summaryrefslogtreecommitdiff
path: root/docs/CommandGuide/bugpoint.html
blob: 885a0e77bcf5729b79a56f121db759160aeff237 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
<html>
<title>LLVM: bugpoint tool</title>

<body bgcolor=white>

<center><h1>LLVM: <tt>bugpoint</tt> tool</h1></center>
<HR>

<h3>NAME</h3>
<tt>bugpoint</tt>

<h3>SYNOPSIS</h3>
<tt>bugpoint [options] [input llvm ll/bc files] [LLVM passes] --args &lt;program arguments&gt;...</tt>

<img src="../Debugging.gif" width=444 height=314 align=right>
<h3>DESCRIPTION</h3>

The <tt>bugpoint</tt> tool is a generally useful tool for narrowing down
problems in LLVM tools and passes.  It can be used to debug three types of
failures: optimizer crashes, miscompilations by optimizers, or invalid native
code generation.  It aims to reduce testcases to something useful.  For example,
if <tt><a href="gccas.html">gccas</a></tt> crashes while optimizing a file, it
will identify the optimization (or combination of optimizations) that causes the
crash, and reduce the file down to a small example which triggers the crash.<p>

<tt>bugpoint</tt> reads the specified list of <tt>.bc</tt> or <tt>.ll</tt> files
specified on the command-line and links them together.  If any LLVM passes are
specified on the command line, it runs these passes on the resultant module.  If
any of the passes crash, or if they produce an LLVM module which is not
verifiable, <tt>bugpoint</tt> enters <a href="#crashdebug">crash debugging
mode</a>.<p>

Otherwise, if the <a href="#opt_output"><tt>-output</tt></a> option was not
specified, <tt>bugpoint</tt> runs the initial program with the C backend (which
is assumed to generate good code) to generate a reference output.  Once
<tt>bugpoint</tt> has a reference output to match, it tries executing the
original program with the <a href="#opt_run-">selected</a> code generator.  If
the resultant output is different than the reference output, it exters <a
href="#codegendebug">code generator debugging mode</a>.<p>

Otherwise, <tt>bugpoint</tt> runs the LLVM program after all of the LLVM passes
have been applied to it.  If the executed program matches the reference output,
there is no problem <tt>bugpoint</tt> can debug.  Otherwise, it enters <a
href="#miscompilationdebug">miscompilation debugging mode</a>.<p>

<a name="crashdebug">
<h4>Crash debugging mode</h4>

If an optimizer crashes, <tt>bugpoint</tt> will try a variety of techniques to
narrow down the list of passes and the code to a more manageable amount.  First,
<tt>bugpoint</tt> figures out which combination of passes trigger the bug.  This
is useful when debugging a problem exposed by <tt>gccas</tt> for example,
because it has over 30 optimization it runs.<p>

Next, <tt>bugpoint</tt> tries removing functions from the module, to reduce the
size of the testcase to a reasonable amount.  Usually it is able to get it down
to a single function for intraprocedural optimizations.  Once the number of
functions has been reduced, it attempts to delete various edges in the control
flow graph, to reduce the size of the function as much as possible.  Finally,
<tt>bugpoint</tt> deletes any individual LLVM instructions whose absense does
not eliminate the failure.  At the end, <tt>bugpoint</tt> should tell you what
passes crash, give you a bytecode file, and give you instructions on how to
reproduce the failure with <tt><a href="opt.html">opt</a></tt> or
<tt><a href="analyze.html">analyze</a></tt>.<p>

<a name="codegendebug">
<h4>Code generator debugging mode</h4>

TODO

<a name="miscompilationdebug">
<h4>Miscompilation debugging mode</h4>

TODO


<h3>OPTIONS</h3>

<ul>
	<li><tt>-args &lt;arguments&gt;</tt>
	<br>
	All arguments specified after <tt>-args</tt> are passed into the
	executed program when the program must be executed.
	<p>

	<li><tt>-disable-(adce,dce,final-cleanup,simplifycfg)</tt>
	<br>
	<tt>bugpoint</tt> uses several passes internally for cleanup routines to
	reduce the size of the program.  If you're trying to find a bug in one
	of these passes, <tt>bugpoint</tt> may crash.  These options tell
	<tt>bugpoint</tt> not use the specified passes.
	<p>

	<li> <tt>-help</tt>
	<br>
	Print a summary of command line options.
	<p>

	<a name="opt_input"><li><tt>-input &lt;filename&gt;</tt>
	<br>
	Specify the contents of &lt;stdin&gt; when the program must be executed.
	<p>

	<li> <tt>-load &lt;plugin.so&gt;</tt>
	<br>
	Load the dynamic object plugin.so.  This object should register new
	optimization passes.  Once loaded, the object will add new command line
	options to enable various optimizations.  To see the new complete list
	of optimizations, use the -help and -load options together:
	<p>
	<tt>opt -load  &lt;plugin.so&gt; -help</tt>
	<p>

	<a name="opt_output"><li><tt>-output &lt;filename&gt;</tt>
	<br>
	Specify a reference output for the &lt;stdout&gt; file stream.
	<p>

	<a name="opt_run-"><li><tt>-run-(int|jit|llc|cbe)</tt>
	<br>
	Specify which code generator <tt>bugpoint</tt> should use to run the
	program.
	<p>

</ul>

<h3>EXIT STATUS</h3>

If <tt>bugpoint</tt> succeeds in finding a problem, it will exit with 0.
Otherwise, if an error occurs, it will exit with a non-zero value.

<h3>SEE ALSO</h3>
<a href="opt.html"><tt>opt</tt></a>,
<a href="analyze.html"><tt>analyze</tt></a>

<HR>
Maintained by the <a href="http://llvm.cs.uiuc.edu">LLVM Team</a>.
</body>
</html>