summaryrefslogtreecommitdiff
path: root/lib/VMCore/Type.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore/Type.cpp')
-rw-r--r--lib/VMCore/Type.cpp767
1 files changed, 0 insertions, 767 deletions
diff --git a/lib/VMCore/Type.cpp b/lib/VMCore/Type.cpp
deleted file mode 100644
index 3c3058288c..0000000000
--- a/lib/VMCore/Type.cpp
+++ /dev/null
@@ -1,767 +0,0 @@
-//===-- Type.cpp - Implement the Type class -------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Type class for the VMCore library.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Type.h"
-#include "LLVMContextImpl.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/Module.h"
-#include <algorithm>
-#include <cstdarg>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Type Class Implementation
-//===----------------------------------------------------------------------===//
-
-Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
- switch (IDNumber) {
- case VoidTyID : return getVoidTy(C);
- case HalfTyID : return getHalfTy(C);
- case FloatTyID : return getFloatTy(C);
- case DoubleTyID : return getDoubleTy(C);
- case X86_FP80TyID : return getX86_FP80Ty(C);
- case FP128TyID : return getFP128Ty(C);
- case PPC_FP128TyID : return getPPC_FP128Ty(C);
- case LabelTyID : return getLabelTy(C);
- case MetadataTyID : return getMetadataTy(C);
- case X86_MMXTyID : return getX86_MMXTy(C);
- default:
- return 0;
- }
-}
-
-/// getScalarType - If this is a vector type, return the element type,
-/// otherwise return this.
-Type *Type::getScalarType() {
- if (VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType();
- return this;
-}
-
-const Type *Type::getScalarType() const {
- if (const VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType();
- return this;
-}
-
-/// isIntegerTy - Return true if this is an IntegerType of the specified width.
-bool Type::isIntegerTy(unsigned Bitwidth) const {
- return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
-}
-
-// canLosslesslyBitCastTo - Return true if this type can be converted to
-// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
-//
-bool Type::canLosslesslyBitCastTo(Type *Ty) const {
- // Identity cast means no change so return true
- if (this == Ty)
- return true;
-
- // They are not convertible unless they are at least first class types
- if (!this->isFirstClassType() || !Ty->isFirstClassType())
- return false;
-
- // Vector -> Vector conversions are always lossless if the two vector types
- // have the same size, otherwise not. Also, 64-bit vector types can be
- // converted to x86mmx.
- if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
- if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
- return thisPTy->getBitWidth() == thatPTy->getBitWidth();
- if (Ty->getTypeID() == Type::X86_MMXTyID &&
- thisPTy->getBitWidth() == 64)
- return true;
- }
-
- if (this->getTypeID() == Type::X86_MMXTyID)
- if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
- if (thatPTy->getBitWidth() == 64)
- return true;
-
- // At this point we have only various mismatches of the first class types
- // remaining and ptr->ptr. Just select the lossless conversions. Everything
- // else is not lossless.
- if (this->isPointerTy())
- return Ty->isPointerTy();
- return false; // Other types have no identity values
-}
-
-bool Type::isEmptyTy() const {
- const ArrayType *ATy = dyn_cast<ArrayType>(this);
- if (ATy) {
- unsigned NumElements = ATy->getNumElements();
- return NumElements == 0 || ATy->getElementType()->isEmptyTy();
- }
-
- const StructType *STy = dyn_cast<StructType>(this);
- if (STy) {
- unsigned NumElements = STy->getNumElements();
- for (unsigned i = 0; i < NumElements; ++i)
- if (!STy->getElementType(i)->isEmptyTy())
- return false;
- return true;
- }
-
- return false;
-}
-
-unsigned Type::getPrimitiveSizeInBits() const {
- switch (getTypeID()) {
- case Type::HalfTyID: return 16;
- case Type::FloatTyID: return 32;
- case Type::DoubleTyID: return 64;
- case Type::X86_FP80TyID: return 80;
- case Type::FP128TyID: return 128;
- case Type::PPC_FP128TyID: return 128;
- case Type::X86_MMXTyID: return 64;
- case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
- case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
- default: return 0;
- }
-}
-
-/// getScalarSizeInBits - If this is a vector type, return the
-/// getPrimitiveSizeInBits value for the element type. Otherwise return the
-/// getPrimitiveSizeInBits value for this type.
-unsigned Type::getScalarSizeInBits() {
- return getScalarType()->getPrimitiveSizeInBits();
-}
-
-/// getFPMantissaWidth - Return the width of the mantissa of this type. This
-/// is only valid on floating point types. If the FP type does not
-/// have a stable mantissa (e.g. ppc long double), this method returns -1.
-int Type::getFPMantissaWidth() const {
- if (const VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType()->getFPMantissaWidth();
- assert(isFloatingPointTy() && "Not a floating point type!");
- if (getTypeID() == HalfTyID) return 11;
- if (getTypeID() == FloatTyID) return 24;
- if (getTypeID() == DoubleTyID) return 53;
- if (getTypeID() == X86_FP80TyID) return 64;
- if (getTypeID() == FP128TyID) return 113;
- assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
- return -1;
-}
-
-/// isSizedDerivedType - Derived types like structures and arrays are sized
-/// iff all of the members of the type are sized as well. Since asking for
-/// their size is relatively uncommon, move this operation out of line.
-bool Type::isSizedDerivedType() const {
- if (this->isIntegerTy())
- return true;
-
- if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
- return ATy->getElementType()->isSized();
-
- if (const VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType()->isSized();
-
- if (!this->isStructTy())
- return false;
-
- return cast<StructType>(this)->isSized();
-}
-
-//===----------------------------------------------------------------------===//
-// Subclass Helper Methods
-//===----------------------------------------------------------------------===//
-
-unsigned Type::getIntegerBitWidth() const {
- return cast<IntegerType>(this)->getBitWidth();
-}
-
-bool Type::isFunctionVarArg() const {
- return cast<FunctionType>(this)->isVarArg();
-}
-
-Type *Type::getFunctionParamType(unsigned i) const {
- return cast<FunctionType>(this)->getParamType(i);
-}
-
-unsigned Type::getFunctionNumParams() const {
- return cast<FunctionType>(this)->getNumParams();
-}
-
-StringRef Type::getStructName() const {
- return cast<StructType>(this)->getName();
-}
-
-unsigned Type::getStructNumElements() const {
- return cast<StructType>(this)->getNumElements();
-}
-
-Type *Type::getStructElementType(unsigned N) const {
- return cast<StructType>(this)->getElementType(N);
-}
-
-Type *Type::getSequentialElementType() const {
- return cast<SequentialType>(this)->getElementType();
-}
-
-uint64_t Type::getArrayNumElements() const {
- return cast<ArrayType>(this)->getNumElements();
-}
-
-unsigned Type::getVectorNumElements() const {
- return cast<VectorType>(this)->getNumElements();
-}
-
-unsigned Type::getPointerAddressSpace() const {
- return cast<PointerType>(getScalarType())->getAddressSpace();
-}
-
-
-//===----------------------------------------------------------------------===//
-// Primitive 'Type' data
-//===----------------------------------------------------------------------===//
-
-Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
-Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
-Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
-Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
-Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
-Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
-Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
-Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
-Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
-Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
-
-IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
-IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
-IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
-IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
-IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
-
-IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
- return IntegerType::get(C, N);
-}
-
-PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
- return getHalfTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
- return getFloatTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
- return getDoubleTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
- return getX86_FP80Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
- return getFP128Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
- return getPPC_FP128Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
- return getX86_MMXTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
- return getIntNTy(C, N)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
- return getInt1Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
- return getInt8Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
- return getInt16Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
- return getInt32Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
- return getInt64Ty(C)->getPointerTo(AS);
-}
-
-
-//===----------------------------------------------------------------------===//
-// IntegerType Implementation
-//===----------------------------------------------------------------------===//
-
-IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
- assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
- assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
-
- // Check for the built-in integer types
- switch (NumBits) {
- case 1: return cast<IntegerType>(Type::getInt1Ty(C));
- case 8: return cast<IntegerType>(Type::getInt8Ty(C));
- case 16: return cast<IntegerType>(Type::getInt16Ty(C));
- case 32: return cast<IntegerType>(Type::getInt32Ty(C));
- case 64: return cast<IntegerType>(Type::getInt64Ty(C));
- default:
- break;
- }
-
- IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
-
- if (Entry == 0)
- Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
-
- return Entry;
-}
-
-bool IntegerType::isPowerOf2ByteWidth() const {
- unsigned BitWidth = getBitWidth();
- return (BitWidth > 7) && isPowerOf2_32(BitWidth);
-}
-
-APInt IntegerType::getMask() const {
- return APInt::getAllOnesValue(getBitWidth());
-}
-
-//===----------------------------------------------------------------------===//
-// FunctionType Implementation
-//===----------------------------------------------------------------------===//
-
-FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
- bool IsVarArgs)
- : Type(Result->getContext(), FunctionTyID) {
- Type **SubTys = reinterpret_cast<Type**>(this+1);
- assert(isValidReturnType(Result) && "invalid return type for function");
- setSubclassData(IsVarArgs);
-
- SubTys[0] = const_cast<Type*>(Result);
-
- for (unsigned i = 0, e = Params.size(); i != e; ++i) {
- assert(isValidArgumentType(Params[i]) &&
- "Not a valid type for function argument!");
- SubTys[i+1] = Params[i];
- }
-
- ContainedTys = SubTys;
- NumContainedTys = Params.size() + 1; // + 1 for result type
-}
-
-// FunctionType::get - The factory function for the FunctionType class.
-FunctionType *FunctionType::get(Type *ReturnType,
- ArrayRef<Type*> Params, bool isVarArg) {
- LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
- FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
- LLVMContextImpl::FunctionTypeMap::iterator I =
- pImpl->FunctionTypes.find_as(Key);
- FunctionType *FT;
-
- if (I == pImpl->FunctionTypes.end()) {
- FT = (FunctionType*) pImpl->TypeAllocator.
- Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
- AlignOf<FunctionType>::Alignment);
- new (FT) FunctionType(ReturnType, Params, isVarArg);
- pImpl->FunctionTypes[FT] = true;
- } else {
- FT = I->first;
- }
-
- return FT;
-}
-
-FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
- return get(Result, ArrayRef<Type *>(), isVarArg);
-}
-
-/// isValidReturnType - Return true if the specified type is valid as a return
-/// type.
-bool FunctionType::isValidReturnType(Type *RetTy) {
- return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
- !RetTy->isMetadataTy();
-}
-
-/// isValidArgumentType - Return true if the specified type is valid as an
-/// argument type.
-bool FunctionType::isValidArgumentType(Type *ArgTy) {
- return ArgTy->isFirstClassType();
-}
-
-//===----------------------------------------------------------------------===//
-// StructType Implementation
-//===----------------------------------------------------------------------===//
-
-// Primitive Constructors.
-
-StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
- bool isPacked) {
- LLVMContextImpl *pImpl = Context.pImpl;
- AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
- LLVMContextImpl::StructTypeMap::iterator I =
- pImpl->AnonStructTypes.find_as(Key);
- StructType *ST;
-
- if (I == pImpl->AnonStructTypes.end()) {
- // Value not found. Create a new type!
- ST = new (Context.pImpl->TypeAllocator) StructType(Context);
- ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
- ST->setBody(ETypes, isPacked);
- Context.pImpl->AnonStructTypes[ST] = true;
- } else {
- ST = I->first;
- }
-
- return ST;
-}
-
-void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
- assert(isOpaque() && "Struct body already set!");
-
- setSubclassData(getSubclassData() | SCDB_HasBody);
- if (isPacked)
- setSubclassData(getSubclassData() | SCDB_Packed);
-
- unsigned NumElements = Elements.size();
- Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
- memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
-
- ContainedTys = Elts;
- NumContainedTys = NumElements;
-}
-
-void StructType::setName(StringRef Name) {
- if (Name == getName()) return;
-
- StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
- typedef StringMap<StructType *>::MapEntryTy EntryTy;
-
- // If this struct already had a name, remove its symbol table entry. Don't
- // delete the data yet because it may be part of the new name.
- if (SymbolTableEntry)
- SymbolTable.remove((EntryTy *)SymbolTableEntry);
-
- // If this is just removing the name, we're done.
- if (Name.empty()) {
- if (SymbolTableEntry) {
- // Delete the old string data.
- ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
- SymbolTableEntry = 0;
- }
- return;
- }
-
- // Look up the entry for the name.
- EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
-
- // While we have a name collision, try a random rename.
- if (Entry->getValue()) {
- SmallString<64> TempStr(Name);
- TempStr.push_back('.');
- raw_svector_ostream TmpStream(TempStr);
- unsigned NameSize = Name.size();
-
- do {
- TempStr.resize(NameSize + 1);
- TmpStream.resync();
- TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
-
- Entry = &getContext().pImpl->
- NamedStructTypes.GetOrCreateValue(TmpStream.str());
- } while (Entry->getValue());
- }
-
- // Okay, we found an entry that isn't used. It's us!
- Entry->setValue(this);
-
- // Delete the old string data.
- if (SymbolTableEntry)
- ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
- SymbolTableEntry = Entry;
-}
-
-//===----------------------------------------------------------------------===//
-// StructType Helper functions.
-
-StructType *StructType::create(LLVMContext &Context, StringRef Name) {
- StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
- if (!Name.empty())
- ST->setName(Name);
- return ST;
-}
-
-StructType *StructType::get(LLVMContext &Context, bool isPacked) {
- return get(Context, llvm::ArrayRef<Type*>(), isPacked);
-}
-
-StructType *StructType::get(Type *type, ...) {
- assert(type != 0 && "Cannot create a struct type with no elements with this");
- LLVMContext &Ctx = type->getContext();
- va_list ap;
- SmallVector<llvm::Type*, 8> StructFields;
- va_start(ap, type);
- while (type) {
- StructFields.push_back(type);
- type = va_arg(ap, llvm::Type*);
- }
- return llvm::StructType::get(Ctx, StructFields);
-}
-
-StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
- StringRef Name, bool isPacked) {
- StructType *ST = create(Context, Name);
- ST->setBody(Elements, isPacked);
- return ST;
-}
-
-StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
- return create(Context, Elements, StringRef());
-}
-
-StructType *StructType::create(LLVMContext &Context) {
- return create(Context, StringRef());
-}
-
-StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
- bool isPacked) {
- assert(!Elements.empty() &&
- "This method may not be invoked with an empty list");
- return create(Elements[0]->getContext(), Elements, Name, isPacked);
-}
-
-StructType *StructType::create(ArrayRef<Type*> Elements) {
- assert(!Elements.empty() &&
- "This method may not be invoked with an empty list");
- return create(Elements[0]->getContext(), Elements, StringRef());
-}
-
-StructType *StructType::create(StringRef Name, Type *type, ...) {
- assert(type != 0 && "Cannot create a struct type with no elements with this");
- LLVMContext &Ctx = type->getContext();
- va_list ap;
- SmallVector<llvm::Type*, 8> StructFields;
- va_start(ap, type);
- while (type) {
- StructFields.push_back(type);
- type = va_arg(ap, llvm::Type*);
- }
- return llvm::StructType::create(Ctx, StructFields, Name);
-}
-
-bool StructType::isSized() const {
- if ((getSubclassData() & SCDB_IsSized) != 0)
- return true;
- if (isOpaque())
- return false;
-
- // Okay, our struct is sized if all of the elements are, but if one of the
- // elements is opaque, the struct isn't sized *yet*, but may become sized in
- // the future, so just bail out without caching.
- for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
- if (!(*I)->isSized())
- return false;
-
- // Here we cheat a bit and cast away const-ness. The goal is to memoize when
- // we find a sized type, as types can only move from opaque to sized, not the
- // other way.
- const_cast<StructType*>(this)->setSubclassData(
- getSubclassData() | SCDB_IsSized);
- return true;
-}
-
-StringRef StructType::getName() const {
- assert(!isLiteral() && "Literal structs never have names");
- if (SymbolTableEntry == 0) return StringRef();
-
- return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
-}
-
-void StructType::setBody(Type *type, ...) {
- assert(type != 0 && "Cannot create a struct type with no elements with this");
- va_list ap;
- SmallVector<llvm::Type*, 8> StructFields;
- va_start(ap, type);
- while (type) {
- StructFields.push_back(type);
- type = va_arg(ap, llvm::Type*);
- }
- setBody(StructFields);
-}
-
-bool StructType::isValidElementType(Type *ElemTy) {
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
-}
-
-/// isLayoutIdentical - Return true if this is layout identical to the
-/// specified struct.
-bool StructType::isLayoutIdentical(StructType *Other) const {
- if (this == Other) return true;
-
- if (isPacked() != Other->isPacked() ||
- getNumElements() != Other->getNumElements())
- return false;
-
- return std::equal(element_begin(), element_end(), Other->element_begin());
-}
-
-/// getTypeByName - Return the type with the specified name, or null if there
-/// is none by that name.
-StructType *Module::getTypeByName(StringRef Name) const {
- StringMap<StructType*>::iterator I =
- getContext().pImpl->NamedStructTypes.find(Name);
- if (I != getContext().pImpl->NamedStructTypes.end())
- return I->second;
- return 0;
-}
-
-
-//===----------------------------------------------------------------------===//
-// CompositeType Implementation
-//===----------------------------------------------------------------------===//
-
-Type *CompositeType::getTypeAtIndex(const Value *V) {
- if (StructType *STy = dyn_cast<StructType>(this)) {
- unsigned Idx =
- (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
- assert(indexValid(Idx) && "Invalid structure index!");
- return STy->getElementType(Idx);
- }
-
- return cast<SequentialType>(this)->getElementType();
-}
-Type *CompositeType::getTypeAtIndex(unsigned Idx) {
- if (StructType *STy = dyn_cast<StructType>(this)) {
- assert(indexValid(Idx) && "Invalid structure index!");
- return STy->getElementType(Idx);
- }
-
- return cast<SequentialType>(this)->getElementType();
-}
-bool CompositeType::indexValid(const Value *V) const {
- if (const StructType *STy = dyn_cast<StructType>(this)) {
- // Structure indexes require (vectors of) 32-bit integer constants. In the
- // vector case all of the indices must be equal.
- if (!V->getType()->getScalarType()->isIntegerTy(32))
- return false;
- const Constant *C = dyn_cast<Constant>(V);
- if (C && V->getType()->isVectorTy())
- C = C->getSplatValue();
- const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
- return CU && CU->getZExtValue() < STy->getNumElements();
- }
-
- // Sequential types can be indexed by any integer.
- return V->getType()->isIntOrIntVectorTy();
-}
-
-bool CompositeType::indexValid(unsigned Idx) const {
- if (const StructType *STy = dyn_cast<StructType>(this))
- return Idx < STy->getNumElements();
- // Sequential types can be indexed by any integer.
- return true;
-}
-
-
-//===----------------------------------------------------------------------===//
-// ArrayType Implementation
-//===----------------------------------------------------------------------===//
-
-ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
- : SequentialType(ArrayTyID, ElType) {
- NumElements = NumEl;
-}
-
-ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
- Type *ElementType = const_cast<Type*>(elementType);
- assert(isValidElementType(ElementType) && "Invalid type for array element!");
-
- LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
- ArrayType *&Entry =
- pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
-
- if (Entry == 0)
- Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
- return Entry;
-}
-
-bool ArrayType::isValidElementType(Type *ElemTy) {
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
-}
-
-//===----------------------------------------------------------------------===//
-// VectorType Implementation
-//===----------------------------------------------------------------------===//
-
-VectorType::VectorType(Type *ElType, unsigned NumEl)
- : SequentialType(VectorTyID, ElType) {
- NumElements = NumEl;
-}
-
-VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
- Type *ElementType = const_cast<Type*>(elementType);
- assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
- assert(isValidElementType(ElementType) &&
- "Elements of a VectorType must be a primitive type");
-
- LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
- VectorType *&Entry = ElementType->getContext().pImpl
- ->VectorTypes[std::make_pair(ElementType, NumElements)];
-
- if (Entry == 0)
- Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
- return Entry;
-}
-
-bool VectorType::isValidElementType(Type *ElemTy) {
- return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
- ElemTy->isPointerTy();
-}
-
-//===----------------------------------------------------------------------===//
-// PointerType Implementation
-//===----------------------------------------------------------------------===//
-
-PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
- assert(EltTy && "Can't get a pointer to <null> type!");
- assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
-
- LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
-
- // Since AddressSpace #0 is the common case, we special case it.
- PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
- : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
-
- if (Entry == 0)
- Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
- return Entry;
-}
-
-
-PointerType::PointerType(Type *E, unsigned AddrSpace)
- : SequentialType(PointerTyID, E) {
-#ifndef NDEBUG
- const unsigned oldNCT = NumContainedTys;
-#endif
- setSubclassData(AddrSpace);
- // Check for miscompile. PR11652.
- assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
-}
-
-PointerType *Type::getPointerTo(unsigned addrs) {
- return PointerType::get(this, addrs);
-}
-
-bool PointerType::isValidElementType(Type *ElemTy) {
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy();
-}