summaryrefslogtreecommitdiff
path: root/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Instrumentation/DataFlowSanitizer.cpp')
-rw-r--r--lib/Transforms/Instrumentation/DataFlowSanitizer.cpp367
1 files changed, 271 insertions, 96 deletions
diff --git a/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
index 29413d57bb..dd01d83049 100644
--- a/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
+++ b/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
@@ -76,17 +76,20 @@ static cl::opt<bool> ClPreserveAlignment(
cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
cl::init(false));
-// The greylist file controls how shadow parameters are passed.
-// The program acts as though every function in the greylist is passed
-// parameters with zero shadow and that its return value also has zero shadow.
-// This avoids the use of TLS or extra function parameters to pass shadow state
-// and essentially makes the function conform to the "native" (i.e. unsanitized)
-// ABI.
-static cl::opt<std::string> ClGreylistFile(
- "dfsan-greylist",
- cl::desc("File containing the list of functions with a native ABI"),
+// The ABI list file controls how shadow parameters are passed. The pass treats
+// every function labelled "uninstrumented" in the ABI list file as conforming
+// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
+// additional annotations for those functions, a call to one of those functions
+// will produce a warning message, as the labelling behaviour of the function is
+// unknown. The other supported annotations are "functional" and "discard",
+// which are described below under DataFlowSanitizer::WrapperKind.
+static cl::opt<std::string> ClABIListFile(
+ "dfsan-abilist",
+ cl::desc("File listing native ABI functions and how the pass treats them"),
cl::Hidden);
+// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
+// functions (see DataFlowSanitizer::InstrumentedABI below).
static cl::opt<bool> ClArgsABI(
"dfsan-args-abi",
cl::desc("Use the argument ABI rather than the TLS ABI"),
@@ -102,13 +105,42 @@ class DataFlowSanitizer : public ModulePass {
ShadowWidth = 16
};
+ /// Which ABI should be used for instrumented functions?
enum InstrumentedABI {
- IA_None,
- IA_MemOnly,
+ /// Argument and return value labels are passed through additional
+ /// arguments and by modifying the return type.
IA_Args,
+
+ /// Argument and return value labels are passed through TLS variables
+ /// __dfsan_arg_tls and __dfsan_retval_tls.
IA_TLS
};
+ /// How should calls to uninstrumented functions be handled?
+ enum WrapperKind {
+ /// This function is present in an uninstrumented form but we don't know
+ /// how it should be handled. Print a warning and call the function anyway.
+ /// Don't label the return value.
+ WK_Warning,
+
+ /// This function does not write to (user-accessible) memory, and its return
+ /// value is unlabelled.
+ WK_Discard,
+
+ /// This function does not write to (user-accessible) memory, and the label
+ /// of its return value is the union of the label of its arguments.
+ WK_Functional,
+
+ /// Instead of calling the function, a custom wrapper __dfsw_F is called,
+ /// where F is the name of the function. This function may wrap the
+ /// original function or provide its own implementation. This is similar to
+ /// the IA_Args ABI, except that IA_Args uses a struct return type to
+ /// pass the return value shadow in a register, while WK_Custom uses an
+ /// extra pointer argument to return the shadow. This allows the wrapped
+ /// form of the function type to be expressed in C.
+ WK_Custom
+ };
+
DataLayout *DL;
Module *Mod;
LLVMContext *Ctx;
@@ -126,20 +158,26 @@ class DataFlowSanitizer : public ModulePass {
Constant *GetRetvalTLS;
FunctionType *DFSanUnionFnTy;
FunctionType *DFSanUnionLoadFnTy;
+ FunctionType *DFSanUnimplementedFnTy;
Constant *DFSanUnionFn;
Constant *DFSanUnionLoadFn;
+ Constant *DFSanUnimplementedFn;
MDNode *ColdCallWeights;
- OwningPtr<SpecialCaseList> Greylist;
+ OwningPtr<SpecialCaseList> ABIList;
DenseMap<Value *, Function *> UnwrappedFnMap;
+ AttributeSet ReadOnlyNoneAttrs;
Value *getShadowAddress(Value *Addr, Instruction *Pos);
Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
- FunctionType *getInstrumentedFunctionType(FunctionType *T);
- InstrumentedABI getInstrumentedABI(Function *F);
- InstrumentedABI getDefaultInstrumentedABI();
+ bool isInstrumented(Function *F);
+ FunctionType *getArgsFunctionType(FunctionType *T);
+ FunctionType *getCustomFunctionType(FunctionType *T);
+ InstrumentedABI getInstrumentedABI();
+ WrapperKind getWrapperKind(Function *F);
public:
- DataFlowSanitizer(void *(*getArgTLS)() = 0, void *(*getRetValTLS)() = 0);
+ DataFlowSanitizer(StringRef ABIListFile = StringRef(),
+ void *(*getArgTLS)() = 0, void *(*getRetValTLS)() = 0);
static char ID;
bool doInitialization(Module &M);
bool runOnModule(Module &M);
@@ -149,16 +187,19 @@ struct DFSanFunction {
DataFlowSanitizer &DFS;
Function *F;
DataFlowSanitizer::InstrumentedABI IA;
+ bool IsNativeABI;
Value *ArgTLSPtr;
Value *RetvalTLSPtr;
+ AllocaInst *LabelReturnAlloca;
DenseMap<Value *, Value *> ValShadowMap;
DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
DenseSet<Instruction *> SkipInsts;
- DFSanFunction(DataFlowSanitizer &DFS, Function *F)
- : DFS(DFS), F(F), IA(DFS.getInstrumentedABI(F)), ArgTLSPtr(0),
- RetvalTLSPtr(0) {}
+ DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
+ : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
+ IsNativeABI(IsNativeABI), ArgTLSPtr(0), RetvalTLSPtr(0),
+ LabelReturnAlloca(0) {}
Value *getArgTLSPtr();
Value *getArgTLS(unsigned Index, Instruction *Pos);
Value *getRetvalTLS();
@@ -203,17 +244,21 @@ char DataFlowSanitizer::ID;
INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
"DataFlowSanitizer: dynamic data flow analysis.", false, false)
-ModulePass *llvm::createDataFlowSanitizerPass(void *(*getArgTLS)(),
+ModulePass *llvm::createDataFlowSanitizerPass(StringRef ABIListFile,
+ void *(*getArgTLS)(),
void *(*getRetValTLS)()) {
- return new DataFlowSanitizer(getArgTLS, getRetValTLS);
+ return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS);
}
-DataFlowSanitizer::DataFlowSanitizer(void *(*getArgTLS)(),
+DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile,
+ void *(*getArgTLS)(),
void *(*getRetValTLS)())
: ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS),
- Greylist(SpecialCaseList::createOrDie(ClGreylistFile)) {}
+ ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile
+ : ABIListFile)) {
+}
-FunctionType *DataFlowSanitizer::getInstrumentedFunctionType(FunctionType *T) {
+FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
llvm::SmallVector<Type *, 4> ArgTypes;
std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
@@ -226,6 +271,18 @@ FunctionType *DataFlowSanitizer::getInstrumentedFunctionType(FunctionType *T) {
return FunctionType::get(RetType, ArgTypes, T->isVarArg());
}
+FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
+ assert(!T->isVarArg());
+ llvm::SmallVector<Type *, 4> ArgTypes;
+ std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
+ for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
+ ArgTypes.push_back(ShadowTy);
+ Type *RetType = T->getReturnType();
+ if (!RetType->isVoidTy())
+ ArgTypes.push_back(ShadowPtrTy);
+ return FunctionType::get(T->getReturnType(), ArgTypes, false);
+}
+
bool DataFlowSanitizer::doInitialization(Module &M) {
DL = getAnalysisIfAvailable<DataLayout>();
if (!DL)
@@ -246,6 +303,8 @@ bool DataFlowSanitizer::doInitialization(Module &M) {
Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
DFSanUnionLoadFnTy =
FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
+ DFSanUnimplementedFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
if (GetArgTLSPtr) {
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
@@ -267,23 +326,32 @@ bool DataFlowSanitizer::doInitialization(Module &M) {
return true;
}
-DataFlowSanitizer::InstrumentedABI
-DataFlowSanitizer::getInstrumentedABI(Function *F) {
- if (Greylist->isIn(*F))
- return IA_MemOnly;
- else
- return getDefaultInstrumentedABI();
+bool DataFlowSanitizer::isInstrumented(Function *F) {
+ return !ABIList->isIn(*F, "uninstrumented");
}
-DataFlowSanitizer::InstrumentedABI
-DataFlowSanitizer::getDefaultInstrumentedABI() {
+DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
return ClArgsABI ? IA_Args : IA_TLS;
}
+DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
+ if (ABIList->isIn(*F, "functional"))
+ return WK_Functional;
+ if (ABIList->isIn(*F, "discard"))
+ return WK_Discard;
+ if (ABIList->isIn(*F, "custom"))
+ return WK_Custom;
+
+ return WK_Warning;
+}
+
bool DataFlowSanitizer::runOnModule(Module &M) {
if (!DL)
return false;
+ if (ABIList->isIn(M, "skip"))
+ return false;
+
if (!GetArgTLSPtr) {
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
@@ -308,33 +376,44 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
}
+ DFSanUnimplementedFn =
+ Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
std::vector<Function *> FnsToInstrument;
+ llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
- if (!i->isIntrinsic() && i != DFSanUnionFn && i != DFSanUnionLoadFn)
+ if (!i->isIntrinsic() &&
+ i != DFSanUnionFn &&
+ i != DFSanUnionLoadFn &&
+ i != DFSanUnimplementedFn)
FnsToInstrument.push_back(&*i);
}
- // First, change the ABI of every function in the module. Greylisted
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
+ ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
+
+ // First, change the ABI of every function in the module. ABI-listed
// functions keep their original ABI and get a wrapper function.
for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
e = FnsToInstrument.end();
i != e; ++i) {
Function &F = **i;
-
FunctionType *FT = F.getFunctionType();
- FunctionType *NewFT = getInstrumentedFunctionType(FT);
- // If the function types are the same (i.e. void()), we don't need to do
- // anything here.
- if (FT != NewFT) {
- switch (getInstrumentedABI(&F)) {
- case IA_Args: {
+
+ if (FT->getNumParams() == 0 && !FT->isVarArg() &&
+ FT->getReturnType()->isVoidTy())
+ continue;
+
+ if (isInstrumented(&F)) {
+ if (getInstrumentedABI() == IA_Args) {
+ FunctionType *NewFT = getArgsFunctionType(FT);
Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
- NewF->setCallingConv(F.getCallingConv());
- NewF->setAttributes(F.getAttributes().removeAttributes(
- *Ctx, AttributeSet::ReturnIndex,
+ NewF->copyAttributesFrom(&F);
+ NewF->removeAttributes(
+ AttributeSet::ReturnIndex,
AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
- AttributeSet::ReturnIndex)));
+ AttributeSet::ReturnIndex));
for (Function::arg_iterator FArg = F.arg_begin(),
NewFArg = NewF->arg_begin(),
FArgEnd = F.arg_end();
@@ -358,41 +437,63 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
NewF->takeName(&F);
F.eraseFromParent();
*i = NewF;
- break;
}
- case IA_MemOnly: {
- assert(!FT->isVarArg() && "varargs not handled here yet");
- assert(getDefaultInstrumentedABI() == IA_Args);
- Function *NewF =
- Function::Create(NewFT, GlobalValue::LinkOnceODRLinkage,
- std::string("dfsw$") + F.getName(), &M);
- NewF->setCallingConv(F.getCallingConv());
- NewF->setAttributes(F.getAttributes());
-
- BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
- std::vector<Value *> Args;
- unsigned n = FT->getNumParams();
- for (Function::arg_iterator i = NewF->arg_begin(); n != 0; ++i, --n)
- Args.push_back(&*i);
- CallInst *CI = CallInst::Create(&F, Args, "", BB);
- if (FT->getReturnType()->isVoidTy())
- ReturnInst::Create(*Ctx, BB);
- else {
- Value *InsVal = InsertValueInst::Create(
- UndefValue::get(NewFT->getReturnType()), CI, 0, "", BB);
- Value *InsShadow =
- InsertValueInst::Create(InsVal, ZeroShadow, 1, "", BB);
- ReturnInst::Create(*Ctx, InsShadow, BB);
- }
-
- Value *WrappedFnCst =
- ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
- F.replaceAllUsesWith(WrappedFnCst);
- UnwrappedFnMap[WrappedFnCst] = &F;
- break;
- }
- default:
- break;
+ // Hopefully, nobody will try to indirectly call a vararg
+ // function... yet.
+ } else if (FT->isVarArg()) {
+ UnwrappedFnMap[&F] = &F;
+ *i = 0;
+ } else {
+ // Build a wrapper function for F. The wrapper simply calls F, and is
+ // added to FnsToInstrument so that any instrumentation according to its
+ // WrapperKind is done in the second pass below.
+ FunctionType *NewFT = getInstrumentedABI() == IA_Args
+ ? getArgsFunctionType(FT)
+ : FT;
+ Function *NewF =
+ Function::Create(NewFT, GlobalValue::LinkOnceODRLinkage,
+ std::string("dfsw$") + F.getName(), &M);
+ NewF->copyAttributesFrom(&F);
+ NewF->removeAttributes(
+ AttributeSet::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
+ AttributeSet::ReturnIndex));
+ if (getInstrumentedABI() == IA_TLS)
+ NewF->removeAttributes(AttributeSet::FunctionIndex,
+ ReadOnlyNoneAttrs);
+
+ BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
+ std::vector<Value *> Args;
+ unsigned n = FT->getNumParams();
+ for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
+ Args.push_back(&*ai);
+ CallInst *CI = CallInst::Create(&F, Args, "", BB);
+ if (FT->getReturnType()->isVoidTy())
+ ReturnInst::Create(*Ctx, BB);
+ else
+ ReturnInst::Create(*Ctx, CI, BB);
+
+ Value *WrappedFnCst =
+ ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
+ F.replaceAllUsesWith(WrappedFnCst);
+ UnwrappedFnMap[WrappedFnCst] = &F;
+ *i = NewF;
+
+ if (!F.isDeclaration()) {
+ // This function is probably defining an interposition of an
+ // uninstrumented function and hence needs to keep the original ABI.
+ // But any functions it may call need to use the instrumented ABI, so
+ // we instrument it in a mode which preserves the original ABI.
+ FnsWithNativeABI.insert(&F);
+
+ // This code needs to rebuild the iterators, as they may be invalidated
+ // by the push_back, taking care that the new range does not include
+ // any functions added by this code.
+ size_t N = i - FnsToInstrument.begin(),
+ Count = e - FnsToInstrument.begin();
+ FnsToInstrument.push_back(&F);
+ i = FnsToInstrument.begin() + N;
+ e = FnsToInstrument.begin() + Count;
}
}
}
@@ -400,12 +501,12 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
e = FnsToInstrument.end();
i != e; ++i) {
- if ((*i)->isDeclaration())
+ if (!*i || (*i)->isDeclaration())
continue;
removeUnreachableBlocks(**i);
- DFSanFunction DFSF(*this, *i);
+ DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
// DFSanVisitor may create new basic blocks, which confuses df_iterator.
// Build a copy of the list before iterating over it.
@@ -433,6 +534,10 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
}
}
+ // We will not necessarily be able to compute the shadow for every phi node
+ // until we have visited every block. Therefore, the code that handles phi
+ // nodes adds them to the PHIFixups list so that they can be properly
+ // handled here.
for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
i = DFSF.PHIFixups.begin(),
e = DFSF.PHIFixups.end();
@@ -479,6 +584,8 @@ Value *DFSanFunction::getShadow(Value *V) {
Value *&Shadow = ValShadowMap[V];
if (!Shadow) {
if (Argument *A = dyn_cast<Argument>(V)) {
+ if (IsNativeABI)
+ return DFS.ZeroShadow;
switch (IA) {
case DataFlowSanitizer::IA_TLS: {
Value *ArgTLSPtr = getArgTLSPtr();
@@ -495,11 +602,9 @@ Value *DFSanFunction::getShadow(Value *V) {
while (ArgIdx--)
++i;
Shadow = i;
+ assert(Shadow->getType() == DFS.ShadowTy);
break;
}
- default:
- Shadow = DFS.ZeroShadow;
- break;
}
} else {
Shadow = DFS.ZeroShadow;
@@ -866,7 +971,7 @@ void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
}
void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
- if (RI.getReturnValue()) {
+ if (!DFSF.IsNativeABI && RI.getReturnValue()) {
switch (DFSF.IA) {
case DataFlowSanitizer::IA_TLS: {
Value *S = DFSF.getShadow(RI.getReturnValue());
@@ -884,8 +989,6 @@ void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
RI.setOperand(0, InsShadow);
break;
}
- default:
- break;
}
}
}
@@ -897,19 +1000,91 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
return;
}
+ IRBuilder<> IRB(CS.getInstruction());
+
DenseMap<Value *, Function *>::iterator i =
DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
if (i != DFSF.DFS.UnwrappedFnMap.end()) {
- CS.setCalledFunction(i->second);
- DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
- return;
- }
+ Function *F = i->second;
+ switch (DFSF.DFS.getWrapperKind(F)) {
+ case DataFlowSanitizer::WK_Warning: {
+ CS.setCalledFunction(F);
+ IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
+ IRB.CreateGlobalStringPtr(F->getName()));
+ DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
+ return;
+ }
+ case DataFlowSanitizer::WK_Discard: {
+ CS.setCalledFunction(F);
+ DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
+ return;
+ }
+ case DataFlowSanitizer::WK_Functional: {
+ CS.setCalledFunction(F);
+ visitOperandShadowInst(*CS.getInstruction());
+ return;
+ }
+ case DataFlowSanitizer::WK_Custom: {
+ // Don't try to handle invokes of custom functions, it's too complicated.
+ // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
+ // wrapper.
+ if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
+ FunctionType *FT = F->getFunctionType();
+ FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
+ std::string CustomFName = "__dfsw_";
+ CustomFName += F->getName();
+ Constant *CustomF =
+ DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
+ if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
+ CustomFn->copyAttributesFrom(F);
+
+ // Custom functions returning non-void will write to the return label.
+ if (!FT->getReturnType()->isVoidTy()) {
+ CustomFn->removeAttributes(AttributeSet::FunctionIndex,
+ DFSF.DFS.ReadOnlyNoneAttrs);
+ }
+ }
- IRBuilder<> IRB(CS.getInstruction());
+ std::vector<Value *> Args;
+
+ CallSite::arg_iterator i = CS.arg_begin();
+ for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
+ Args.push_back(*i);
+
+ i = CS.arg_begin();
+ for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
+ Args.push_back(DFSF.getShadow(*i));
+
+ if (!FT->getReturnType()->isVoidTy()) {
+ if (!DFSF.LabelReturnAlloca) {
+ DFSF.LabelReturnAlloca =
+ new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
+ DFSF.F->getEntryBlock().begin());
+ }
+ Args.push_back(DFSF.LabelReturnAlloca);
+ }
+
+ CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
+ CustomCI->setCallingConv(CI->getCallingConv());
+ CustomCI->setAttributes(CI->getAttributes());
+
+ if (!FT->getReturnType()->isVoidTy()) {
+ LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
+ DFSF.setShadow(CustomCI, LabelLoad);
+ }
+
+ CI->replaceAllUsesWith(CustomCI);
+ CI->eraseFromParent();
+ return;
+ }
+ break;
+ }
+ }
+ }
FunctionType *FT = cast<FunctionType>(
CS.getCalledValue()->getType()->getPointerElementType());
- if (DFSF.DFS.getDefaultInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
+ if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
DFSF.getArgTLS(i, CS.getInstruction()));
@@ -930,7 +1105,7 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
Next = CS->getNextNode();
}
- if (DFSF.DFS.getDefaultInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
+ if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
IRBuilder<> NextIRB(Next);
LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
DFSF.SkipInsts.insert(LI);
@@ -940,8 +1115,8 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
// Do all instrumentation for IA_Args down here to defer tampering with the
// CFG in a way that SplitEdge may be able to detect.
- if (DFSF.DFS.getDefaultInstrumentedABI() == DataFlowSanitizer::IA_Args) {
- FunctionType *NewFT = DFSF.DFS.getInstrumentedFunctionType(FT);
+ if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
+ FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
Value *Func =
IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
std::vector<Value *> Args;