Rs, $LSB",
- (EXTRxxxi GPR64:$Rd, GPR64:$Rs, GPR64:$Rs, bitfield64_imm:$LSB)>;
-
-def : Pat<(rotr i32:$Rn, bitfield32_imm:$LSB),
- (EXTRwwwi $Rn, $Rn, bitfield32_imm:$LSB)>;
-def : Pat<(rotr i64:$Rn, bitfield64_imm:$LSB),
- (EXTRxxxi $Rn, $Rn, bitfield64_imm:$LSB)>;
-
-//===----------------------------------------------------------------------===//
-// Floating-point compare instructions
-//===----------------------------------------------------------------------===//
-// Contains: FCMP, FCMPE
-
-def fpzero_asmoperand : AsmOperandClass {
- let Name = "FPZero";
- let ParserMethod = "ParseFPImmOperand";
- let DiagnosticType = "FPZero";
-}
-
-def fpz32 : Operand<f32>,
- ComplexPattern<f32, 1, "SelectFPZeroOperand", [fpimm]> {
- let ParserMatchClass = fpzero_asmoperand;
- let PrintMethod = "printFPZeroOperand";
- let DecoderMethod = "DecodeFPZeroOperand";
-}
-
-def fpz64 : Operand<f64>,
- ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> {
- let ParserMatchClass = fpzero_asmoperand;
- let PrintMethod = "printFPZeroOperand";
- let DecoderMethod = "DecodeFPZeroOperand";
-}
-
-def fpz64movi : Operand<i64>,
- ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> {
- let ParserMatchClass = fpzero_asmoperand;
- let PrintMethod = "printFPZeroOperand";
- let DecoderMethod = "DecodeFPZeroOperand";
-}
-
-multiclass A64I_fpcmpSignal<bits<2> type, bit imm, dag ins, dag pattern> {
- def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0},
- (outs), ins, "fcmp\t$Rn, $Rm", [pattern],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU, ReadFPALU]> {
- let Defs = [NZCV];
- }
-
- def _sig : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b1, imm, 0b0, 0b0, 0b0},
- (outs), ins, "fcmpe\t$Rn, $Rm", [], NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU, ReadFPALU]> {
- let Defs = [NZCV];
- }
-}
-
-defm FCMPss : A64I_fpcmpSignal<0b00, 0b0, (ins FPR32:$Rn, FPR32:$Rm),
- (set NZCV, (A64cmp f32:$Rn, f32:$Rm))>;
-defm FCMPdd : A64I_fpcmpSignal<0b01, 0b0, (ins FPR64:$Rn, FPR64:$Rm),
- (set NZCV, (A64cmp f64:$Rn, f64:$Rm))>;
-
-// What would be Rm should be written as 0; note that even though it's called
-// "$Rm" here to fit in with the InstrFormats, it's actually an immediate.
-defm FCMPsi : A64I_fpcmpSignal<0b00, 0b1, (ins FPR32:$Rn, fpz32:$Rm),
- (set NZCV, (A64cmp f32:$Rn, fpz32:$Rm))>;
-
-defm FCMPdi : A64I_fpcmpSignal<0b01, 0b1, (ins FPR64:$Rn, fpz64:$Rm),
- (set NZCV, (A64cmp f64:$Rn, fpz64:$Rm))>;
-
-
-//===----------------------------------------------------------------------===//
-// Floating-point conditional compare instructions
-//===----------------------------------------------------------------------===//
-// Contains: FCCMP, FCCMPE
-
-class A64I_fpccmpImpl<bits<2> type, bit op, RegisterClass FPR, string asmop>
- : A64I_fpccmp<0b0, 0b0, type, op,
- (outs),
- (ins FPR:$Rn, FPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
- !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
- [], NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU, ReadFPALU]> {
- let Defs = [NZCV];
-}
-
-def FCCMPss : A64I_fpccmpImpl<0b00, 0b0, FPR32, "fccmp">;
-def FCCMPEss : A64I_fpccmpImpl<0b00, 0b1, FPR32, "fccmpe">;
-def FCCMPdd : A64I_fpccmpImpl<0b01, 0b0, FPR64, "fccmp">;
-def FCCMPEdd : A64I_fpccmpImpl<0b01, 0b1, FPR64, "fccmpe">;
-
-//===----------------------------------------------------------------------===//
-// Floating-point conditional select instructions
-//===----------------------------------------------------------------------===//
-// Contains: FCSEL
-
-let Uses = [NZCV] in {
- def FCSELsssc : A64I_fpcondsel<0b0, 0b0, 0b00, (outs FPR32:$Rd),
- (ins FPR32:$Rn, FPR32:$Rm, cond_code_op:$Cond),
- "fcsel\t$Rd, $Rn, $Rm, $Cond",
- [(set f32:$Rd,
- (simple_select f32:$Rn, f32:$Rm))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU, ReadFPALU]>;
-
-
- def FCSELdddc : A64I_fpcondsel<0b0, 0b0, 0b01, (outs FPR64:$Rd),
- (ins FPR64:$Rn, FPR64:$Rm, cond_code_op:$Cond),
- "fcsel\t$Rd, $Rn, $Rm, $Cond",
- [(set f64:$Rd,
- (simple_select f64:$Rn, f64:$Rm))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU, ReadFPALU]>;
-}
-
-//===----------------------------------------------------------------------===//
-// Floating-point data-processing (1 source)
-//===----------------------------------------------------------------------===//
-// Contains: FMOV, FABS, FNEG, FSQRT, FCVT, FRINT[NPMZAXI].
-
-def FPNoUnop : PatFrag<(ops node:$val), (fneg node:$val),
- [{ (void)N; return false; }]>;
-
-// First we do the fairly trivial bunch with uniform "OP s, s" and "OP d, d"
-// syntax. Default to no pattern because most are odd enough not to have one.
-multiclass A64I_fpdp1sizes<bits<6> opcode, string asmstr,
- SDPatternOperator opnode = FPNoUnop> {
- def ss : A64I_fpdp1<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn),
- !strconcat(asmstr, "\t$Rd, $Rn"),
- [(set f32:$Rd, (opnode f32:$Rn))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-
- def dd : A64I_fpdp1<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn),
- !strconcat(asmstr, "\t$Rd, $Rn"),
- [(set f64:$Rd, (opnode f64:$Rn))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-}
-
-defm FMOV : A64I_fpdp1sizes<0b000000, "fmov">;
-defm FABS : A64I_fpdp1sizes<0b000001, "fabs", fabs>;
-defm FNEG : A64I_fpdp1sizes<0b000010, "fneg", fneg>;
-let SchedRW = [WriteFPSqrt, ReadFPSqrt] in {
- defm FSQRT : A64I_fpdp1sizes<0b000011, "fsqrt", fsqrt>;
-}
-
-defm FRINTN : A64I_fpdp1sizes<0b001000, "frintn">;
-defm FRINTP : A64I_fpdp1sizes<0b001001, "frintp", fceil>;
-defm FRINTM : A64I_fpdp1sizes<0b001010, "frintm", ffloor>;
-defm FRINTZ : A64I_fpdp1sizes<0b001011, "frintz", ftrunc>;
-defm FRINTA : A64I_fpdp1sizes<0b001100, "frinta">;
-defm FRINTX : A64I_fpdp1sizes<0b001110, "frintx", frint>;
-defm FRINTI : A64I_fpdp1sizes<0b001111, "frinti", fnearbyint>;
-
-// The FCVT instrucitons have different source and destination register-types,
-// but the fields are uniform everywhere a D-register (say) crops up. Package
-// this information in a Record.
-class FCVTRegType<RegisterClass rc, bits<2> fld, ValueType vt> {
- RegisterClass Class = rc;
- ValueType VT = vt;
- bit t1 = fld{1};
- bit t0 = fld{0};
-}
-
-def FCVT16 : FCVTRegType<FPR16, 0b11, f16>;
-def FCVT32 : FCVTRegType<FPR32, 0b00, f32>;
-def FCVT64 : FCVTRegType<FPR64, 0b01, f64>;
-
-class A64I_fpdp1_fcvt<FCVTRegType DestReg, FCVTRegType SrcReg, SDNode opnode>
- : A64I_fpdp1<0b0, 0b0, {SrcReg.t1, SrcReg.t0},
- {0,0,0,1, DestReg.t1, DestReg.t0},
- (outs DestReg.Class:$Rd), (ins SrcReg.Class:$Rn),
- "fcvt\t$Rd, $Rn",
- [(set DestReg.VT:$Rd, (opnode SrcReg.VT:$Rn))], NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-
-def FCVTds : A64I_fpdp1_fcvt<FCVT64, FCVT32, fextend>;
-def FCVThs : A64I_fpdp1_fcvt<FCVT16, FCVT32, fround>;
-def FCVTsd : A64I_fpdp1_fcvt<FCVT32, FCVT64, fround>;
-def FCVThd : A64I_fpdp1_fcvt<FCVT16, FCVT64, fround>;
-def FCVTsh : A64I_fpdp1_fcvt<FCVT32, FCVT16, fextend>;
-def FCVTdh : A64I_fpdp1_fcvt<FCVT64, FCVT16, fextend>;
-
-
-//===----------------------------------------------------------------------===//
-// Floating-point data-processing (2 sources) instructions
-//===----------------------------------------------------------------------===//
-// Contains: FMUL, FDIV, FADD, FSUB, FMAX, FMIN, FMAXNM, FMINNM, FNMUL
-
-def FPNoBinop : PatFrag<(ops node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs),
- [{ (void)N; return false; }]>;
-
-multiclass A64I_fpdp2sizes<bits<4> opcode, string asmstr,
- SDPatternOperator opnode> {
- def sss : A64I_fpdp2<0b0, 0b0, 0b00, opcode,
- (outs FPR32:$Rd),
- (ins FPR32:$Rn, FPR32:$Rm),
- !strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
- [(set f32:$Rd, (opnode f32:$Rn, f32:$Rm))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU, ReadFPALU]>;
-
- def ddd : A64I_fpdp2<0b0, 0b0, 0b01, opcode,
- (outs FPR64:$Rd),
- (ins FPR64:$Rn, FPR64:$Rm),
- !strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
- [(set f64:$Rd, (opnode f64:$Rn, f64:$Rm))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU, ReadFPALU]>;
-}
-
-let isCommutable = 1 in {
- let SchedRW = [WriteFPMul, ReadFPMul, ReadFPMul] in {
- defm FMUL : A64I_fpdp2sizes<0b0000, "fmul", fmul>;
- }
- defm FADD : A64I_fpdp2sizes<0b0010, "fadd", fadd>;
-
- // No patterns for these.
- defm FMAX : A64I_fpdp2sizes<0b0100, "fmax", FPNoBinop>;
- defm FMIN : A64I_fpdp2sizes<0b0101, "fmin", FPNoBinop>;
- defm FMAXNM : A64I_fpdp2sizes<0b0110, "fmaxnm", FPNoBinop>;
- defm FMINNM : A64I_fpdp2sizes<0b0111, "fminnm", FPNoBinop>;
-
- let SchedRW = [WriteFPMul, ReadFPMul, ReadFPMul] in {
- defm FNMUL : A64I_fpdp2sizes<0b1000, "fnmul",
- PatFrag<(ops node:$lhs, node:$rhs),
- (fneg (fmul node:$lhs, node:$rhs))> >;
- }
-}
-
-let SchedRW = [WriteFPDiv, ReadFPDiv, ReadFPDiv] in {
- defm FDIV : A64I_fpdp2sizes<0b0001, "fdiv", fdiv>;
-}
-defm FSUB : A64I_fpdp2sizes<0b0011, "fsub", fsub>;
-
-//===----------------------------------------------------------------------===//
-// Floating-point data-processing (3 sources) instructions
-//===----------------------------------------------------------------------===//
-// Contains: FMADD, FMSUB, FNMADD, FNMSUB
-
-def fmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
- (fma (fneg node:$Rn), node:$Rm, node:$Ra)>;
-def fnmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
- (fma node:$Rn, node:$Rm, (fneg node:$Ra))>;
-def fnmadd : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
- (fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra))>;
-
-class A64I_fpdp3Impl<string asmop, RegisterClass FPR, ValueType VT,
- bits<2> type, bit o1, bit o0, SDPatternOperator fmakind>
- : A64I_fpdp3<0b0, 0b0, type, o1, o0, (outs FPR:$Rd),
- (ins FPR:$Rn, FPR:$Rm, FPR:$Ra),
- !strconcat(asmop,"\t$Rd, $Rn, $Rm, $Ra"),
- [(set VT:$Rd, (fmakind VT:$Rn, VT:$Rm, VT:$Ra))],
- NoItinerary>,
- Sched<[WriteFPMAC, ReadFPMAC, ReadFPMAC, ReadFPMAC]>;
-
-def FMADDssss : A64I_fpdp3Impl<"fmadd", FPR32, f32, 0b00, 0b0, 0b0, fma>;
-def FMSUBssss : A64I_fpdp3Impl<"fmsub", FPR32, f32, 0b00, 0b0, 0b1, fmsub>;
-def FNMADDssss : A64I_fpdp3Impl<"fnmadd", FPR32, f32, 0b00, 0b1, 0b0, fnmadd>;
-def FNMSUBssss : A64I_fpdp3Impl<"fnmsub", FPR32, f32, 0b00, 0b1, 0b1, fnmsub>;
-
-def FMADDdddd : A64I_fpdp3Impl<"fmadd", FPR64, f64, 0b01, 0b0, 0b0, fma>;
-def FMSUBdddd : A64I_fpdp3Impl<"fmsub", FPR64, f64, 0b01, 0b0, 0b1, fmsub>;
-def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>;
-def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>;
-
-// Extra patterns for when we're allowed to optimise separate multiplication and
-// addition.
-let Predicates = [HasFPARMv8, UseFusedMAC] in {
-def : Pat<(f32 (fadd FPR32:$Ra, (f32 (fmul_su FPR32:$Rn, FPR32:$Rm)))),
- (FMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
-def : Pat<(f32 (fsub FPR32:$Ra, (f32 (fmul_su FPR32:$Rn, FPR32:$Rm)))),
- (FMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
-def : Pat<(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul_su FPR32:$Rn, FPR32:$Rm)))),
- (FNMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
-def : Pat<(f32 (fsub (f32 (fmul_su FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra)),
- (FNMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
-
-def : Pat<(f64 (fadd FPR64:$Ra, (f64 (fmul_su FPR64:$Rn, FPR64:$Rm)))),
- (FMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
-def : Pat<(f64 (fsub FPR64:$Ra, (f64 (fmul_su FPR64:$Rn, FPR64:$Rm)))),
- (FMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
-def : Pat<(f64 (fsub (f64 (fneg FPR64:$Ra)), (f64 (fmul_su FPR64:$Rn, FPR64:$Rm)))),
- (FNMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
-def : Pat<(f64 (fsub (f64 (fmul_su FPR64:$Rn, FPR64:$Rm)), FPR64:$Ra)),
- (FNMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
-}
-
-
-//===----------------------------------------------------------------------===//
-// Floating-point <-> fixed-point conversion instructions
-//===----------------------------------------------------------------------===//
-// Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
-
-// #1-#32 allowed, encoded as "64 - <specified imm>
-def fixedpos_asmoperand_i32 : AsmOperandClass {
- let Name = "CVTFixedPos32";
- let RenderMethod = "addCVTFixedPosOperands";
- let PredicateMethod = "isCVTFixedPos<32>";
- let DiagnosticType = "CVTFixedPos32";
-}
-
-// Also encoded as "64 - <specified imm>" but #1-#64 allowed.
-def fixedpos_asmoperand_i64 : AsmOperandClass {
- let Name = "CVTFixedPos64";
- let RenderMethod = "addCVTFixedPosOperands";
- let PredicateMethod = "isCVTFixedPos<64>";
- let DiagnosticType = "CVTFixedPos64";
-}
-
-// We need the cartesian product of f32/f64 i32/i64 operands for
-// conversions:
-// + Selection needs to use operands of correct floating type
-// + Assembly parsing and decoding depend on integer width
-class cvtfix_i32_op<ValueType FloatVT>
- : Operand<FloatVT>,
- ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm]> {
- let ParserMatchClass = fixedpos_asmoperand_i32;
- let DecoderMethod = "DecodeCVT32FixedPosOperand";
- let PrintMethod = "printCVTFixedPosOperand";
-}
-
-class cvtfix_i64_op<ValueType FloatVT>
- : Operand<FloatVT>,
- ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm]> {
- let ParserMatchClass = fixedpos_asmoperand_i64;
- let PrintMethod = "printCVTFixedPosOperand";
-}
-
-// Because of the proliferation of weird operands, it's not really
-// worth going for a multiclass here. Oh well.
-
-class A64I_fptofix<bit sf, bits<2> type, bits<3> opcode,
- RegisterClass GPR, RegisterClass FPR,
- ValueType DstTy, ValueType SrcTy,
- Operand scale_op, string asmop, SDNode cvtop>
- : A64I_fpfixed<sf, 0b0, type, 0b11, opcode,
- (outs GPR:$Rd), (ins FPR:$Rn, scale_op:$Scale),
- !strconcat(asmop, "\t$Rd, $Rn, $Scale"),
- [(set DstTy:$Rd, (cvtop (fmul SrcTy:$Rn, scale_op:$Scale)))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-
-def FCVTZSwsi : A64I_fptofix<0b0, 0b00, 0b000, GPR32, FPR32, i32, f32,
- cvtfix_i32_op<f32>, "fcvtzs", fp_to_sint>;
-def FCVTZSxsi : A64I_fptofix<0b1, 0b00, 0b000, GPR64, FPR32, i64, f32,
- cvtfix_i64_op<f32>, "fcvtzs", fp_to_sint>;
-def FCVTZUwsi : A64I_fptofix<0b0, 0b00, 0b001, GPR32, FPR32, i32, f32,
- cvtfix_i32_op<f32>, "fcvtzu", fp_to_uint>;
-def FCVTZUxsi : A64I_fptofix<0b1, 0b00, 0b001, GPR64, FPR32, i64, f32,
- cvtfix_i64_op<f32>, "fcvtzu", fp_to_uint>;
-
-def FCVTZSwdi : A64I_fptofix<0b0, 0b01, 0b000, GPR32, FPR64, i32, f64,
- cvtfix_i32_op<f64>, "fcvtzs", fp_to_sint>;
-def FCVTZSxdi : A64I_fptofix<0b1, 0b01, 0b000, GPR64, FPR64, i64, f64,
- cvtfix_i64_op<f64>, "fcvtzs", fp_to_sint>;
-def FCVTZUwdi : A64I_fptofix<0b0, 0b01, 0b001, GPR32, FPR64, i32, f64,
- cvtfix_i32_op<f64>, "fcvtzu", fp_to_uint>;
-def FCVTZUxdi : A64I_fptofix<0b1, 0b01, 0b001, GPR64, FPR64, i64, f64,
- cvtfix_i64_op<f64>, "fcvtzu", fp_to_uint>;
-
-
-class A64I_fixtofp<bit sf, bits<2> type, bits<3> opcode,
- RegisterClass FPR, RegisterClass GPR,
- ValueType DstTy, ValueType SrcTy,
- Operand scale_op, string asmop, SDNode cvtop>
- : A64I_fpfixed<sf, 0b0, type, 0b00, opcode,
- (outs FPR:$Rd), (ins GPR:$Rn, scale_op:$Scale),
- !strconcat(asmop, "\t$Rd, $Rn, $Scale"),
- [(set DstTy:$Rd, (fdiv (cvtop SrcTy:$Rn), scale_op:$Scale))],
- NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-
-def SCVTFswi : A64I_fixtofp<0b0, 0b00, 0b010, FPR32, GPR32, f32, i32,
- cvtfix_i32_op<f32>, "scvtf", sint_to_fp>;
-def SCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b010, FPR32, GPR64, f32, i64,
- cvtfix_i64_op<f32>, "scvtf", sint_to_fp>;
-def UCVTFswi : A64I_fixtofp<0b0, 0b00, 0b011, FPR32, GPR32, f32, i32,
- cvtfix_i32_op<f32>, "ucvtf", uint_to_fp>;
-def UCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b011, FPR32, GPR64, f32, i64,
- cvtfix_i64_op<f32>, "ucvtf", uint_to_fp>;
-def SCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b010, FPR64, GPR32, f64, i32,
- cvtfix_i32_op<f64>, "scvtf", sint_to_fp>;
-def SCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b010, FPR64, GPR64, f64, i64,
- cvtfix_i64_op<f64>, "scvtf", sint_to_fp>;
-def UCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b011, FPR64, GPR32, f64, i32,
- cvtfix_i32_op<f64>, "ucvtf", uint_to_fp>;
-def UCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b011, FPR64, GPR64, f64, i64,
- cvtfix_i64_op<f64>, "ucvtf", uint_to_fp>;
-
-//===----------------------------------------------------------------------===//
-// Floating-point <-> integer conversion instructions
-//===----------------------------------------------------------------------===//
-// Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
-
-class A64I_fpintI<bit sf, bits<2> type, bits<2> rmode, bits<3> opcode,
- RegisterClass DestPR, RegisterClass SrcPR, string asmop>
- : A64I_fpint<sf, 0b0, type, rmode, opcode, (outs DestPR:$Rd), (ins SrcPR:$Rn),
- !strconcat(asmop, "\t$Rd, $Rn"), [], NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-
-multiclass A64I_fptointRM<bits<2> rmode, bit o2, string asmop> {
- def Sws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 0},
- GPR32, FPR32, asmop # "s">;
- def Sxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 0},
- GPR64, FPR32, asmop # "s">;
- def Uws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 1},
- GPR32, FPR32, asmop # "u">;
- def Uxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 1},
- GPR64, FPR32, asmop # "u">;
-
- def Swd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 0},
- GPR32, FPR64, asmop # "s">;
- def Sxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 0},
- GPR64, FPR64, asmop # "s">;
- def Uwd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 1},
- GPR32, FPR64, asmop # "u">;
- def Uxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 1},
- GPR64, FPR64, asmop # "u">;
-}
-
-defm FCVTN : A64I_fptointRM<0b00, 0b0, "fcvtn">;
-defm FCVTP : A64I_fptointRM<0b01, 0b0, "fcvtp">;
-defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">;
-defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">;
-defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">;
-
-let Predicates = [HasFPARMv8] in {
-def : Pat<(i32 (fp_to_sint f32:$Rn)), (FCVTZSws $Rn)>;
-def : Pat<(i64 (fp_to_sint f32:$Rn)), (FCVTZSxs $Rn)>;
-def : Pat<(i32 (fp_to_uint f32:$Rn)), (FCVTZUws $Rn)>;
-def : Pat<(i64 (fp_to_uint f32:$Rn)), (FCVTZUxs $Rn)>;
-def : Pat<(i32 (fp_to_sint f64:$Rn)), (FCVTZSwd $Rn)>;
-def : Pat<(i64 (fp_to_sint f64:$Rn)), (FCVTZSxd $Rn)>;
-def : Pat<(i32 (fp_to_uint f64:$Rn)), (FCVTZUwd $Rn)>;
-def : Pat<(i64 (fp_to_uint f64:$Rn)), (FCVTZUxd $Rn)>;
-}
-
-multiclass A64I_inttofp<bit o0, string asmop> {
- def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>;
- def CVTFsx : A64I_fpintI<0b1, 0b00, 0b00, {0, 1, o0}, FPR32, GPR64, asmop>;
- def CVTFdw : A64I_fpintI<0b0, 0b01, 0b00, {0, 1, o0}, FPR64, GPR32, asmop>;
- def CVTFdx : A64I_fpintI<0b1, 0b01, 0b00, {0, 1, o0}, FPR64, GPR64, asmop>;
-}
-
-defm S : A64I_inttofp<0b0, "scvtf">;
-defm U : A64I_inttofp<0b1, "ucvtf">;
-
-let Predicates = [HasFPARMv8] in {
-def : Pat<(f32 (sint_to_fp i32:$Rn)), (SCVTFsw $Rn)>;
-def : Pat<(f32 (sint_to_fp i64:$Rn)), (SCVTFsx $Rn)>;
-def : Pat<(f64 (sint_to_fp i32:$Rn)), (SCVTFdw $Rn)>;
-def : Pat<(f64 (sint_to_fp i64:$Rn)), (SCVTFdx $Rn)>;
-def : Pat<(f32 (uint_to_fp i32:$Rn)), (UCVTFsw $Rn)>;
-def : Pat<(f32 (uint_to_fp i64:$Rn)), (UCVTFsx $Rn)>;
-def : Pat<(f64 (uint_to_fp i32:$Rn)), (UCVTFdw $Rn)>;
-def : Pat<(f64 (uint_to_fp i64:$Rn)), (UCVTFdx $Rn)>;
-}
-
-def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">;
-def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">;
-def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">;
-def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">;
-
-let Predicates = [HasFPARMv8] in {
-def : Pat<(i32 (bitconvert f32:$Rn)), (FMOVws $Rn)>;
-def : Pat<(f32 (bitconvert i32:$Rn)), (FMOVsw $Rn)>;
-def : Pat<(i64 (bitconvert f64:$Rn)), (FMOVxd $Rn)>;
-def : Pat<(f64 (bitconvert i64:$Rn)), (FMOVdx $Rn)>;
-}
-
-def lane1_asmoperand : AsmOperandClass {
- let Name = "Lane1";
- let RenderMethod = "addImmOperands";
- let DiagnosticType = "Lane1";
-}
-
-def lane1 : Operand<i32> {
- let ParserMatchClass = lane1_asmoperand;
- let PrintMethod = "printBareImmOperand";
-}
-
-let DecoderMethod = "DecodeFMOVLaneInstruction" in {
- def FMOVxv : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b110,
- (outs GPR64:$Rd), (ins VPR128:$Rn, lane1:$Lane),
- "fmov\t$Rd, $Rn.d[$Lane]", [], NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-
- def FMOVvx : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b111,
- (outs VPR128:$Rd), (ins GPR64:$Rn, lane1:$Lane),
- "fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>,
- Sched<[WriteFPALU, ReadFPALU]>;
-}
-
-let Predicates = [HasFPARMv8] in {
-def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]",
- (FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>;
-
-def : InstAlias<"fmov $Rd.2d[$Lane], $Rn",
- (FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>;
-}
-
-//===----------------------------------------------------------------------===//
-// Floating-point immediate instructions
-//===----------------------------------------------------------------------===//
-// Contains: FMOV
-
-def fpimm_asmoperand : AsmOperandClass {
- let Name = "FMOVImm";
- let ParserMethod = "ParseFPImmOperand";
- let DiagnosticType = "FPImm";
-}
-
-// The MCOperand for these instructions are the encoded 8-bit values.
-def SDXF_fpimm : SDNodeXForm<fpimm, [{
- uint32_t Imm8;
- A64Imms::isFPImm(N->getValueAPF(), Imm8);
- return CurDAG->getTargetConstant(Imm8, MVT::i32);
-}]>;
-
-class fmov_operand<ValueType FT>
- : Operand<i32>,
- PatLeaf<(FT fpimm), [{ return A64Imms::isFPImm(N->getValueAPF()); }],
- SDXF_fpimm> {
- let PrintMethod = "printFPImmOperand";
- let ParserMatchClass = fpimm_asmoperand;
-}
-
-def fmov32_operand : fmov_operand<f32>;
-def fmov64_operand : fmov_operand<f64>;
-
-class A64I_fpimm_impl<bits<2> type, RegisterClass Reg, ValueType VT,
- Operand fmov_operand>
- : A64I_fpimm<0b0, 0b0, type, 0b00000,
- (outs Reg:$Rd),
- (ins fmov_operand:$Imm8),
- "fmov\t$Rd, $Imm8",
- [(set VT:$Rd, fmov_operand:$Imm8)],
- NoItinerary>,
- Sched<[WriteFPALU]>;
-
-def FMOVsi : A64I_fpimm_impl<0b00, FPR32, f32, fmov32_operand>;
-def FMOVdi : A64I_fpimm_impl<0b01, FPR64, f64, fmov64_operand>;
-
-//===----------------------------------------------------------------------===//
-// Load-register (literal) instructions
-//===----------------------------------------------------------------------===//
-// Contains: LDR, LDRSW, PRFM
-
-def ldrlit_label_asmoperand : AsmOperandClass {
- let Name = "LoadLitLabel";
- let RenderMethod = "addLabelOperands<19, 4>";
- let DiagnosticType = "Label";
-}
-
-def ldrlit_label : Operand<i64> {
- let EncoderMethod = "getLoadLitLabelOpValue";
-
- // This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
- let PrintMethod = "printLabelOperand<19, 4>";
- let ParserMatchClass = ldrlit_label_asmoperand;
- let OperandType = "OPERAND_PCREL";
-}
-
-// Various instructions take an immediate value (which can always be used),
-// where some numbers have a symbolic name to make things easier. These operands
-// and the associated functions abstract away the differences.
-multiclass namedimm<string prefix, string mapper> {
- def _asmoperand : AsmOperandClass {
- let Name = "NamedImm" # prefix;
- let PredicateMethod = "isUImm";
- let RenderMethod = "addImmOperands";
- let ParserMethod = "ParseNamedImmOperand<" # mapper # ">";
- let DiagnosticType = "NamedImm_" # prefix;
- }
-
- def _op : Operand<i32> {
- let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
- let PrintMethod = "printNamedImmOperand<" # mapper # ">";
- let DecoderMethod = "DecodeNamedImmOperand<" # mapper # ">";
- }
-}
-
-defm prefetch : namedimm<"prefetch", "A64PRFM::PRFMMapper">;
-
-class A64I_LDRlitSimple<bits<2> opc, bit v, RegisterClass OutReg,
- list<dag> patterns = []>
- : A64I_LDRlit<opc, v, (outs OutReg:$Rt), (ins ldrlit_label:$Imm19),
- "ldr\t$Rt, $Imm19", patterns, NoItinerary>,
- Sched<[WriteLd]>;
-
-let mayLoad = 1 in {
- def LDRw_lit : A64I_LDRlitSimple<0b00, 0b0, GPR32>;
- def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>;
-}
-
-let Predicates = [HasFPARMv8] in {
-def LDRs_lit : A64I_LDRlitSimple<0b00, 0b1, FPR32>;
-def LDRd_lit : A64I_LDRlitSimple<0b01, 0b1, FPR64>;
-}
-
-let mayLoad = 1 in {
- let Predicates = [HasFPARMv8] in {
- def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>;
- }
-
- def LDRSWx_lit : A64I_LDRlit<0b10, 0b0,
- (outs GPR64:$Rt),
- (ins ldrlit_label:$Imm19),
- "ldrsw\t$Rt, $Imm19",
- [], NoItinerary>,
- Sched<[WriteLd]>;
-
- def PRFM_lit : A64I_LDRlit<0b11, 0b0,
- (outs), (ins prefetch_op:$Rt, ldrlit_label:$Imm19),
- "prfm\t$Rt, $Imm19",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]>;
-}
-
-//===----------------------------------------------------------------------===//
-// Load-store exclusive instructions
-//===----------------------------------------------------------------------===//
-// Contains: STXRB, STXRH, STXR, LDXRB, LDXRH, LDXR. STXP, LDXP, STLXRB,
-// STLXRH, STLXR, LDAXRB, LDAXRH, LDAXR, STLXP, LDAXP, STLRB,
-// STLRH, STLR, LDARB, LDARH, LDAR
-
-// Since these instructions have the undefined register bits set to 1 in
-// their canonical form, we need a post encoder method to set those bits
-// to 1 when encoding these instructions. We do this using the
-// fixLoadStoreExclusive function. This function has template parameters:
-//
-// fixLoadStoreExclusive<int hasRs, int hasRt2>
-//
-// hasRs indicates that the instruction uses the Rs field, so we won't set
-// it to 1 (and the same for Rt2). We don't need template parameters for
-// the other register fiels since Rt and Rn are always used.
-
-// This operand parses a GPR64xsp register, followed by an optional immediate
-// #0.
-def GPR64xsp0_asmoperand : AsmOperandClass {
- let Name = "GPR64xsp0";
- let PredicateMethod = "isWrappedReg";
- let RenderMethod = "addRegOperands";
- let ParserMethod = "ParseLSXAddressOperand";
- // Diagnostics are provided by ParserMethod
-}
-
-def GPR64xsp0 : RegisterOperand<GPR64xsp> {
- let ParserMatchClass = GPR64xsp0_asmoperand;
-}
-
-//===----------------------------------
-// Store-exclusive (releasing & normal)
-//===----------------------------------
-
-class A64I_SRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
- dag ins, list<dag> pat,
- InstrItinClass itin> :
- A64I_LDSTex_stn <size,
- opcode{2}, 0, opcode{1}, opcode{0},
- outs, ins,
- !strconcat(asm, "\t$Rs, $Rt, [$Rn]"),
- pat, itin> {
- let mayStore = 1;
- let PostEncoderMethod = "fixLoadStoreExclusive<1,0>";
- let Constraints = "@earlyclobber $Rs";
-}
-
-multiclass A64I_SRex<string asmstr, bits<3> opcode, string prefix> {
- def _byte: A64I_SRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
- (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-
- def _hword: A64I_SRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
- (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
- [],NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-
- def _word: A64I_SRexs_impl<0b10, opcode, asmstr,
- (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-
- def _dword: A64I_SRexs_impl<0b11, opcode, asmstr,
- (outs GPR32:$Rs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-}
-
-defm STXR : A64I_SRex<"stxr", 0b000, "STXR">;
-defm STLXR : A64I_SRex<"stlxr", 0b001, "STLXR">;
-
-//===----------------------------------
-// Loads
-//===----------------------------------
-
-class A64I_LRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
- dag ins, list<dag> pat,
- InstrItinClass itin> :
- A64I_LDSTex_tn <size,
- opcode{2}, 1, opcode{1}, opcode{0},
- outs, ins,
- !strconcat(asm, "\t$Rt, [$Rn]"),
- pat, itin> {
- let mayLoad = 1;
- let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
-}
-
-multiclass A64I_LRex<string asmstr, bits<3> opcode> {
- def _byte: A64I_LRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
- (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteLd]>;
-
- def _hword: A64I_LRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
- (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteLd]>;
-
- def _word: A64I_LRexs_impl<0b10, opcode, asmstr,
- (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteLd]>;
-
- def _dword: A64I_LRexs_impl<0b11, opcode, asmstr,
- (outs GPR64:$Rt), (ins GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteLd]>;
-}
-
-defm LDXR : A64I_LRex<"ldxr", 0b000>;
-defm LDAXR : A64I_LRex<"ldaxr", 0b001>;
-defm LDAR : A64I_LRex<"ldar", 0b101>;
-
-class acquiring_load<PatFrag base>
- : PatFrag<(ops node:$ptr), (base node:$ptr), [{
- AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- return Ordering == Acquire || Ordering == SequentiallyConsistent;
-}]>;
-
-def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
-def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
-def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
-def atomic_load_acquire_64 : acquiring_load<atomic_load_64>;
-
-def : Pat<(atomic_load_acquire_8 i64:$Rn), (LDAR_byte $Rn)>;
-def : Pat<(atomic_load_acquire_16 i64:$Rn), (LDAR_hword $Rn)>;
-def : Pat<(atomic_load_acquire_32 i64:$Rn), (LDAR_word $Rn)>;
-def : Pat<(atomic_load_acquire_64 i64:$Rn), (LDAR_dword $Rn)>;
-
-//===----------------------------------
-// Store-release (no exclusivity)
-//===----------------------------------
-
-class A64I_SLexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
- dag ins, list<dag> pat,
- InstrItinClass itin> :
- A64I_LDSTex_tn <size,
- opcode{2}, 0, opcode{1}, opcode{0},
- outs, ins,
- !strconcat(asm, "\t$Rt, [$Rn]"),
- pat, itin> {
- let mayStore = 1;
- let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
-}
-
-class releasing_store<PatFrag base>
- : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
- AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- return Ordering == Release || Ordering == SequentiallyConsistent;
-}]>;
-
-def atomic_store_release_8 : releasing_store<atomic_store_8>;
-def atomic_store_release_16 : releasing_store<atomic_store_16>;
-def atomic_store_release_32 : releasing_store<atomic_store_32>;
-def atomic_store_release_64 : releasing_store<atomic_store_64>;
-
-multiclass A64I_SLex<string asmstr, bits<3> opcode, string prefix> {
- def _byte: A64I_SLexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
- (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
- [(atomic_store_release_8 i64:$Rn, i32:$Rt)],
- NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-
- def _hword: A64I_SLexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
- (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
- [(atomic_store_release_16 i64:$Rn, i32:$Rt)],
- NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-
- def _word: A64I_SLexs_impl<0b10, opcode, asmstr,
- (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
- [(atomic_store_release_32 i64:$Rn, i32:$Rt)],
- NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-
- def _dword: A64I_SLexs_impl<0b11, opcode, asmstr,
- (outs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
- [(atomic_store_release_64 i64:$Rn, i64:$Rt)],
- NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]>;
-}
-
-defm STLR : A64I_SLex<"stlr", 0b101, "STLR">;
-
-//===----------------------------------
-// Store-exclusive pair (releasing & normal)
-//===----------------------------------
-
-class A64I_SPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
- dag ins, list<dag> pat,
- InstrItinClass itin> :
- A64I_LDSTex_stt2n <size,
- opcode{2}, 0, opcode{1}, opcode{0},
- outs, ins,
- !strconcat(asm, "\t$Rs, $Rt, $Rt2, [$Rn]"),
- pat, itin> {
- let mayStore = 1;
-}
-
-
-multiclass A64I_SPex<string asmstr, bits<3> opcode> {
- def _word: A64I_SPexs_impl<0b10, opcode, asmstr, (outs),
- (ins GPR32:$Rs, GPR32:$Rt, GPR32:$Rt2,
- GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt, ReadSt]>;
-
- def _dword: A64I_SPexs_impl<0b11, opcode, asmstr, (outs),
- (ins GPR32:$Rs, GPR64:$Rt, GPR64:$Rt2,
- GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt, ReadSt]>;
-}
-
-defm STXP : A64I_SPex<"stxp", 0b010>;
-defm STLXP : A64I_SPex<"stlxp", 0b011>;
-
-//===----------------------------------
-// Load-exclusive pair (acquiring & normal)
-//===----------------------------------
-
-class A64I_LPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
- dag ins, list<dag> pat,
- InstrItinClass itin> :
- A64I_LDSTex_tt2n <size,
- opcode{2}, 1, opcode{1}, opcode{0},
- outs, ins,
- !strconcat(asm, "\t$Rt, $Rt2, [$Rn]"),
- pat, itin>{
- let mayLoad = 1;
- let DecoderMethod = "DecodeLoadPairExclusiveInstruction";
- let PostEncoderMethod = "fixLoadStoreExclusive<0,1>";
-}
-
-multiclass A64I_LPex<string asmstr, bits<3> opcode> {
- def _word: A64I_LPexs_impl<0b10, opcode, asmstr,
- (outs GPR32:$Rt, GPR32:$Rt2),
- (ins GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]>;
-
- def _dword: A64I_LPexs_impl<0b11, opcode, asmstr,
- (outs GPR64:$Rt, GPR64:$Rt2),
- (ins GPR64xsp0:$Rn),
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]>;
-}
-
-defm LDXP : A64I_LPex<"ldxp", 0b010>;
-defm LDAXP : A64I_LPex<"ldaxp", 0b011>;
-
-//===----------------------------------------------------------------------===//
-// Load-store register (unscaled immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: LDURB, LDURH, LDRUSB, LDRUSH, LDRUSW, STUR, STURB, STURH and PRFUM
-//
-// and
-//
-//===----------------------------------------------------------------------===//
-// Load-store register (register offset) instructions
-//===----------------------------------------------------------------------===//
-// Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
-//
-// and
-//
-//===----------------------------------------------------------------------===//
-// Load-store register (unsigned immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
-//
-// and
-//
-//===----------------------------------------------------------------------===//
-// Load-store register (immediate post-indexed) instructions
-//===----------------------------------------------------------------------===//
-// Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
-//
-// and
-//
-//===----------------------------------------------------------------------===//
-// Load-store register (immediate pre-indexed) instructions
-//===----------------------------------------------------------------------===//
-// Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
-
-// Note that patterns are much later on in a completely separate section (they
-// need ADRPxi to be defined).
-
-//===-------------------------------
-// 1. Various operands needed
-//===-------------------------------
-
-//===-------------------------------
-// 1.1 Unsigned 12-bit immediate operands
-//===-------------------------------
-// The addressing mode for these instructions consists of an unsigned 12-bit
-// immediate which is scaled by the size of the memory access.
-//
-// We represent this in the MC layer by two operands:
-// 1. A base register.
-// 2. A 12-bit immediate: not multiplied by access size, so "LDR x0,[x0,#8]"
-// would have '1' in this field.
-// This means that separate functions are needed for converting representations
-// which *are* aware of the intended access size.
-
-// Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
-// know the access size via some means. An isolated operand does not have this
-// information unless told from here, which means we need separate tablegen
-// Operands for each access size. This multiclass takes care of instantiating
-// the correct template functions in the rest of the backend.
-
-//===-------------------------------
-// 1.1 Unsigned 12-bit immediate operands
-//===-------------------------------
-
-multiclass offsets_uimm12<int MemSize, string prefix> {
- def uimm12_asmoperand : AsmOperandClass {
- let Name = "OffsetUImm12_" # MemSize;
- let PredicateMethod = "isOffsetUImm12<" # MemSize # ">";
- let RenderMethod = "addOffsetUImm12Operands<" # MemSize # ">";
- let DiagnosticType = "LoadStoreUImm12_" # MemSize;
- }
-
- // Pattern is really no more than an ImmLeaf, but predicated on MemSize which
- // complicates things beyond TableGen's ken.
- def uimm12 : Operand<i64>,
- ComplexPattern<i64, 1, "SelectOffsetUImm12<" # MemSize # ">"> {
- let ParserMatchClass
- = !cast<AsmOperandClass>(prefix # uimm12_asmoperand);
-
- let PrintMethod = "printOffsetUImm12Operand<" # MemSize # ">";
- let EncoderMethod = "getOffsetUImm12OpValue<" # MemSize # ">";
- }
-}
-
-defm byte_ : offsets_uimm12<1, "byte_">;
-defm hword_ : offsets_uimm12<2, "hword_">;
-defm word_ : offsets_uimm12<4, "word_">;
-defm dword_ : offsets_uimm12<8, "dword_">;
-defm qword_ : offsets_uimm12<16, "qword_">;
-
-//===-------------------------------
-// 1.1 Signed 9-bit immediate operands
-//===-------------------------------
-
-// The MCInst is expected to store the bit-wise encoding of the value,
-// which amounts to lopping off the extended sign bits.
-def SDXF_simm9 : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(N->getZExtValue() & 0x1ff, MVT::i32);
-}]>;
-
-def simm9_asmoperand : AsmOperandClass {
- let Name = "SImm9";
- let PredicateMethod = "isSImm<9>";
- let RenderMethod = "addSImmOperands<9>";
- let DiagnosticType = "LoadStoreSImm9";
-}
-
-def simm9 : Operand<i64>,
- ImmLeaf<i64, [{ return Imm >= -0x100 && Imm <= 0xff; }],
- SDXF_simm9> {
- let PrintMethod = "printOffsetSImm9Operand";
- let ParserMatchClass = simm9_asmoperand;
-}
-
-
-//===-------------------------------
-// 1.3 Register offset extensions
-//===-------------------------------
-
-// The assembly-syntax for these addressing-modes is:
-// [<Xn|SP>, <R><m> {, <extend> {<amount>}}]
-//
-// The essential semantics are:
-// + <amount> is a shift: #<log(transfer size)> or #0
-// + <R> can be W or X.
-// + If <R> is W, <extend> can be UXTW or SXTW
-// + If <R> is X, <extend> can be LSL or SXTX
-//
-// The trickiest of those constraints is that Rm can be either GPR32 or GPR64,
-// which will need separate instructions for LLVM type-consistency. We'll also
-// need separate operands, of course.
-multiclass regexts<int MemSize, int RmSize, RegisterClass GPR,
- string Rm, string prefix> {
- def regext_asmoperand : AsmOperandClass {
- let Name = "AddrRegExtend_" # MemSize # "_" # Rm;
- let PredicateMethod = "isAddrRegExtend<" # MemSize # "," # RmSize # ">";
- let RenderMethod = "addAddrRegExtendOperands<" # MemSize # ">";
- let DiagnosticType = "LoadStoreExtend" # RmSize # "_" # MemSize;
- }
-
- def regext : Operand<i64> {
- let PrintMethod
- = "printAddrRegExtendOperand<" # MemSize # ", " # RmSize # ">";
-
- let DecoderMethod = "DecodeAddrRegExtendOperand";
- let ParserMatchClass
- = !cast<AsmOperandClass>(prefix # regext_asmoperand);
- }
-}
-
-multiclass regexts_wx<int MemSize, string prefix> {
- // Rm is an X-register if LSL or SXTX are specified as the shift.
- defm Xm_ : regexts<MemSize, 64, GPR64, "Xm", prefix # "Xm_">;
-
- // Rm is a W-register if UXTW or SXTW are specified as the shift.
- defm Wm_ : regexts<MemSize, 32, GPR32, "Wm", prefix # "Wm_">;
-}
-
-defm byte_ : regexts_wx<1, "byte_">;
-defm hword_ : regexts_wx<2, "hword_">;
-defm word_ : regexts_wx<4, "word_">;
-defm dword_ : regexts_wx<8, "dword_">;
-defm qword_ : regexts_wx<16, "qword_">;
-
-
-//===------------------------------
-// 2. The instructions themselves.
-//===------------------------------
-
-// We have the following instructions to implement:
-// | | B | H | W | X |
-// |-----------------+-------+-------+-------+--------|
-// | unsigned str | STRB | STRH | STR | STR |
-// | unsigned ldr | LDRB | LDRH | LDR | LDR |
-// | signed ldr to W | LDRSB | LDRSH | - | - |
-// | signed ldr to X | LDRSB | LDRSH | LDRSW | (PRFM) |
-
-// This will instantiate the LDR/STR instructions you'd expect to use for an
-// unsigned datatype (first two rows above) or floating-point register, which is
-// reasonably uniform across all access sizes.
-
-
-//===------------------------------
-// 2.1 Regular instructions
-//===------------------------------
-
-// This class covers the basic unsigned or irrelevantly-signed loads and stores,
-// to general-purpose and floating-point registers.
-
-class AddrParams<string prefix> {
- Operand uimm12 = !cast<Operand>(prefix # "_uimm12");
-
- Operand regextWm = !cast<Operand>(prefix # "_Wm_regext");
- Operand regextXm = !cast<Operand>(prefix # "_Xm_regext");
-}
-
-def byte_addrparams : AddrParams<"byte">;
-def hword_addrparams : AddrParams<"hword">;
-def word_addrparams : AddrParams<"word">;
-def dword_addrparams : AddrParams<"dword">;
-def qword_addrparams : AddrParams<"qword">;
-
-multiclass A64I_LDRSTR_unsigned<string prefix, bits<2> size, bit v,
- bit high_opc, string asmsuffix,
- RegisterClass GPR, AddrParams params> {
- // Unsigned immediate
- def _STR : A64I_LSunsigimm<size, v, {high_opc, 0b0},
- (outs), (ins GPR:$Rt, GPR64xsp:$Rn, params.uimm12:$UImm12),
- "str" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]> {
- let mayStore = 1;
- }
- def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
-
- def _LDR : A64I_LSunsigimm<size, v, {high_opc, 0b1},
- (outs GPR:$Rt), (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
- "ldr" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
- }
- def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
-
- // Register offset (four of these: load/store and Wm/Xm).
- let mayLoad = 1 in {
- def _Wm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b0,
- (outs GPR:$Rt),
- (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
- "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
-
- def _Xm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b1,
- (outs GPR:$Rt),
- (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
- "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
- }
- def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn, $Rm]",
- (!cast<Instruction>(prefix # "_Xm_RegOffset_LDR") GPR:$Rt, GPR64xsp:$Rn,
- GPR64:$Rm, 2)>;
-
- let mayStore = 1 in {
- def _Wm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b0,
- (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR32:$Rm,
- params.regextWm:$Ext),
- "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt, ReadSt]>;
-
- def _Xm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b1,
- (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm,
- params.regextXm:$Ext),
- "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt, ReadSt]>;
- }
- def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn, $Rm]",
- (!cast<Instruction>(prefix # "_Xm_RegOffset_STR") GPR:$Rt, GPR64xsp:$Rn,
- GPR64:$Rm, 2)>;
-
- // Unaligned immediate
- def _STUR : A64I_LSunalimm<size, v, {high_opc, 0b0},
- (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
- "stur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]> {
- let mayStore = 1;
- }
- def : InstAlias<"stur" # asmsuffix # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "_STUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
-
- def _LDUR : A64I_LSunalimm<size, v, {high_opc, 0b1},
- (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
- }
- def : InstAlias<"ldur" # asmsuffix # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "_LDUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
-
- // Post-indexed
- def _PostInd_STR : A64I_LSpostind<size, v, {high_opc, 0b0},
- (outs GPR64xsp:$Rn_wb),
- (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
- "str" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]> {
- let Constraints = "$Rn = $Rn_wb";
- let mayStore = 1;
-
- // Decoder only needed for unpredictability checking (FIXME).
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
-
- def _PostInd_LDR : A64I_LSpostind<size, v, {high_opc, 0b1},
- (outs GPR:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldr" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
-
- // Pre-indexed
- def _PreInd_STR : A64I_LSpreind<size, v, {high_opc, 0b0},
- (outs GPR64xsp:$Rn_wb),
- (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
- "str" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt]> {
- let Constraints = "$Rn = $Rn_wb";
- let mayStore = 1;
-
- // Decoder only needed for unpredictability checking (FIXME).
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
-
- def _PreInd_LDR : A64I_LSpreind<size, v, {high_opc, 0b1},
- (outs GPR:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
-
-}
-
-// STRB/LDRB: First define the instructions
-defm LS8
- : A64I_LDRSTR_unsigned<"LS8", 0b00, 0b0, 0b0, "b", GPR32, byte_addrparams>;
-
-// STRH/LDRH
-defm LS16
- : A64I_LDRSTR_unsigned<"LS16", 0b01, 0b0, 0b0, "h", GPR32, hword_addrparams>;
-
-
-// STR/LDR to/from a W register
-defm LS32
- : A64I_LDRSTR_unsigned<"LS32", 0b10, 0b0, 0b0, "", GPR32, word_addrparams>;
-
-// STR/LDR to/from an X register
-defm LS64
- : A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>;
-
-let Predicates = [HasFPARMv8] in {
-// STR/LDR to/from a B register
-defm LSFP8
- : A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>;
-
-// STR/LDR to/from an H register
-defm LSFP16
- : A64I_LDRSTR_unsigned<"LSFP16", 0b01, 0b1, 0b0, "", FPR16, hword_addrparams>;
-
-// STR/LDR to/from an S register
-defm LSFP32
- : A64I_LDRSTR_unsigned<"LSFP32", 0b10, 0b1, 0b0, "", FPR32, word_addrparams>;
-// STR/LDR to/from a D register
-defm LSFP64
- : A64I_LDRSTR_unsigned<"LSFP64", 0b11, 0b1, 0b0, "", FPR64, dword_addrparams>;
-// STR/LDR to/from a Q register
-defm LSFP128
- : A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128,
- qword_addrparams>;
-}
-
-//===------------------------------
-// 2.3 Signed loads
-//===------------------------------
-
-// Byte and half-word signed loads can both go into either an X or a W register,
-// so it's worth factoring out. Signed word loads don't fit because there is no
-// W version.
-multiclass A64I_LDR_signed<bits<2> size, string asmopcode, AddrParams params,
- string prefix> {
- // Unsigned offset
- def w : A64I_LSunsigimm<size, 0b0, 0b11,
- (outs GPR32:$Rt),
- (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
- }
- def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # w) GPR32:$Rt, GPR64xsp:$Rn, 0)>;
-
- def x : A64I_LSunsigimm<size, 0b0, 0b10,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
- }
- def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # x) GPR64:$Rt, GPR64xsp:$Rn, 0)>;
-
- // Register offset
- let mayLoad = 1 in {
- def w_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b0,
- (outs GPR32:$Rt),
- (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
-
- def w_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b1,
- (outs GPR32:$Rt),
- (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
-
- def x_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b0,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
-
- def x_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b1,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
- }
- def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
- (!cast<Instruction>(prefix # "w_Xm_RegOffset") GPR32:$Rt, GPR64xsp:$Rn,
- GPR64:$Rm, 2)>;
-
- def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
- (!cast<Instruction>(prefix # "x_Xm_RegOffset") GPR64:$Rt, GPR64xsp:$Rn,
- GPR64:$Rm, 2)>;
-
-
- let mayLoad = 1 in {
- // Unaligned offset
- def w_U : A64I_LSunalimm<size, 0b0, 0b11,
- (outs GPR32:$Rt),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]>;
-
- def x_U : A64I_LSunalimm<size, 0b0, 0b10,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]>;
-
-
- // Post-indexed
- def w_PostInd : A64I_LSpostind<size, 0b0, 0b11,
- (outs GPR32:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
-
- def x_PostInd : A64I_LSpostind<size, 0b0, 0b10,
- (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
-
- // Pre-indexed
- def w_PreInd : A64I_LSpreind<size, 0b0, 0b11,
- (outs GPR32:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
-
- def x_PreInd : A64I_LSpreind<size, 0b0, 0b10,
- (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
- }
- } // let mayLoad = 1
-}
-
-// LDRSB
-defm LDRSB : A64I_LDR_signed<0b00, "b", byte_addrparams, "LDRSB">;
-// LDRSH
-defm LDRSH : A64I_LDR_signed<0b01, "h", hword_addrparams, "LDRSH">;
-
-// LDRSW: load a 32-bit register, sign-extending to 64-bits.
-def LDRSWx
- : A64I_LSunsigimm<0b10, 0b0, 0b10,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, word_uimm12:$UImm12),
- "ldrsw\t$Rt, [$Rn, $UImm12]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
-}
-def : InstAlias<"ldrsw $Rt, [$Rn]", (LDRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
-
-let mayLoad = 1 in {
- def LDRSWx_Wm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b0,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, GPR32:$Rm, word_Wm_regext:$Ext),
- "ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
-
- def LDRSWx_Xm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b1,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, GPR64:$Rm, word_Xm_regext:$Ext),
- "ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd, ReadLd]>;
-}
-def : InstAlias<"ldrsw $Rt, [$Rn, $Rm]",
- (LDRSWx_Xm_RegOffset GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>;
-
-
-def LDURSWx
- : A64I_LSunalimm<0b10, 0b0, 0b10,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldursw\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
-}
-def : InstAlias<"ldursw $Rt, [$Rn]", (LDURSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
-
-def LDRSWx_PostInd
- : A64I_LSpostind<0b10, 0b0, 0b10,
- (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldrsw\t$Rt, [$Rn], $SImm9",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
-}
-
-def LDRSWx_PreInd : A64I_LSpreind<0b10, 0b0, 0b10,
- (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldrsw\t$Rt, [$Rn, $SImm9]!",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeSingleIndexedInstruction";
-}
-
-//===------------------------------
-// 2.4 Prefetch operations
-//===------------------------------
-
-def PRFM : A64I_LSunsigimm<0b11, 0b0, 0b10, (outs),
- (ins prefetch_op:$Rt, GPR64xsp:$Rn, dword_uimm12:$UImm12),
- "prfm\t$Rt, [$Rn, $UImm12]",
- [], NoItinerary>,
- Sched<[WritePreLd, ReadPreLd]> {
- let mayLoad = 1;
-}
-def : InstAlias<"prfm $Rt, [$Rn]",
- (PRFM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
-
-let mayLoad = 1 in {
- def PRFM_Wm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b0, (outs),
- (ins prefetch_op:$Rt, GPR64xsp:$Rn,
- GPR32:$Rm, dword_Wm_regext:$Ext),
- "prfm\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WritePreLd, ReadPreLd]>;
- def PRFM_Xm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b1, (outs),
- (ins prefetch_op:$Rt, GPR64xsp:$Rn,
- GPR64:$Rm, dword_Xm_regext:$Ext),
- "prfm\t$Rt, [$Rn, $Rm, $Ext]",
- [], NoItinerary>,
- Sched<[WritePreLd, ReadPreLd]>;
-}
-
-def : InstAlias<"prfm $Rt, [$Rn, $Rm]",
- (PRFM_Xm_RegOffset prefetch_op:$Rt, GPR64xsp:$Rn,
- GPR64:$Rm, 2)>;
-
-
-def PRFUM : A64I_LSunalimm<0b11, 0b0, 0b10, (outs),
- (ins prefetch_op:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
- "prfum\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WritePreLd, ReadPreLd]> {
- let mayLoad = 1;
-}
-def : InstAlias<"prfum $Rt, [$Rn]",
- (PRFUM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
-
-//===----------------------------------------------------------------------===//
-// Load-store register (unprivileged) instructions
-//===----------------------------------------------------------------------===//
-// Contains: LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB and STTRH
-
-// These instructions very much mirror the "unscaled immediate" loads, but since
-// there are no floating-point variants we need to split them out into their own
-// section to avoid instantiation of "ldtr d0, [sp]" etc.
-
-multiclass A64I_LDTRSTTR<bits<2> size, string asmsuffix, RegisterClass GPR,
- string prefix> {
- def _UnPriv_STR : A64I_LSunpriv<size, 0b0, 0b00,
- (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
- "sttr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayStore = 1;
- }
-
- def : InstAlias<"sttr" # asmsuffix # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "_UnPriv_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
-
- def _UnPriv_LDR : A64I_LSunpriv<size, 0b0, 0b01,
- (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldtr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
- }
-
- def : InstAlias<"ldtr" # asmsuffix # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "_UnPriv_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
-
-}
-
-// STTRB/LDTRB: First define the instructions
-defm LS8 : A64I_LDTRSTTR<0b00, "b", GPR32, "LS8">;
-
-// STTRH/LDTRH
-defm LS16 : A64I_LDTRSTTR<0b01, "h", GPR32, "LS16">;
-
-// STTR/LDTR to/from a W register
-defm LS32 : A64I_LDTRSTTR<0b10, "", GPR32, "LS32">;
-
-// STTR/LDTR to/from an X register
-defm LS64 : A64I_LDTRSTTR<0b11, "", GPR64, "LS64">;
-
-// Now a class for the signed instructions that can go to either 32 or 64
-// bits...
-multiclass A64I_LDTR_signed<bits<2> size, string asmopcode, string prefix> {
- let mayLoad = 1 in {
- def w : A64I_LSunpriv<size, 0b0, 0b11,
- (outs GPR32:$Rt),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]>;
-
- def x : A64I_LSunpriv<size, 0b0, 0b10,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]>;
- }
-
- def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "w") GPR32:$Rt, GPR64xsp:$Rn, 0)>;
-
- def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
- (!cast<Instruction>(prefix # "x") GPR64:$Rt, GPR64xsp:$Rn, 0)>;
-
-}
-
-// LDTRSB
-defm LDTRSB : A64I_LDTR_signed<0b00, "b", "LDTRSB">;
-// LDTRSH
-defm LDTRSH : A64I_LDTR_signed<0b01, "h", "LDTRSH">;
-
-// And finally LDTRSW which only goes to 64 bits.
-def LDTRSWx : A64I_LSunpriv<0b10, 0b0, 0b10,
- (outs GPR64:$Rt),
- (ins GPR64xsp:$Rn, simm9:$SImm9),
- "ldtrsw\t$Rt, [$Rn, $SImm9]",
- [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayLoad = 1;
-}
-def : InstAlias<"ldtrsw $Rt, [$Rn]", (LDTRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
-
-//===----------------------------------------------------------------------===//
-// Load-store register pair (offset) instructions
-//===----------------------------------------------------------------------===//
-//
-// and
-//
-//===----------------------------------------------------------------------===//
-// Load-store register pair (post-indexed) instructions
-//===----------------------------------------------------------------------===//
-// Contains: STP, LDP, LDPSW
-//
-// and
-//
-//===----------------------------------------------------------------------===//
-// Load-store register pair (pre-indexed) instructions
-//===----------------------------------------------------------------------===//
-// Contains: STP, LDP, LDPSW
-//
-// and
-//
-//===----------------------------------------------------------------------===//
-// Load-store non-temporal register pair (offset) instructions
-//===----------------------------------------------------------------------===//
-// Contains: STNP, LDNP
-
-
-// Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
-// know the access size via some means. An isolated operand does not have this
-// information unless told from here, which means we need separate tablegen
-// Operands for each access size. This multiclass takes care of instantiating
-// the correct template functions in the rest of the backend.
-
-multiclass offsets_simm7<string MemSize, string prefix> {
- // The bare signed 7-bit immediate is used in post-indexed instructions, but
- // because of the scaling performed a generic "simm7" operand isn't
- // appropriate here either.
- def simm7_asmoperand : AsmOperandClass {
- let Name = "SImm7_Scaled" # MemSize;
- let PredicateMethod = "isSImm7Scaled<" # MemSize # ">";
- let RenderMethod = "addSImm7ScaledOperands<" # MemSize # ">";
- let DiagnosticType = "LoadStoreSImm7_" # MemSize;
- }
-
- def simm7 : Operand<i64> {
- let PrintMethod = "printSImm7ScaledOperand<" # MemSize # ">";
- let ParserMatchClass = !cast<AsmOperandClass>(prefix # "simm7_asmoperand");
- }
-}
-
-defm word_ : offsets_simm7<"4", "word_">;
-defm dword_ : offsets_simm7<"8", "dword_">;
-defm qword_ : offsets_simm7<"16", "qword_">;
-
-multiclass A64I_LSPsimple<bits<2> opc, bit v, RegisterClass SomeReg,
- Operand simm7, string prefix> {
- def _STR : A64I_LSPoffset<opc, v, 0b0, (outs),
- (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
- "stp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary>,
- Sched<[WriteLd, ReadLd]> {
- let mayStore = 1;
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
- def : InstAlias<"stp $Rt, $Rt2, [$Rn]",
- (!cast<Instruction>(prefix # "_STR") SomeReg:$Rt,
- SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
-
- def _LDR : A64I_LSPoffset<opc, v, 0b1,
- (outs SomeReg:$Rt, SomeReg:$Rt2),
- (ins GPR64xsp:$Rn, simm7:$SImm7),
- "ldp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
- def : InstAlias<"ldp $Rt, $Rt2, [$Rn]",
- (!cast<Instruction>(prefix # "_LDR") SomeReg:$Rt,
- SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
-
- def _PostInd_STR : A64I_LSPpostind<opc, v, 0b0,
- (outs GPR64xsp:$Rn_wb),
- (ins SomeReg:$Rt, SomeReg:$Rt2,
- GPR64xsp:$Rn,
- simm7:$SImm7),
- "stp\t$Rt, $Rt2, [$Rn], $SImm7",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt, ReadSt]> {
- let mayStore = 1;
- let Constraints = "$Rn = $Rn_wb";
-
- // Decoder only needed for unpredictability checking (FIXME).
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
-
- def _PostInd_LDR : A64I_LSPpostind<opc, v, 0b1,
- (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm7:$SImm7),
- "ldp\t$Rt, $Rt2, [$Rn], $SImm7",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
-
- def _PreInd_STR : A64I_LSPpreind<opc, v, 0b0, (outs GPR64xsp:$Rn_wb),
- (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
- "stp\t$Rt, $Rt2, [$Rn, $SImm7]!",
- [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt, ReadSt]> {
- let mayStore = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
-
- def _PreInd_LDR : A64I_LSPpreind<opc, v, 0b1,
- (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
- (ins GPR64xsp:$Rn, simm7:$SImm7),
- "ldp\t$Rt, $Rt2, [$Rn, $SImm7]!",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
-
- def _NonTemp_STR : A64I_LSPnontemp<opc, v, 0b0, (outs),
- (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
- "stnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary>,
- Sched<[WriteSt, ReadSt, ReadSt, ReadSt]> {
- let mayStore = 1;
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
- def : InstAlias<"stnp $Rt, $Rt2, [$Rn]",
- (!cast<Instruction>(prefix # "_NonTemp_STR") SomeReg:$Rt,
- SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
-
- def _NonTemp_LDR : A64I_LSPnontemp<opc, v, 0b1,
- (outs SomeReg:$Rt, SomeReg:$Rt2),
- (ins GPR64xsp:$Rn, simm7:$SImm7),
- "ldnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let DecoderMethod = "DecodeLDSTPairInstruction";
- }
- def : InstAlias<"ldnp $Rt, $Rt2, [$Rn]",
- (!cast<Instruction>(prefix # "_NonTemp_LDR") SomeReg:$Rt,
- SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
-
-}
-
-
-defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">;
-defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">;
-
-let Predicates = [HasFPARMv8] in {
-defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">;
-defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64, dword_simm7, "LSFPPair64">;
-defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7,
- "LSFPPair128">;
-}
-
-
-def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1,
- (outs GPR64:$Rt, GPR64:$Rt2),
- (ins GPR64xsp:$Rn, word_simm7:$SImm7),
- "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary>,
- Sched<[WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let DecoderMethod = "DecodeLDSTPairInstruction";
-}
-def : InstAlias<"ldpsw $Rt, $Rt2, [$Rn]",
- (LDPSWx GPR64:$Rt, GPR64:$Rt2, GPR64xsp:$Rn, 0)>;
-
-def LDPSWx_PostInd : A64I_LSPpostind<0b01, 0b0, 0b1,
- (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
- (ins GPR64xsp:$Rn, word_simm7:$SImm7),
- "ldpsw\t$Rt, $Rt2, [$Rn], $SImm7",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeLDSTPairInstruction";
-}
-
-def LDPSWx_PreInd : A64I_LSPpreind<0b01, 0b0, 0b1,
- (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
- (ins GPR64xsp:$Rn, word_simm7:$SImm7),
- "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]!",
- [], NoItinerary>,
- Sched<[WriteLd, WriteLd, WriteLd, ReadLd]> {
- let mayLoad = 1;
- let Constraints = "$Rn = $Rn_wb";
- let DecoderMethod = "DecodeLDSTPairInstruction";
-}
-
-//===----------------------------------------------------------------------===//
-// Logical (immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: AND, ORR, EOR, ANDS, + aliases TST, MOV
-
-multiclass logical_imm_operands<string prefix, string note,
- int size, ValueType VT> {
- def _asmoperand : AsmOperandClass {
- let Name = "LogicalImm" # note # size;
- let PredicateMethod = "isLogicalImm" # note # "<" # size # ">";
- let RenderMethod = "addLogicalImmOperands<" # size # ">";
- let DiagnosticType = "LogicalSecondSource";
- }
-
- def _operand
- : Operand<VT>, ComplexPattern<VT, 1, "SelectLogicalImm", [imm]> {
- let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
- let PrintMethod = "printLogicalImmOperand<" # size # ">";
- let DecoderMethod = "DecodeLogicalImmOperand<" # size # ">";
- }
-}
-
-defm logical_imm32 : logical_imm_operands<"logical_imm32", "", 32, i32>;
-defm logical_imm64 : logical_imm_operands<"logical_imm64", "", 64, i64>;
-
-// The mov versions only differ in assembly parsing, where they
-// exclude values representable with either MOVZ or MOVN.
-defm logical_imm32_mov
- : logical_imm_operands<"logical_imm32_mov", "MOV", 32, i32>;
-defm logical_imm64_mov
- : logical_imm_operands<"logical_imm64_mov", "MOV", 64, i64>;
-
-
-multiclass A64I_logimmSizes<bits<2> opc, string asmop, SDNode opnode> {
- def wwi : A64I_logicalimm<0b0, opc, (outs GPR32wsp:$Rd),
- (ins GPR32:$Rn, logical_imm32_operand:$Imm),
- !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
- [(set i32:$Rd,
- (opnode i32:$Rn, logical_imm32_operand:$Imm))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
-
- def xxi : A64I_logicalimm<0b1, opc, (outs GPR64xsp:$Rd),
- (ins GPR64:$Rn, logical_imm64_operand:$Imm),
- !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
- [(set i64:$Rd,
- (opnode i64:$Rn, logical_imm64_operand:$Imm))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
-}
-
-defm AND : A64I_logimmSizes<0b00, "and", and>;
-defm ORR : A64I_logimmSizes<0b01, "orr", or>;
-defm EOR : A64I_logimmSizes<0b10, "eor", xor>;
-
-let Defs = [NZCV] in {
- def ANDSwwi : A64I_logicalimm<0b0, 0b11, (outs GPR32:$Rd),
- (ins GPR32:$Rn, logical_imm32_operand:$Imm),
- "ands\t$Rd, $Rn, $Imm",
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
-
- def ANDSxxi : A64I_logicalimm<0b1, 0b11, (outs GPR64:$Rd),
- (ins GPR64:$Rn, logical_imm64_operand:$Imm),
- "ands\t$Rd, $Rn, $Imm",
- [], NoItinerary>,
- Sched<[WriteALU, ReadALU]>;
-}
-
-def : InstAlias<"tst $Rn, $Imm",
- (ANDSwwi WZR, GPR32:$Rn, logical_imm32_operand:$Imm)>;
-def : InstAlias<"tst $Rn, $Imm",
- (ANDSxxi XZR, GPR64:$Rn, logical_imm64_operand:$Imm)>;
-// FIXME: these sometimes are canonical.
-def : InstAlias<"mov $Rd, $Imm",
- (ORRwwi GPR32wsp:$Rd, WZR, logical_imm32_mov_operand:$Imm), 0>;
-def : InstAlias<"mov $Rd, $Imm",
- (ORRxxi GPR64xsp:$Rd, XZR, logical_imm64_mov_operand:$Imm), 0>;
-
-//===----------------------------------------------------------------------===//
-// Logical (shifted register) instructions
-//===----------------------------------------------------------------------===//
-// Contains: AND, BIC, ORR, ORN, EOR, EON, ANDS, BICS + aliases TST, MVN, MOV
-
-// Operand for optimizing (icmp (and LHS, RHS), 0, SomeCode). In theory "ANDS"
-// behaves differently for unsigned comparisons, so we defensively only allow
-// signed or n/a as the operand. In practice "unsigned greater than 0" is "not
-// equal to 0" and LLVM gives us this.
-def signed_cond : PatLeaf<(cond), [{
- return !isUnsignedIntSetCC(N->get());
-}]>;
-
-
-// These instructions share their "shift" operands with add/sub (shifted
-// register instructions). They are defined there.
-
-// N.b. the commutable parameter is just !N. It will be first against the wall
-// when the revolution comes.
-multiclass logical_shifts<string prefix, bit sf, bits<2> opc,
- bit N, bit commutable,
- string asmop, SDPatternOperator opfrag, ValueType ty,
- RegisterClass GPR, list<Register> defs> {
- let isCommutable = commutable, Defs = defs in {
- def _lsl : A64I_logicalshift<sf, opc, 0b00, N,
- (outs GPR:$Rd),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
- [(set ty:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def _lsr : A64I_logicalshift<sf, opc, 0b01, N,
- (outs GPR:$Rd),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
- [(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def _asr : A64I_logicalshift<sf, opc, 0b10, N,
- (outs GPR:$Rd),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
- [(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def _ror : A64I_logicalshift<sf, opc, 0b11, N,
- (outs GPR:$Rd),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("ror_operand_" # ty):$Imm6),
- !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
- [(set ty:$Rd, (opfrag ty:$Rn, (rotr ty:$Rm,
- !cast<Operand>("ror_operand_" # ty):$Imm6))
- )],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- }
-
- def _noshift
- : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
- (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
- GPR:$Rm, 0)>;
-
- def : Pat<(opfrag ty:$Rn, ty:$Rm),
- (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
-}
-
-multiclass logical_sizes<string prefix, bits<2> opc, bit N, bit commutable,
- string asmop, SDPatternOperator opfrag,
- list<Register> defs> {
- defm xxx : logical_shifts<prefix # "xxx", 0b1, opc, N,
- commutable, asmop, opfrag, i64, GPR64, defs>;
- defm www : logical_shifts<prefix # "www", 0b0, opc, N,
- commutable, asmop, opfrag, i32, GPR32, defs>;
-}
-
-
-defm AND : logical_sizes<"AND", 0b00, 0b0, 0b1, "and", and, []>;
-defm ORR : logical_sizes<"ORR", 0b01, 0b0, 0b1, "orr", or, []>;
-defm EOR : logical_sizes<"EOR", 0b10, 0b0, 0b1, "eor", xor, []>;
-defm ANDS : logical_sizes<"ANDS", 0b11, 0b0, 0b1, "ands",
- PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs),
- [{ (void)N; return false; }]>,
- [NZCV]>;
-
-defm BIC : logical_sizes<"BIC", 0b00, 0b1, 0b0, "bic",
- PatFrag<(ops node:$lhs, node:$rhs),
- (and node:$lhs, (not node:$rhs))>, []>;
-defm ORN : logical_sizes<"ORN", 0b01, 0b1, 0b0, "orn",
- PatFrag<(ops node:$lhs, node:$rhs),
- (or node:$lhs, (not node:$rhs))>, []>;
-defm EON : logical_sizes<"EON", 0b10, 0b1, 0b0, "eon",
- PatFrag<(ops node:$lhs, node:$rhs),
- (xor node:$lhs, (not node:$rhs))>, []>;
-defm BICS : logical_sizes<"BICS", 0b11, 0b1, 0b0, "bics",
- PatFrag<(ops node:$lhs, node:$rhs),
- (and node:$lhs, (not node:$rhs)),
- [{ (void)N; return false; }]>,
- [NZCV]>;
-
-multiclass tst_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
- let isCommutable = 1, Rd = 0b11111, Defs = [NZCV] in {
- def _lsl : A64I_logicalshift<sf, 0b11, 0b00, 0b0,
- (outs),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6),
- "tst\t$Rn, $Rm, $Imm6",
- [(set NZCV, (A64setcc (and ty:$Rn, (shl ty:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6)),
- 0, signed_cond))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
-
- def _lsr : A64I_logicalshift<sf, 0b11, 0b01, 0b0,
- (outs),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6),
- "tst\t$Rn, $Rm, $Imm6",
- [(set NZCV, (A64setcc (and ty:$Rn, (srl ty:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6)),
- 0, signed_cond))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def _asr : A64I_logicalshift<sf, 0b11, 0b10, 0b0,
- (outs),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6),
- "tst\t$Rn, $Rm, $Imm6",
- [(set NZCV, (A64setcc (and ty:$Rn, (sra ty:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6)),
- 0, signed_cond))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def _ror : A64I_logicalshift<sf, 0b11, 0b11, 0b0,
- (outs),
- (ins GPR:$Rn, GPR:$Rm,
- !cast<Operand>("ror_operand_" # ty):$Imm6),
- "tst\t$Rn, $Rm, $Imm6",
- [(set NZCV, (A64setcc (and ty:$Rn, (rotr ty:$Rm,
- !cast<Operand>("ror_operand_" # ty):$Imm6)),
- 0, signed_cond))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- }
-
- def _noshift : InstAlias<"tst $Rn, $Rm",
- (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
-
- def : Pat<(A64setcc (and ty:$Rn, ty:$Rm), 0, signed_cond),
- (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
-}
-
-defm TSTxx : tst_shifts<"TSTxx", 0b1, i64, GPR64>;
-defm TSTww : tst_shifts<"TSTww", 0b0, i32, GPR32>;
-
-
-multiclass mvn_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
- let isCommutable = 0, Rn = 0b11111 in {
- def _lsl : A64I_logicalshift<sf, 0b01, 0b00, 0b1,
- (outs GPR:$Rd),
- (ins GPR:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6),
- "mvn\t$Rd, $Rm, $Imm6",
- [(set ty:$Rd, (not (shl ty:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6)))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
-
- def _lsr : A64I_logicalshift<sf, 0b01, 0b01, 0b1,
- (outs GPR:$Rd),
- (ins GPR:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6),
- "mvn\t$Rd, $Rm, $Imm6",
- [(set ty:$Rd, (not (srl ty:$Rm,
- !cast<Operand>("lsr_operand_" # ty):$Imm6)))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def _asr : A64I_logicalshift<sf, 0b01, 0b10, 0b1,
- (outs GPR:$Rd),
- (ins GPR:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6),
- "mvn\t$Rd, $Rm, $Imm6",
- [(set ty:$Rd, (not (sra ty:$Rm,
- !cast<Operand>("asr_operand_" # ty):$Imm6)))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
-
- def _ror : A64I_logicalshift<sf, 0b01, 0b11, 0b1,
- (outs GPR:$Rd),
- (ins GPR:$Rm,
- !cast<Operand>("ror_operand_" # ty):$Imm6),
- "mvn\t$Rd, $Rm, $Imm6",
- [(set ty:$Rd, (not (rotr ty:$Rm,
- !cast<Operand>("lsl_operand_" # ty):$Imm6)))],
- NoItinerary>,
- Sched<[WriteALU, ReadALU, ReadALU]>;
- }
-
- def _noshift : InstAlias<"mvn $Rn, $Rm",
- (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
-
- def : Pat<(not ty:$Rm),
- (!cast<Instruction>(prefix # "_lsl") $Rm, 0)>;
-}
-
-defm MVNxx : mvn_shifts<"MVNxx", 0b1, i64, GPR64>;
-defm MVNww : mvn_shifts<"MVNww", 0b0, i32, GPR32>;
-
-def MOVxx :InstAlias<"mov $Rd, $Rm", (ORRxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
-def MOVww :InstAlias<"mov $Rd, $Rm", (ORRwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
-
-//===----------------------------------------------------------------------===//
-// Move wide (immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: MOVN, MOVZ, MOVK + MOV aliases
-
-// A wide variety of different relocations are needed for variants of these
-// instructions, so it turns out that we need a different operand for all of
-// them.
-multiclass movw_operands<string prefix, string instname, int width> {
- def _imm_asmoperand : AsmOperandClass {
- let Name = instname # width # "Shifted" # shift;
- let PredicateMethod = "is" # instname # width # "Imm";
- let RenderMethod = "addMoveWideImmOperands";
- let ParserMethod = "ParseImmWithLSLOperand";
- let DiagnosticType = "MOVWUImm16";
- }
-
- def _imm : Operand<i64> {
- let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_imm_asmoperand");
- let PrintMethod = "printMoveWideImmOperand";
- let EncoderMethod = "getMoveWideImmOpValue";
- let DecoderMethod = "DecodeMoveWideImmOperand<" # width # ">";
-
- let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
- }
-}
-
-defm movn32 : movw_operands<"movn32", "MOVN", 32>;
-defm movn64 : movw_operands<"movn64", "MOVN", 64>;
-defm movz32 : movw_operands<"movz32", "MOVZ", 32>;
-defm movz64 : movw_operands<"movz64", "MOVZ", 64>;
-defm movk32 : movw_operands<"movk32", "MOVK", 32>;
-defm movk64 : movw_operands<"movk64", "MOVK", 64>;
-
-multiclass A64I_movwSizes<bits<2> opc, string asmop, dag ins32bit,
- dag ins64bit> {
-
- def wii : A64I_movw<0b0, opc, (outs GPR32:$Rd), ins32bit,
- !strconcat(asmop, "\t$Rd, $FullImm"),
- [], NoItinerary>,
- Sched<[WriteALU]> {
- bits<18> FullImm;
- let UImm16 = FullImm{15-0};
- let Shift = FullImm{17-16};
- }
-
- def xii : A64I_movw<0b1, opc, (outs GPR64:$Rd), ins64bit,
- !strconcat(asmop, "\t$Rd, $FullImm"),
- [], NoItinerary>,
- Sched<[WriteALU]> {
- bits<18> FullImm;
- let UImm16 = FullImm{15-0};
- let Shift = FullImm{17-16};
- }
-}
-
-let isMoveImm = 1, isReMaterializable = 1,
- isAsCheapAsAMove = 1, hasSideEffects = 0 in {
- defm MOVN : A64I_movwSizes<0b00, "movn",
- (ins movn32_imm:$FullImm),
- (ins movn64_imm:$FullImm)>;
-
- // Some relocations are able to convert between a MOVZ and a MOVN. If these
- // are applied the instruction must be emitted with the corresponding bits as
- // 0, which means a MOVZ needs to override that bit from the default.
- let PostEncoderMethod = "fixMOVZ" in
- defm MOVZ : A64I_movwSizes<0b10, "movz",
- (ins movz32_imm:$FullImm),
- (ins movz64_imm:$FullImm)>;
-}
-
-let Constraints = "$src = $Rd",
- SchedRW = [WriteALU, ReadALU] in
-defm MOVK : A64I_movwSizes<0b11, "movk",
- (ins GPR32:$src, movk32_imm:$FullImm),
- (ins GPR64:$src, movk64_imm:$FullImm)>;
-
-
-// And now the "MOV" aliases. These also need their own operands because what
-// they accept is completely different to what the base instructions accept.
-multiclass movalias_operand<string prefix, string basename,
- string immpredicate, int width> {
- def _asmoperand : AsmOperandClass {
- let Name = basename # width # "MovAlias";
- let PredicateMethod
- = "isMoveWideMovAlias<" # width # ", A64Imms::" # immpredicate # ">";
- let RenderMethod
- = "addMoveWideMovAliasOperands<" # width # ", "
- # "A64Imms::" # immpredicate # ">";
- }
-
- def _movimm : Operand<i64> {
- let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
-
- let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
- }
-}
-
-defm movz32 : movalias_operand<"movz32", "MOVZ", "isMOVZImm", 32>;
-defm movz64 : movalias_operand<"movz64", "MOVZ", "isMOVZImm", 64>;
-defm movn32 : movalias_operand<"movn32", "MOVN", "isOnlyMOVNImm", 32>;
-defm movn64 : movalias_operand<"movn64", "MOVN", "isOnlyMOVNImm", 64>;
-
-// FIXME: these are officially canonical aliases, but TableGen is too limited to
-// print them at the moment. I believe in this case an "AliasPredicate" method
-// will need to be implemented. to allow it, as well as the more generally
-// useful handling of non-register, non-constant operands.
-class movalias<Instruction INST, RegisterClass GPR, Operand operand>
- : InstAlias<"mov $Rd, $FullImm", (INST GPR:$Rd, operand:$FullImm), 0>;
-
-def : movalias<MOVZwii, GPR32, movz32_movimm>;
-def : movalias<MOVZxii, GPR64, movz64_movimm>;
-def : movalias<MOVNwii, GPR32, movn32_movimm>;
-def : movalias<MOVNxii, GPR64, movn64_movimm>;
-
-def movw_addressref_g0 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<0>">;
-def movw_addressref_g1 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<1>">;
-def movw_addressref_g2 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<2>">;
-def movw_addressref_g3 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<3>">;
-
-def : Pat<(A64WrapperLarge movw_addressref_g3:$G3, movw_addressref_g2:$G2,
- movw_addressref_g1:$G1, movw_addressref_g0:$G0),
- (MOVKxii (MOVKxii (MOVKxii (MOVZxii movw_addressref_g3:$G3),
- movw_addressref_g2:$G2),
- movw_addressref_g1:$G1),
- movw_addressref_g0:$G0)>;
-
-//===----------------------------------------------------------------------===//
-// PC-relative addressing instructions
-//===----------------------------------------------------------------------===//
-// Contains: ADR, ADRP
-
-def adr_label : Operand<i64> {
- let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_adr_prel>";
-
- // This label is a 21-bit offset from PC, unscaled
- let PrintMethod = "printLabelOperand<21, 1>";
- let ParserMatchClass = label_asmoperand<21, 1>;
- let OperandType = "OPERAND_PCREL";
-}
-
-def adrp_label_asmoperand : AsmOperandClass {
- let Name = "AdrpLabel";
- let RenderMethod = "addLabelOperands<21, 4096>";
- let DiagnosticType = "Label";
-}
-
-def adrp_label : Operand<i64> {
- let EncoderMethod = "getAdrpLabelOpValue";
-
- // This label is a 21-bit offset from PC, scaled by the page-size: 4096.
- let PrintMethod = "printLabelOperand<21, 4096>";
- let ParserMatchClass = adrp_label_asmoperand;
- let OperandType = "OPERAND_PCREL";
-}
-
-let hasSideEffects = 0 in {
- def ADRxi : A64I_PCADR<0b0, (outs GPR64:$Rd), (ins adr_label:$Label),
- "adr\t$Rd, $Label", [], NoItinerary>,
- Sched<[WriteALUs]>;
-
- def ADRPxi : A64I_PCADR<0b1, (outs GPR64:$Rd), (ins adrp_label:$Label),
- "adrp\t$Rd, $Label", [], NoItinerary>,
- Sched<[WriteALUs]>;
-}
-
-//===----------------------------------------------------------------------===//
-// System instructions
-//===----------------------------------------------------------------------===//
-// Contains: HINT, CLREX, DSB, DMB, ISB, MSR, SYS, SYSL, MRS
-// + aliases IC, DC, AT, TLBI, NOP, YIELD, WFE, WFI, SEV, SEVL
-
-// Op1 and Op2 fields are sometimes simple 3-bit unsigned immediate values.
-def uimm3_asmoperand : AsmOperandClass {
- let Name = "UImm3";
- let PredicateMethod = "isUImm<3>";
- let RenderMethod = "addImmOperands";
- let DiagnosticType = "UImm3";
-}
-
-def uimm3 : Operand<i32> {
- let ParserMatchClass = uimm3_asmoperand;
-}
-
-// The HINT alias can accept a simple unsigned 7-bit immediate.
-def uimm7_asmoperand : AsmOperandClass {
- let Name = "UImm7";
- let PredicateMethod = "isUImm<7>";
- let RenderMethod = "addImmOperands";
- let DiagnosticType = "UImm7";
-}
-
-def uimm7 : Operand<i32> {
- let ParserMatchClass = uimm7_asmoperand;
-}
-
-// Multiclass namedimm is defined with the prefetch operands. Most of these fit
-// into the NamedImmMapper scheme well: they either accept a named operand or
-// any immediate under a particular value (which may be 0, implying no immediate
-// is allowed).
-defm dbarrier : namedimm<"dbarrier", "A64DB::DBarrierMapper">;
-defm isb : namedimm<"isb", "A64ISB::ISBMapper">;
-defm ic : namedimm<"ic", "A64IC::ICMapper">;
-defm dc : namedimm<"dc", "A64DC::DCMapper">;
-defm at : namedimm<"at", "A64AT::ATMapper">;
-defm tlbi : namedimm<"tlbi", "A64TLBI::TLBIMapper">;
-
-// However, MRS and MSR are more complicated for a few reasons:
-// * There are ~1000 generic names S3_<op1>_<CRn>_<CRm>_<Op2> which have an
-// implementation-defined effect
-// * Most registers are shared, but some are read-only or write-only.
-// * There is a variant of MSR which accepts the same register name (SPSel),
-// but which would have a different encoding.
-
-// In principle these could be resolved in with more complicated subclasses of
-// NamedImmMapper, however that imposes an overhead on other "named
-// immediates". Both in concrete terms with virtual tables and in unnecessary
-// abstraction.
-
-// The solution adopted here is to take the MRS/MSR Mappers out of the usual
-// hierarchy (they're not derived from NamedImmMapper) and to add logic for
-// their special situation.
-def mrs_asmoperand : AsmOperandClass {
- let Name = "MRS";
- let ParserMethod = "ParseSysRegOperand";
- let DiagnosticType = "MRS";
-}
-
-def mrs_op : Operand<i32> {
- let ParserMatchClass = mrs_asmoperand;
- let PrintMethod = "printMRSOperand";
- let DecoderMethod = "DecodeMRSOperand";
-}
-
-def msr_asmoperand : AsmOperandClass {
- let Name = "MSRWithReg";
-
- // Note that SPSel is valid for both this and the pstate operands, but with
- // different immediate encodings. This is why these operands provide a string
- // AArch64Operand rather than an immediate. The overlap is small enough that
- // it could be resolved with hackery now, but who can say in future?
- let ParserMethod = "ParseSysRegOperand";
- let DiagnosticType = "MSR";
-}
-
-def msr_op : Operand<i32> {
- let ParserMatchClass = msr_asmoperand;
- let PrintMethod = "printMSROperand";
- let DecoderMethod = "DecodeMSROperand";
-}
-
-def pstate_asmoperand : AsmOperandClass {
- let Name = "MSRPState";
- // See comment above about parser.
- let ParserMethod = "ParseSysRegOperand";
- let DiagnosticType = "MSR";
-}
-
-def pstate_op : Operand<i32> {
- let ParserMatchClass = pstate_asmoperand;
- let PrintMethod = "printNamedImmOperand<A64PState::PStateMapper>";
- let DecoderMethod = "DecodeNamedImmOperand<A64PState::PStateMapper>";
-}
-
-// When <CRn> is specified, an assembler should accept something like "C4", not
-// the usual "#4" immediate.
-def CRx_asmoperand : AsmOperandClass {
- let Name = "CRx";
- let PredicateMethod = "isUImm<4>";
- let RenderMethod = "addImmOperands";
- let ParserMethod = "ParseCRxOperand";
- // Diagnostics are handled in all cases by ParseCRxOperand.
-}
-
-def CRx : Operand<i32> {
- let ParserMatchClass = CRx_asmoperand;
- let PrintMethod = "printCRxOperand";
-}
-
-
-// Finally, we can start defining the instructions.
-
-// HINT is straightforward, with a few aliases.
-def HINTi : A64I_system<0b0, (outs), (ins uimm7:$UImm7), "hint\t$UImm7",
- [], NoItinerary> {
- bits<7> UImm7;
- let CRm = UImm7{6-3};
- let Op2 = UImm7{2-0};
-
- let Op0 = 0b00;
- let Op1 = 0b011;
- let CRn = 0b0010;
- let Rt = 0b11111;
-}
-
-def : InstAlias<"nop", (HINTi 0)>;
-def : InstAlias<"yield", (HINTi 1)>;
-def : InstAlias<"wfe", (HINTi 2)>;
-def : InstAlias<"wfi", (HINTi 3)>;
-def : InstAlias<"sev", (HINTi 4)>;
-def : InstAlias<"sevl", (HINTi 5)>;
-
-// Quite a few instructions then follow a similar pattern of fixing common
-// fields in the bitpattern, we'll define a helper-class for them.
-class simple_sys<bits<2> op0, bits<3> op1, bits<4> crn, bits<3> op2,
- Operand operand, string asmop>
- : A64I_system<0b0, (outs), (ins operand:$CRm), !strconcat(asmop, "\t$CRm"),
- [], NoItinerary> {
- let Op0 = op0;
- let Op1 = op1;
- let CRn = crn;
- let Op2 = op2;
- let Rt = 0b11111;
-}
-
-
-def CLREXi : simple_sys<0b00, 0b011, 0b0011, 0b010, uimm4, "clrex">;
-def DSBi : simple_sys<0b00, 0b011, 0b0011, 0b100, dbarrier_op, "dsb">;
-def DMBi : simple_sys<0b00, 0b011, 0b0011, 0b101, dbarrier_op, "dmb">;
-def ISBi : simple_sys<0b00, 0b011, 0b0011, 0b110, isb_op, "isb">;
-
-def : InstAlias<"clrex", (CLREXi 0b1111)>;
-def : InstAlias<"isb", (ISBi 0b1111)>;
-
-// (DMBi 0xb) is a "DMB ISH" instruciton, appropriate for Linux SMP
-// configurations at least.
-def : Pat<(atomic_fence imm, imm), (DMBi 0xb)>;
-
-// Any SYS bitpattern can be represented with a complex and opaque "SYS"
-// instruction.
-def SYSiccix : A64I_system<0b0, (outs),
- (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm,
- uimm3:$Op2, GPR64:$Rt),
- "sys\t$Op1, $CRn, $CRm, $Op2, $Rt",
- [], NoItinerary> {
- let Op0 = 0b01;
-}
-
-// You can skip the Xt argument whether it makes sense or not for the generic
-// SYS instruction.
-def : InstAlias<"sys $Op1, $CRn, $CRm, $Op2",
- (SYSiccix uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, XZR)>;
-
-
-// But many have aliases, which obviously don't fit into
-class SYSalias<dag ins, string asmstring>
- : A64I_system<0b0, (outs), ins, asmstring, [], NoItinerary> {
- let isAsmParserOnly = 1;
-
- bits<14> SysOp;
- let Op0 = 0b01;
- let Op1 = SysOp{13-11};
- let CRn = SysOp{10-7};
- let CRm = SysOp{6-3};
- let Op2 = SysOp{2-0};
-}
-
-def ICix : SYSalias<(ins ic_op:$SysOp, GPR64:$Rt), "ic\t$SysOp, $Rt">;
-
-def ICi : SYSalias<(ins ic_op:$SysOp), "ic\t$SysOp"> {
- let Rt = 0b11111;
-}
-
-def DCix : SYSalias<(ins dc_op:$SysOp, GPR64:$Rt), "dc\t$SysOp, $Rt">;
-def ATix : SYSalias<(ins at_op:$SysOp, GPR64:$Rt), "at\t$SysOp, $Rt">;
-
-def TLBIix : SYSalias<(ins tlbi_op:$SysOp, GPR64:$Rt), "tlbi\t$SysOp, $Rt">;
-
-def TLBIi : SYSalias<(ins tlbi_op:$SysOp), "tlbi\t$SysOp"> {
- let Rt = 0b11111;
-}
-
-
-def SYSLxicci : A64I_system<0b1, (outs GPR64:$Rt),
- (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2),
- "sysl\t$Rt, $Op1, $CRn, $CRm, $Op2",
- [], NoItinerary> {
- let Op0 = 0b01;
-}
-
-// The instructions themselves are rather simple for MSR and MRS.
-def MSRix : A64I_system<0b0, (outs), (ins msr_op:$SysReg, GPR64:$Rt),
- "msr\t$SysReg, $Rt", [], NoItinerary> {
- bits<16> SysReg;
- let Op0 = SysReg{15-14};
- let Op1 = SysReg{13-11};
- let CRn = SysReg{10-7};
- let CRm = SysReg{6-3};
- let Op2 = SysReg{2-0};
-}
-
-def MRSxi : A64I_system<0b1, (outs GPR64:$Rt), (ins mrs_op:$SysReg),
- "mrs\t$Rt, $SysReg", [], NoItinerary> {
- bits<16> SysReg;
- let Op0 = SysReg{15-14};
- let Op1 = SysReg{13-11};
- let CRn = SysReg{10-7};
- let CRm = SysReg{6-3};
- let Op2 = SysReg{2-0};
-}
-
-def MSRii : A64I_system<0b0, (outs), (ins pstate_op:$PState, uimm4:$CRm),
- "msr\t$PState, $CRm", [], NoItinerary> {
- bits<6> PState;
-
- let Op0 = 0b00;
- let Op1 = PState{5-3};
- let CRn = 0b0100;
- let Op2 = PState{2-0};
- let Rt = 0b11111;
-}
-
-//===----------------------------------------------------------------------===//
-// Test & branch (immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: TBZ, TBNZ
-
-// The bit to test is a simple unsigned 6-bit immediate in the X-register
-// versions.
-def uimm6 : Operand<i64> {
- let ParserMatchClass = uimm6_asmoperand;
-}
-
-def label_wid14_scal4_asmoperand : label_asmoperand<14, 4>;
-
-def tbimm_target : Operand<OtherVT> {
- let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_tstbr>";
-
- // This label is a 14-bit offset from PC, scaled by the instruction-width: 4.
- let PrintMethod = "printLabelOperand<14, 4>";
- let ParserMatchClass = label_wid14_scal4_asmoperand;
-
- let OperandType = "OPERAND_PCREL";
-}
-
-def A64eq : ImmLeaf<i32, [{ return Imm == A64CC::EQ; }]>;
-def A64ne : ImmLeaf<i32, [{ return Imm == A64CC::NE; }]>;
-
-// These instructions correspond to patterns involving "and" with a power of
-// two, which we need to be able to select.
-def tstb64_pat : ComplexPattern<i64, 1, "SelectTSTBOperand<64>">;
-def tstb32_pat : ComplexPattern<i32, 1, "SelectTSTBOperand<32>">;
-
-let isBranch = 1, isTerminator = 1 in {
- def TBZxii : A64I_TBimm<0b0, (outs),
- (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
- "tbz\t$Rt, $Imm, $Label",
- [(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
- A64eq, bb:$Label)],
- NoItinerary>,
- Sched<[WriteBr]>;
-
- def TBNZxii : A64I_TBimm<0b1, (outs),
- (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
- "tbnz\t$Rt, $Imm, $Label",
- [(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
- A64ne, bb:$Label)],
- NoItinerary>,
- Sched<[WriteBr]>;
-
-
- // Note, these instructions overlap with the above 64-bit patterns. This is
- // intentional, "tbz x3, #1, somewhere" and "tbz w3, #1, somewhere" would both
- // do the same thing and are both permitted assembly. They also both have
- // sensible DAG patterns.
- def TBZwii : A64I_TBimm<0b0, (outs),
- (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
- "tbz\t$Rt, $Imm, $Label",
- [(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
- A64eq, bb:$Label)],
- NoItinerary>,
- Sched<[WriteBr]> {
- let Imm{5} = 0b0;
- }
-
- def TBNZwii : A64I_TBimm<0b1, (outs),
- (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
- "tbnz\t$Rt, $Imm, $Label",
- [(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
- A64ne, bb:$Label)],
- NoItinerary>,
- Sched<[WriteBr]> {
- let Imm{5} = 0b0;
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Unconditional branch (immediate) instructions
-//===----------------------------------------------------------------------===//
-// Contains: B, BL
-
-def label_wid26_scal4_asmoperand : label_asmoperand<26, 4>;
-
-def bimm_target : Operand<OtherVT> {
- let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_uncondbr>";
-
- // This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
- let PrintMethod = "printLabelOperand<26, 4>";
- let ParserMatchClass = label_wid26_scal4_asmoperand;
-
- let OperandType = "OPERAND_PCREL";
-}
-
-def blimm_target : Operand<i64> {
- let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_call>";
-
- // This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
- let PrintMethod = "printLabelOperand<26, 4>";
- let ParserMatchClass = label_wid26_scal4_asmoperand;
-
- let OperandType = "OPERAND_PCREL";
-}
-
-class A64I_BimmImpl<bit op, string asmop, list<dag> patterns, Operand lbl_type>
- : A64I_Bimm<op, (outs), (ins lbl_type:$Label),
- !strconcat(asmop, "\t$Label"), patterns,
- NoItinerary>,
- Sched<[WriteBr]>;
-
-let isBranch = 1 in {
- def Bimm : A64I_BimmImpl<0b0, "b", [(br bb:$Label)], bimm_target> {
- let isTerminator = 1;
- let isBarrier = 1;
- }
-
- let SchedRW = [WriteBrL] in {
- def BLimm : A64I_BimmImpl<0b1, "bl",
- [(AArch64Call tglobaladdr:$Label)], blimm_target> {
- let isCall = 1;
- let Defs = [X30];
- }
- }
-}
-
-def : Pat<(AArch64Call texternalsym:$Label), (BLimm texternalsym:$Label)>;
-
-//===----------------------------------------------------------------------===//
-// Unconditional branch (register) instructions
-//===----------------------------------------------------------------------===//
-// Contains: BR, BLR, RET, ERET, DRP.
-
-// Most of the notional opcode fields in the A64I_Breg format are fixed in A64
-// at the moment.
-class A64I_BregImpl<bits<4> opc,
- dag outs, dag ins, string asmstr, list<dag> patterns,
- InstrItinClass itin = NoItinerary>
- : A64I_Breg<opc, 0b11111, 0b000000, 0b00000,
- outs, ins, asmstr, patterns, itin>,
- Sched<[WriteBr]> {
- let isBranch = 1;
- let isIndirectBranch = 1;
-}
-
-// Note that these are not marked isCall or isReturn because as far as LLVM is
-// concerned they're not. "ret" is just another jump unless it has been selected
-// by LLVM as the function's return.
-
-let isBranch = 1 in {
- def BRx : A64I_BregImpl<0b0000,(outs), (ins GPR64:$Rn),
- "br\t$Rn", [(brind i64:$Rn)]> {
- let isBarrier = 1;
- let isTerminator = 1;
- }
-
- let SchedRW = [WriteBrL] in {
- def BLRx : A64I_BregImpl<0b0001, (outs), (ins GPR64:$Rn),
- "blr\t$Rn", [(AArch64Call i64:$Rn)]> {
- let isBarrier = 0;
- let isCall = 1;
- let Defs = [X30];
- }
- }
-
- def RETx : A64I_BregImpl<0b0010, (outs), (ins GPR64:$Rn),
- "ret\t$Rn", []> {
- let isBarrier = 1;
- let isTerminator = 1;
- let isReturn = 1;
- }
-
- // Create a separate pseudo-instruction for codegen to use so that we don't
- // flag x30 as used in every function. It'll be restored before the RET by the
- // epilogue if it's legitimately used.
- def RET : A64PseudoExpand<(outs), (ins), [(A64ret)], (RETx (ops X30))> {
- let isTerminator = 1;
- let isBarrier = 1;
- let isReturn = 1;
- }
-
- def ERET : A64I_BregImpl<0b0100, (outs), (ins), "eret", []> {
- let Rn = 0b11111;
- let isBarrier = 1;
- let isTerminator = 1;
- let isReturn = 1;
- }
-
- def DRPS : A64I_BregImpl<0b0101, (outs), (ins), "drps", []> {
- let Rn = 0b11111;
- let isBarrier = 1;
- }
-}
-
-def RETAlias : InstAlias<"ret", (RETx X30)>;
-
-
-//===----------------------------------------------------------------------===//
-// Address generation patterns
-//===----------------------------------------------------------------------===//
-
-// Primary method of address generation for the small/absolute memory model is
-// an ADRP/ADR pair:
-// ADRP x0, some_variable
-// ADD x0, x0, #:lo12:some_variable
-//
-// The load/store elision of the ADD is accomplished when selecting
-// addressing-modes. This just mops up the cases where that doesn't work and we
-// really need an address in some register.
-
-// This wrapper applies a LO12 modifier to the address. Otherwise we could just
-// use the same address.
-
-class ADRP_ADD<SDNode Wrapper, SDNode addrop>
- : Pat<(Wrapper addrop:$Hi, addrop:$Lo12, (i32 imm)),
- (ADDxxi_lsl0_s (ADRPxi addrop:$Hi), addrop:$Lo12)>;
-
-def : ADRP_ADD<A64WrapperSmall, tblockaddress>;
-def : ADRP_ADD<A64WrapperSmall, texternalsym>;
-def : ADRP_ADD<A64WrapperSmall, tglobaladdr>;
-def : ADRP_ADD<A64WrapperSmall, tglobaltlsaddr>;
-def : ADRP_ADD<A64WrapperSmall, tjumptable>;
-def : ADRP_ADD<A64WrapperSmall, tconstpool>;
-
-//===----------------------------------------------------------------------===//
-// GOT access patterns
-//===----------------------------------------------------------------------===//
-
-class GOTLoadSmall<SDNode addrfrag>
- : Pat<(A64GOTLoad (A64WrapperSmall addrfrag:$Hi, addrfrag:$Lo12, 8)),
- (LS64_LDR (ADRPxi addrfrag:$Hi), addrfrag:$Lo12)>;
-
-def : GOTLoadSmall<texternalsym>;
-def : GOTLoadSmall<tglobaladdr>;
-def : GOTLoadSmall<tglobaltlsaddr>;
-
-//===----------------------------------------------------------------------===//
-// Tail call handling
-//===----------------------------------------------------------------------===//
-
-let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in {
- def TC_RETURNdi
- : PseudoInst<(outs), (ins i64imm:$dst, i32imm:$FPDiff),
- [(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff))]>;
-
- def TC_RETURNxi
- : PseudoInst<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff),
- [(AArch64tcret i64:$dst, (i32 timm:$FPDiff))]>;
-}
-
-let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
- Uses = [XSP] in {
- def TAIL_Bimm : A64PseudoExpand<(outs), (ins bimm_target:$Label), [],
- (Bimm bimm_target:$Label)>;
-
- def TAIL_BRx : A64PseudoExpand<(outs), (ins tcGPR64:$Rd), [],
- (BRx GPR64:$Rd)>;
-}
-
-
-def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
- (TC_RETURNdi texternalsym:$dst, imm:$FPDiff)>;
-
-//===----------------------------------------------------------------------===//
-// Thread local storage
-//===----------------------------------------------------------------------===//
-
-// This is a pseudo-instruction representing the ".tlsdesccall" directive in
-// assembly. Its effect is to insert an R_AARCH64_TLSDESC_CALL relocation at the
-// current location. It should always be immediately followed by a BLR
-// instruction, and is intended solely for relaxation by the linker.
-
-def : Pat<(A64threadpointer), (MRSxi 0xde82)>;
-
-def TLSDESCCALL : PseudoInst<(outs), (ins i64imm:$Lbl), []> {
- let hasSideEffects = 1;
-}
-
-def TLSDESC_BLRx : PseudoInst<(outs), (ins GPR64:$Rn, i64imm:$Var),
- [(A64tlsdesc_blr i64:$Rn, tglobaltlsaddr:$Var)]> {
- let isCall = 1;
- let Defs = [X30];
-}
-
-def : Pat<(A64tlsdesc_blr i64:$Rn, texternalsym:$Var),
- (TLSDESC_BLRx $Rn, texternalsym:$Var)>;
-
-//===----------------------------------------------------------------------===//
-// Bitfield patterns
-//===----------------------------------------------------------------------===//
-
-def bfi32_lsb_to_immr : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant((32 - N->getZExtValue()) % 32, MVT::i64);
-}]>;
-
-def bfi64_lsb_to_immr : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant((64 - N->getZExtValue()) % 64, MVT::i64);
-}]>;
-
-def bfi_width_to_imms : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(N->getZExtValue() - 1, MVT::i64);
-}]>;
-
-
-// The simpler patterns deal with cases where no AND mask is actually needed
-// (either all bits are used or the low 32 bits are used).
-let AddedComplexity = 10 in {
-
-def : Pat<(A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
- (BFIxxii $src, $Rn,
- (bfi64_lsb_to_immr (i64 imm:$ImmR)),
- (bfi_width_to_imms (i64 imm:$ImmS)))>;
-
-def : Pat<(A64Bfi i32:$src, i32:$Rn, imm:$ImmR, imm:$ImmS),
- (BFIwwii $src, $Rn,
- (bfi32_lsb_to_immr (i64 imm:$ImmR)),
- (bfi_width_to_imms (i64 imm:$ImmS)))>;
-
-
-def : Pat<(and (A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
- (i64 4294967295)),
- (SUBREG_TO_REG (i64 0),
- (BFIwwii (EXTRACT_SUBREG $src, sub_32),
- (EXTRACT_SUBREG $Rn, sub_32),
- (bfi32_lsb_to_immr (i64 imm:$ImmR)),
- (bfi_width_to_imms (i64 imm:$ImmS))),
- sub_32)>;
-
-}
-
-//===----------------------------------------------------------------------===//
-// Miscellaneous patterns
-//===----------------------------------------------------------------------===//
-
-// Truncation from 64 to 32-bits just involves renaming your register.
-def : Pat<(i32 (trunc i64:$val)), (EXTRACT_SUBREG $val, sub_32)>;
-
-// Similarly, extension where we don't care about the high bits is
-// just a rename.
-def : Pat<(i64 (anyext i32:$val)),
- (INSERT_SUBREG (IMPLICIT_DEF), $val, sub_32)>;
-
-// SELECT instructions providing f128 types need to be handled by a
-// pseudo-instruction since the eventual code will need to introduce basic
-// blocks and control flow.
-def F128CSEL : PseudoInst<(outs FPR128:$Rd),
- (ins FPR128:$Rn, FPR128:$Rm, cond_code_op:$Cond),
- [(set f128:$Rd, (simple_select f128:$Rn, f128:$Rm))]> {
- let Uses = [NZCV];
- let usesCustomInserter = 1;
-}
-
-//===----------------------------------------------------------------------===//
-// Load/store patterns
-//===----------------------------------------------------------------------===//
-
-// There are lots of patterns here, because we need to allow at least three
-// parameters to vary independently.
-// 1. Instruction: "ldrb w9, [sp]", "ldrh w9, [sp]", ...
-// 2. LLVM source: zextloadi8, anyextloadi8, ...
-// 3. Address-generation: A64Wrapper, (add BASE, OFFSET), ...
-//
-// The biggest problem turns out to be the address-generation variable. At the
-// point of instantiation we need to produce two DAGs, one for the pattern and
-// one for the instruction. Doing this at the lowest level of classes doesn't
-// work.
-//
-// Consider the simple uimm12 addressing mode, and the desire to match both (add
-// GPR64xsp:$Rn, uimm12:$Offset) and GPR64xsp:$Rn, particularly on the
-// instruction side. We'd need to insert either "GPR64xsp" and "uimm12" or
-// "GPR64xsp" and "0" into an unknown dag. !subst is not capable of this
-// operation, and PatFrags are for selection not output.
-//
-// As a result, the address-generation patterns are the final
-// instantiations. However, we do still need to vary the operand for the address
-// further down (At the point we're deciding A64WrapperSmall, we don't know
-// the memory width of the operation).
-
-//===------------------------------
-// 1. Basic infrastructural defs
-//===------------------------------
-
-// First, some simple classes for !foreach and !subst to use:
-class Decls {
- dag pattern;
-}
-
-def decls : Decls;
-def ALIGN;
-def INST;
-def OFFSET;
-def SHIFT;
-
-// You can't use !subst on an actual immediate, but you *can* use it on an
-// operand record that happens to match a single immediate. So we do.
-def imm_eq0 : ImmLeaf<i64, [{ return Imm == 0; }]>;
-def imm_eq1 : ImmLeaf<i64, [{ return Imm == 1; }]>;
-def imm_eq2 : ImmLeaf<i64, [{ return Imm == 2; }]>;
-def imm_eq3 : ImmLeaf<i64, [{ return Imm == 3; }]>;
-def imm_eq4 : ImmLeaf<i64, [{ return Imm == 4; }]>;
-
-// If the low bits of a pointer are known to be 0 then an "or" is just as good
-// as addition for computing an offset. This fragment forwards that check for
-// TableGen's use.
-def add_like_or : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),
-[{
- return CurDAG->isBaseWithConstantOffset(SDValue(N, 0));
-}]>;
-
-// Load/store (unsigned immediate) operations with relocations against global
-// symbols (for lo12) are only valid if those symbols have correct alignment
-// (since the immediate offset is divided by the access scale, it can't have a
-// remainder).
-//
-// The guaranteed alignment is provided as part of the WrapperSmall
-// operation, and checked against one of these.
-def any_align : ImmLeaf<i32, [{ (void)Imm; return true; }]>;
-def min_align2 : ImmLeaf<i32, [{ return Imm >= 2; }]>;
-def min_align4 : ImmLeaf<i32, [{ return Imm >= 4; }]>;
-def min_align8 : ImmLeaf<i32, [{ return Imm >= 8; }]>;
-def min_align16 : ImmLeaf<i32, [{ return Imm >= 16; }]>;
-
-// "Normal" load/store instructions can be used on atomic operations, provided
-// the ordering parameter is at most "monotonic". Anything above that needs
-// special handling with acquire/release instructions.
-class simple_load<PatFrag base>
- : PatFrag<(ops node:$ptr), (base node:$ptr), [{
- return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
-}]>;
-
-def atomic_load_simple_i8 : simple_load<atomic_load_8>;
-def atomic_load_simple_i16 : simple_load<atomic_load_16>;
-def atomic_load_simple_i32 : simple_load<atomic_load_32>;
-def atomic_load_simple_i64 : simple_load<atomic_load_64>;
-
-class simple_store<PatFrag base>
- : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
- return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
-}]>;
-
-def atomic_store_simple_i8 : simple_store<atomic_store_8>;
-def atomic_store_simple_i16 : simple_store<atomic_store_16>;
-def atomic_store_simple_i32 : simple_store<atomic_store_32>;
-def atomic_store_simple_i64 : simple_store<atomic_store_64>;
-
-//===------------------------------
-// 2. UImm12 and SImm9
-//===------------------------------
-
-// These instructions have two operands providing the address so they can be
-// treated similarly for most purposes.
-
-//===------------------------------
-// 2.1 Base patterns covering extend/truncate semantics
-//===------------------------------
-
-// Atomic patterns can be shared between integer operations of all sizes, a
-// quick multiclass here allows reuse.
-multiclass ls_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
- dag Offset, dag address, ValueType transty,
- ValueType sty> {
- def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
- (LOAD Base, Offset)>;
-
- def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
- (STORE $Rt, Base, Offset)>;
-}
-
-// Instructions accessing a memory chunk smaller than a register (or, in a
-// pinch, the same size) have a characteristic set of patterns they want to
-// match: extending loads and truncating stores. This class deals with the
-// sign-neutral version of those patterns.
-//
-// It will be instantiated across multiple addressing-modes.
-multiclass ls_small_pats<Instruction LOAD, Instruction STORE,
- dag Base, dag Offset,
- dag address, ValueType sty>
- : ls_atomic_pats<LOAD, STORE, Base, Offset, address, i32, sty> {
- def : Pat<(!cast<SDNode>(zextload # sty) address), (LOAD Base, Offset)>;
-
- def : Pat<(!cast<SDNode>(extload # sty) address), (LOAD Base, Offset)>;
-
- // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
- // register was actually set.
- def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
- (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
-
- def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
- (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
-
- def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
- (STORE $Rt, Base, Offset)>;
-
- // For truncating store from 64-bits, we have to manually tell LLVM to
- // ignore the high bits of the x register.
- def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
- (STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
-}
-
-// Next come patterns for sign-extending loads.
-multiclass load_signed_pats<string T, string U, dag Base, dag Offset,
- dag address, ValueType sty> {
- def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
- (!cast<Instruction>("LDRS" # T # "w" # U) Base, Offset)>;
-
- def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
- (!cast<Instruction>("LDRS" # T # "x" # U) Base, Offset)>;
-
-}
-
-// and finally "natural-width" loads and stores come next.
-multiclass ls_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
- dag Offset, dag address, ValueType sty> {
- def : Pat<(sty (load address)), (LOAD Base, Offset)>;
- def : Pat<(store sty:$Rt, address), (STORE $Rt, Base, Offset)>;
-}
-
-// Integer operations also get atomic instructions to select for.
-multiclass ls_int_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
- dag Offset, dag address, ValueType sty>
- : ls_neutral_pats<LOAD, STORE, Base, Offset, address, sty>,
- ls_atomic_pats<LOAD, STORE, Base, Offset, address, sty, sty>;
-
-//===------------------------------
-// 2.2. Addressing-mode instantiations
-//===------------------------------
-
-multiclass uimm12_pats<dag address, dag Base, dag Offset> {
- defm : ls_small_pats<LS8_LDR, LS8_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, byte_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, byte_uimm12,
- !subst(ALIGN, any_align, decls.pattern))),
- i8>;
- defm : ls_small_pats<LS16_LDR, LS16_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, hword_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, hword_uimm12,
- !subst(ALIGN, min_align2, decls.pattern))),
- i16>;
- defm : ls_small_pats<LS32_LDR, LS32_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, word_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, word_uimm12,
- !subst(ALIGN, min_align4, decls.pattern))),
- i32>;
-
- defm : ls_int_neutral_pats<LS32_LDR, LS32_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, word_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, word_uimm12,
- !subst(ALIGN, min_align4, decls.pattern))),
- i32>;
-
- defm : ls_int_neutral_pats<LS64_LDR, LS64_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, dword_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, dword_uimm12,
- !subst(ALIGN, min_align8, decls.pattern))),
- i64>;
-
- defm : ls_neutral_pats<LSFP16_LDR, LSFP16_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, hword_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, hword_uimm12,
- !subst(ALIGN, min_align2, decls.pattern))),
- f16>;
-
- defm : ls_neutral_pats<LSFP32_LDR, LSFP32_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, word_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, word_uimm12,
- !subst(ALIGN, min_align4, decls.pattern))),
- f32>;
-
- defm : ls_neutral_pats<LSFP64_LDR, LSFP64_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, dword_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, dword_uimm12,
- !subst(ALIGN, min_align8, decls.pattern))),
- f64>;
-
- defm : ls_neutral_pats<LSFP128_LDR, LSFP128_STR, Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, qword_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, qword_uimm12,
- !subst(ALIGN, min_align16, decls.pattern))),
- f128>;
-
- defm : load_signed_pats<"B", "", Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, byte_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, byte_uimm12,
- !subst(ALIGN, any_align, decls.pattern))),
- i8>;
-
- defm : load_signed_pats<"H", "", Base,
- !foreach(decls.pattern, Offset,
- !subst(OFFSET, hword_uimm12, decls.pattern)),
- !foreach(decls.pattern, address,
- !subst(OFFSET, hword_uimm12,
- !subst(ALIGN, min_align2, decls.pattern))),
- i16>;
-
- def : Pat<(sextloadi32 !foreach(decls.pattern, address,
- !subst(OFFSET, word_uimm12,
- !subst(ALIGN, min_align4, decls.pattern)))),
- (LDRSWx Base, !foreach(decls.pattern, Offset,
- !subst(OFFSET, word_uimm12, decls.pattern)))>;
-}
-
-// Straightforward patterns of last resort: a pointer with or without an
-// appropriate offset.
-defm : uimm12_pats<(i64 i64:$Rn), (i64 i64:$Rn), (i64 0)>;
-defm : uimm12_pats<(add i64:$Rn, OFFSET:$UImm12),
- (i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
-
-// The offset could be hidden behind an "or", of course:
-defm : uimm12_pats<(add_like_or i64:$Rn, OFFSET:$UImm12),
- (i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
-
-// Global addresses under the small-absolute model should use these
-// instructions. There are ELF relocations specifically for it.
-defm : uimm12_pats<(A64WrapperSmall tglobaladdr:$Hi, tglobaladdr:$Lo12, ALIGN),
- (ADRPxi tglobaladdr:$Hi), (i64 tglobaladdr:$Lo12)>;
-
-defm : uimm12_pats<(A64WrapperSmall tglobaltlsaddr:$Hi, tglobaltlsaddr:$Lo12,
- ALIGN),
- (ADRPxi tglobaltlsaddr:$Hi), (i64 tglobaltlsaddr:$Lo12)>;
-
-// External symbols that make it this far should also get standard relocations.
-defm : uimm12_pats<(A64WrapperSmall texternalsym:$Hi, texternalsym:$Lo12,
- ALIGN),
- (ADRPxi texternalsym:$Hi), (i64 texternalsym:$Lo12)>;
-
-defm : uimm12_pats<(A64WrapperSmall tconstpool:$Hi, tconstpool:$Lo12, ALIGN),
- (ADRPxi tconstpool:$Hi), (i64 tconstpool:$Lo12)>;
-
-// We also want to use uimm12 instructions for local variables at the moment.
-def tframeindex_XFORM : SDNodeXForm<frameindex, [{
- int FI = cast<FrameIndexSDNode>(N)->getIndex();
- return CurDAG->getTargetFrameIndex(FI, MVT::i64);
-}]>;
-
-defm : uimm12_pats<(i64 frameindex:$Rn),
- (tframeindex_XFORM tframeindex:$Rn), (i64 0)>;
-
-// These can be much simpler than uimm12 because we don't to change the operand
-// type (e.g. LDURB and LDURH take the same operands).
-multiclass simm9_pats<dag address, dag Base, dag Offset> {
- defm : ls_small_pats<LS8_LDUR, LS8_STUR, Base, Offset, address, i8>;
- defm : ls_small_pats<LS16_LDUR, LS16_STUR, Base, Offset, address, i16>;
-
- defm : ls_int_neutral_pats<LS32_LDUR, LS32_STUR, Base, Offset, address, i32>;
- defm : ls_int_neutral_pats<LS64_LDUR, LS64_STUR, Base, Offset, address, i64>;
-
- defm : ls_neutral_pats<LSFP16_LDUR, LSFP16_STUR, Base, Offset, address, f16>;
- defm : ls_neutral_pats<LSFP32_LDUR, LSFP32_STUR, Base, Offset, address, f32>;
- defm : ls_neutral_pats<LSFP64_LDUR, LSFP64_STUR, Base, Offset, address, f64>;
- defm : ls_neutral_pats<LSFP128_LDUR, LSFP128_STUR, Base, Offset, address,
- f128>;
-
- def : Pat<(i64 (zextloadi32 address)),
- (SUBREG_TO_REG (i64 0), (LS32_LDUR Base, Offset), sub_32)>;
-
- def : Pat<(truncstorei32 i64:$Rt, address),
- (LS32_STUR (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
-
- defm : load_signed_pats<"B", "_U", Base, Offset, address, i8>;
- defm : load_signed_pats<"H", "_U", Base, Offset, address, i16>;
- def : Pat<(sextloadi32 address), (LDURSWx Base, Offset)>;
-}
-
-defm : simm9_pats<(add i64:$Rn, simm9:$SImm9),
- (i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
-
-defm : simm9_pats<(add_like_or i64:$Rn, simm9:$SImm9),
- (i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
-
-
-//===------------------------------
-// 3. Register offset patterns
-//===------------------------------
-
-// Atomic patterns can be shared between integer operations of all sizes, a
-// quick multiclass here allows reuse.
-multiclass ro_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
- dag Offset, dag Extend, dag address,
- ValueType transty, ValueType sty> {
- def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
- (LOAD Base, Offset, Extend)>;
-
- def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
- (STORE $Rt, Base, Offset, Extend)>;
-}
-
-// The register offset instructions take three operands giving the instruction,
-// and have an annoying split between instructions where Rm is 32-bit and
-// 64-bit. So we need a special hierarchy to describe them. Other than that the
-// same operations should be supported as for simm9 and uimm12 addressing.
-
-multiclass ro_small_pats<Instruction LOAD, Instruction STORE,
- dag Base, dag Offset, dag Extend,
- dag address, ValueType sty>
- : ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, i32, sty> {
- def : Pat<(!cast<SDNode>(zextload # sty) address),
- (LOAD Base, Offset, Extend)>;
-
- def : Pat<(!cast<SDNode>(extload # sty) address),
- (LOAD Base, Offset, Extend)>;
-
- // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
- // register was actually set.
- def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
- (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
-
- def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
- (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
-
- def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
- (STORE $Rt, Base, Offset, Extend)>;
-
- // For truncating store from 64-bits, we have to manually tell LLVM to
- // ignore the high bits of the x register.
- def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
- (STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset, Extend)>;
-
-}
-
-// Next come patterns for sign-extending loads.
-multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
- dag address, ValueType sty> {
- def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
- (!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
- Base, Offset, Extend)>;
-
- def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
- (!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
- Base, Offset, Extend)>;
-}
-
-// and finally "natural-width" loads and stores come next.
-multiclass ro_neutral_pats<Instruction LOAD, Instruction STORE,
- dag Base, dag Offset, dag Extend, dag address,
- ValueType sty> {
- def : Pat<(sty (load address)), (LOAD Base, Offset, Extend)>;
- def : Pat<(store sty:$Rt, address),
- (STORE $Rt, Base, Offset, Extend)>;
-}
-
-multiclass ro_int_neutral_pats<Instruction LOAD, Instruction STORE,
- dag Base, dag Offset, dag Extend, dag address,
- ValueType sty>
- : ro_neutral_pats<LOAD, STORE, Base, Offset, Extend, address, sty>,
- ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, sty, sty>;
-
-multiclass regoff_pats<string Rm, dag address, dag Base, dag Offset,
- dag Extend> {
- defm : ro_small_pats<!cast<Instruction>("LS8_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LS8_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq0, decls.pattern)),
- i8>;
- defm : ro_small_pats<!cast<Instruction>("LS16_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LS16_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq1, decls.pattern)),
- i16>;
- defm : ro_small_pats<!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq2, decls.pattern)),
- i32>;
-
- defm : ro_int_neutral_pats<
- !cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq2, decls.pattern)),
- i32>;
-
- defm : ro_int_neutral_pats<
- !cast<Instruction>("LS64_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LS64_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq3, decls.pattern)),
- i64>;
-
- defm : ro_neutral_pats<!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LSFP16_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq1, decls.pattern)),
- f16>;
-
- defm : ro_neutral_pats<!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LSFP32_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq2, decls.pattern)),
- f32>;
-
- defm : ro_neutral_pats<!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LSFP64_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq3, decls.pattern)),
- f64>;
-
- defm : ro_neutral_pats<!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_LDR"),
- !cast<Instruction>("LSFP128_" # Rm # "_RegOffset_STR"),
- Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq4, decls.pattern)),
- f128>;
-
- defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq0, decls.pattern)),
- i8>;
-
- defm : ro_signed_pats<"H", Rm, Base, Offset, Extend,
- !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq1, decls.pattern)),
- i16>;
-
- def : Pat<(sextloadi32 !foreach(decls.pattern, address,
- !subst(SHIFT, imm_eq2, decls.pattern))),
- (!cast<Instruction>("LDRSWx_" # Rm # "_RegOffset")
- Base, Offset, Extend)>;
-}
-
-
-// Finally we're in a position to tell LLVM exactly what addresses are reachable
-// using register-offset instructions. Essentially a base plus a possibly
-// extended, possibly shifted (by access size) offset.
-
-defm : regoff_pats<"Wm", (add i64:$Rn, (sext i32:$Rm)),
- (i64 i64:$Rn), (i32 i32:$Rm), (i64 6)>;
-
-defm : regoff_pats<"Wm", (add i64:$Rn, (shl (sext i32:$Rm), SHIFT)),
- (i64 i64:$Rn), (i32 i32:$Rm), (i64 7)>;
-
-defm : regoff_pats<"Wm", (add i64:$Rn, (zext i32:$Rm)),
- (i64 i64:$Rn), (i32 i32:$Rm), (i64 2)>;
-
-defm : regoff_pats<"Wm", (add i64:$Rn, (shl (zext i32:$Rm), SHIFT)),
- (i64 i64:$Rn), (i32 i32:$Rm), (i64 3)>;
-
-defm : regoff_pats<"Xm", (add i64:$Rn, i64:$Rm),
- (i64 i64:$Rn), (i64 i64:$Rm), (i64 2)>;
-
-defm : regoff_pats<"Xm", (add i64:$Rn, (shl i64:$Rm, SHIFT)),
- (i64 i64:$Rn), (i64 i64:$Rm), (i64 3)>;
-
-//===----------------------------------------------------------------------===//
-// Advanced SIMD (NEON) Support
-//
-
-include "AArch64InstrNEON.td"