summaryrefslogtreecommitdiff
path: root/docs/SourceLevelDebugging.html
blob: a7037f237190049dbce7a5b2232d033d8953838b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
  <title>Source Level Debugging with LLVM</title>
  <link rel="stylesheet" href="llvm.css" type="text/css">
</head>
<body>

<div class="doc_title">Source Level Debugging with LLVM</div>

<ul>

<img src="venusflytrap.jpg" alt="A leafy and green bug eater"
     width=247 height=369 align=right>

  <li><a href="#introduction">Introduction</a></li>
  <ol>
    <li><a href="#phil">Philosophy behind LLVM debugging information</a></li>
    <li><a href="#debugopt">Debugging optimized code</a></li>
    <li><a href="#future">Future work</a></li>
  </ol>
  <li><a href="#llvm-db">Using the <tt>llvm-db</tt> tool</a>
  <ol>
    <li><a href="#limitations">Limitations of <tt>llvm-db</tt></a></li>
    <li><a href="#sample">A sample <tt>llvm-db</tt> session</a></li>
    <li><a href="#startup">Starting the debugger</a></li>
    <li><a href="#commands">Commands recognized by the debugger</a></li>
  </ol></li>

  <li><a href="#architecture">Architecture of the LLVM debugger</a></li>
  <ol>
    <li><a href="#arch_debugger">The Debugger and InferiorProcess classes</a></li>
    <li><a href="#arch_info">The RuntimeInfo, ProgramInfo, and SourceLanguage classes</a></li>
    <li><a href="#arch_llvm-db">The <tt>llvm-db</tt> tool</a></li>
    <li><a href="#arch_todo">Short-term TODO list</a></li>
  </ol>

  <li><a href="#format">Debugging information format</a></li>
  <ol>
    <li><a href="#format_common_anchors">Anchors for global objects</a></li>
    <li><a href="#format_common_stoppoint">Representing stopping points in the source program</a></li>
    <li><a href="#format_common_lifetime">Object lifetimes and scoping</a></li>
    <li><a href="#format_common_descriptors">Object descriptor formats</a></li>
    <ul>
      <li><a href="#format_common_source_files">Representation of source files</a></li>
      <li><a href="#format_common_program_objects">Representation of program objects</a></li>
      <li><a href="#format_common_object_contexts">Program object contexts</a></li>
    </ul>
    <li><a href="#format_common_intrinsics">Debugger intrinsic functions</a></li>
    <li><a href="#format_common_tags">Values for debugger tags</a></li>
  </ol>
  <li><a href="#ccxx_frontend">C/C++ front-end specific debug information</a></li>
  <ol>
    <li><a href="#ccxx_pse">Program Scope Entries</a></li>
    <ul>
      <li><a href="#ccxx_compilation_units">Compilation unit entries</a></li>
      <li><a href="#ccxx_modules">Module, namespace, and importing entries</a></li>
    </ul>
    <li><a href="#ccxx_dataobjects">Data objects (program variables)</a></li>
  </ol>
</ul>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="introduction">Introduction</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>This document is the central repository for all information pertaining to
debug information in LLVM.  It describes the <a href="#llvm-db">user
interface</a> for the <a href="CommandGuide/llvm-db.html"><tt>llvm-db</tt>
tool</a>, which provides a powerful <a href="#llvm-db">source-level debugger</a>
to users of LLVM-based compilers.  It then describes the <a
href="#architecture">various components</a> that make up the debugger and the
libraries which future clients may use.  Finally, it describes the <a
href="#format">actual format that the LLVM debug information</a> takes,
which is useful for those interested in creating front-ends or dealing directly
with the information.</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="phil">Philosophy behind LLVM debugging information</a>
</div>

<div class="doc_text">

<p>
The idea of the LLVM debugging information is to capture how the important
pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
Several design aspects have shaped the solution that appears here.  The
important ones are:</p>

<p><ul>
<li>Debugging information should have very little impact on the rest of the
compiler.  No transformations, analyses, or code generators should need to be
modified because of debugging information.</li>

<li>LLVM optimizations should interact in <a href="#debugopt">well-defined and
easily described ways</a> with the debugging information.</li>

<li>Because LLVM is designed to support arbitrary programming languages,
LLVM-to-LLVM tools should not need to know anything about the semantics of the
source-level-language.</li>

<li>Source-level languages are often <b>widely</b> different from one another.
LLVM should not put any restrictions of the flavor of the source-language, and
the debugging information should work with any language.</li>

<li>With code generator support, it should be possible to use an LLVM compiler
to compile a program to native machine code and standard debugging formats.
This allows compatibility with traditional machine-code level debuggers, like
GDB or DBX.</li>

</ul></p>

<p>
The approach used by the LLVM implementation is to use a small set of <a
href="#format_common_intrinsics">intrinsic functions</a> to define a mapping
between LLVM program objects and the source-level objects.  The description of
the source-level program is maintained in LLVM global variables in an <a
href="#ccxx_frontend">implementation-defined format</a> (the C/C++ front-end
currently uses working draft 7 of the <a
href="http://www.eagercon.com/dwarf/dwarf3std.htm">Dwarf 3 standard</a>).</p>

<p>
When a program is debugged, the debugger interacts with the user and turns the
stored debug information into source-language specific information.  As such,
the debugger must be aware of the source-language, and is thus tied to a
specific language of family of languages.  The <a href="#llvm-db">LLVM
debugger</a> is designed to be modular in its support for source-languages.
</p>

</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="debugopt">Debugging optimized code</a>
</div>

<div class="doc_text">
<p>
An extremely high priority of LLVM debugging information is to make it interact
well with optimizations and analysis.  In particular, the LLVM debug information
provides the following guarantees:</p>

<p><ul>

<li>LLVM debug information <b>always provides information to accurately read the
source-level state of the program</b>, regardless of which LLVM optimizations
have been run, and without any modification to the optimizations themselves.
However, some optimizations may impact the ability to modify the current state
of the program with a debugger, such as setting program variables, or calling
function that have been deleted.</li>

<li>LLVM optimizations gracefully interact with debugging information.  If they
are not aware of debug information, they are automatically disabled as necessary
in the cases that would invalidate the debug info.  This retains the LLVM
features making it easy to write new transformations.</li>

<li>As desired, LLVM optimizations can be upgraded to be aware of the LLVM
debugging information, allowing them to update the debugging information as they
perform aggressive optimizations.  This means that, with effort, the LLVM
optimizers could optimize debug code just as well as non-debug code.</li>

<li>LLVM debug information does not prevent many important optimizations from
happening (for example inlining, basic block reordering/merging/cleanup, tail
duplication, etc), further reducing the amount of the compiler that eventually
is "aware" of debugging information.</li>

<li>LLVM debug information is automatically optimized along with the rest of the
program, using existing facilities.  For example, duplicate information is
automatically merged by the linker, and unused information is automatically
removed.</li>

</ul></p>

<p>
Basically, the debug information allows you to compile a program with "<tt>-O0
-g</tt>" and get full debug information, allowing you to arbitrarily modify the
program as it executes from the debugger.  Compiling a program with "<tt>-O3
-g</tt>" gives you full debug information that is always available and accurate
for reading (e.g., you get accurate stack traces despite tail call elimination
and inlining), but you might lose the ability to modify the program and call
functions where were optimized out of the program, or inlined away completely.
</p>

</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="future">Future work</a>
</div>

<div class="doc_text">
<p>
There are several important extensions that could be eventually added to the
LLVM debugger.  The most important extension would be to upgrade the LLVM code
generators to support debugging information.  This would also allow, for
example, the X86 code generator to emit native objects that contain debugging
information consumable by traditional source-level debuggers like GDB or
DBX.</p>

<p>
Additionally, LLVM optimizations can be upgraded to incrementally update the
debugging information, <a href="#commands">new commands</a> can be added to the
debugger, and thread support could be added to the debugger.</p>

<p>
The "SourceLanguage" modules provided by <tt>llvm-db</tt> could be substantially
improved to provide good support for C++ language features like namespaces and
scoping rules.</p>

<p>
After working with the debugger for a while, perhaps the nicest improvement
would be to add some sort of line editor, such as GNU readline (but one that is
compatible with the LLVM license).</p>

<p>
For someone so inclined, it should be straight-forward to write different
front-ends for the LLVM debugger, as the LLVM debugging engine is cleanly
separated from the <tt>llvm-db</tt> front-end.  A new LLVM GUI debugger or IDE
would be nice. :)
</p>

</div>


<!-- *********************************************************************** -->
<div class="doc_section">
  <a name="llvm-db">Using the <tt>llvm-db</tt> tool</a>
</div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
The <tt>llvm-db</tt> tool provides a GDB-like interface for source-level
debugging of programs.  This tool provides many standard commands for inspecting
and modifying the program as it executes, loading new programs, single stepping,
placing breakpoints, etc.  This section describes how to use the debugger.
</p>

<p><tt>llvm-db</tt> has been designed to be as similar to GDB in its user
interface as possible.  This should make it extremely easy to learn
<tt>llvm-db</tt> if you already know <tt>GDB</tt>.  In general, <tt>llvm-db</tt>
provides the subset of GDB commands that are applicable to LLVM debugging users.
If there is a command missing that make a reasonable amount of sense within the
<a href="#limitations">limitations of <tt>llvm-db</tt></a>, please report it as
a bug or, better yet, submit a patch to add it. :)</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="limitations">Limitations of <tt>llvm-db</tt></a>
</div>

<div class="doc_text">

<p><tt>llvm-db</tt> is designed to be modular and easy to extend.  This
extensibility was key to getting the debugger up-and-running quickly, because we
can start with simple-but-unsophisicated implementations of various components.
Because of this, it is currently missing many features, though they should be
easy to add over time (patches welcomed!).  The biggest inherent limitations of
<tt>llvm-db</tt> are currently due to extremely simple <a
href="#arch_debugger">debugger backend</a> (implemented in
"lib/Debugger/UnixLocalInferiorProcess.cpp") which is designed to work without
any cooperation from the code generators.  Because it is so simple, it suffers
from the following inherent limitations:</p>

<p><ul>

<li>Running a program in <tt>llvm-db</tt> is a bit slower than running it with
<tt>lli</tt> (i.e., in the JIT).</li>

<li>Inspection of the target hardware is not supported.  This means that you
cannot, for example, print the contents of X86 registers.</li>

<li>Inspection of LLVM code is not supported.  This means that you cannot print
the contents of arbitrary LLVM values, or use commands such as <tt>stepi</tt>.
This also means that you cannot debug code without debug information.</li>

<li>Portions of the debugger run in the same address space as the program being
debugged.  This means that memory corruption by the program could trample on
portions of the debugger.</li>

<li>Attaching to existing processes and core files is not currently
supported.</li>

</ul></p>

<p>That said, the debugger is still quite useful, and all of these limitations
can be eliminated by integrating support for the debugger into the code
generators, and writing a new <a href="#arch_debugger">InferiorProcess</a>
subclass to use it.  See the <a href="#future">future work</a> section for ideas
of how to extend the LLVM debugger despite these limitations.</p>

</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="sample">A sample <tt>llvm-db</tt> session</a>
</div>

<div class="doc_text">

<p>TODO: this is obviously lame, when more is implemented, this can be much
better.</p>

<p><pre>
$ <b>llvm-db funccall</b>
llvm-db: The LLVM source-level debugger
Loading program... successfully loaded 'funccall.bc'!
(llvm-db) <b>create</b>
Starting program: funccall.bc
main at funccall.c:9:2
9 ->            q = 0;
(llvm-db) <b>list main</b>
4       void foo() {
5               int t = q;
6               q = t + 1;
7       }
8       int main() {
9 ->            q = 0;
10              foo();
11              q = q - 1;
12
13              return q;
(llvm-db) <b>list</b>
14      }
(llvm-db) <b>step</b>
10 ->           foo();
(llvm-db) <b>s</b>
foo at funccall.c:5:2
5 ->            int t = q;
(llvm-db) <b>bt</b>
#0 ->   0x85ffba0 in foo at funccall.c:5:2
#1      0x85ffd98 in main at funccall.c:10:2
(llvm-db) <b>finish</b>
main at funccall.c:11:2
11 ->           q = q - 1;
(llvm-db) <b>s</b>
13 ->           return q;
(llvm-db) <b>s</b>
The program stopped with exit code 0
(llvm-db) <b>quit</b>
$
</pre></p>

</div>



<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="startup">Starting the debugger</a>
</div>

<div class="doc_text">

<p>There are three ways to start up the <tt>llvm-db</tt> debugger:</p>

<p>When run with no options, just <tt>llvm-db</tt>, the debugger starts up
without a program loaded at all.  You must use the <a
href="#c_file"><tt>file</tt> command</a> to load a program, and the <a
href="c_set_args"><tt>set args</tt></a> or <a href="#c_run"><tt>run</tt></a>
commands to specify the arguments for the program.</p>

<p>If you start the debugger with one argument, as <tt>llvm-db
&lt;program&gt;</tt>, the debugger will start up and load in the specified
program.  You can then optionally specify arguments to the program with the <a
href="c_set_args"><tt>set args</tt></a> or <a href="#c_run"><tt>run</tt></a>
commands.</p>

<p>The third way to start the program is with the <tt>--args</tt> option.  This
option allows you to specify the program to load and the arguments to start out
with.  <!-- No options to <tt>llvm-db</tt> may be specified after the
<tt>-args</tt> option. --> Example use: <tt>llvm-db --args ls /home</tt></p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="commands">Commands recognized by the debugger</a>
</div>

<div class="doc_text">

<p>FIXME: this needs work obviously.  See the <a
href="http://sources.redhat.com/gdb/documentation/">GDB documentation</a> for
information about what these do, or try '<tt>help [command]</tt>' within
<tt>llvm-db</tt> to get information.</p>

<p>
<h2>General usage:</h2>
<ul>
<li>help [command]</li>
<li>quit</li>
<li><a name="c_file">file</a> [program]</li>
</ul>

<h2>Program inspection and interaction:</h2>
<ul>
<li>create (start the program, stopping it ASAP in <tt>main</tt>)</li>
<li>kill</li>
<li>run [args]</li>
<li>step [num]</li>
<li>next [num]</li>
<li>cont</li>
<li>finish</li>

<li>list [start[, end]]</li>
<li>info source</li>
<li>info sources</li>
<li>info functions</li>
</ul>

<h2>Call stack inspection:</h2>
<ul>
<li>backtrace</li>
<li>up [n]</li>
<li>down [n]</li>
<li>frame [n]</li>
</ul>


<h2>Debugger inspection and interaction:</h2>
<ul>
<li>info target</li>
<li>show prompt</li>
<li>set prompt</li>
<li>show listsize</li>
<li>set listsize</li>
<li>show language</li>
<li>set language</li>
<li>show args</li>
<li>set args [args]</li>
</ul>

<h2>TODO:</h2>
<ul>
<li>info frame</li>
<li>break</li>
<li>print</li>
<li>ptype</li>

<li>info types</li>
<li>info variables</li>
<li>info program</li>

<li>info args</li>
<li>info locals</li>
<li>info catch</li>
<li>... many others</li>
</ul>
</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section">
  <a name="architecture">Architecture of the LLVM debugger</a>
</div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
The LLVM debugger is built out of three distinct layers of software.  These
layers provide clients with different interface options depending on what pieces
of they want to implement themselves, and it also promotes code modularity and
good design.  The three layers are the <a href="#arch_debugger">Debugger
interface</a>, the <a href="#arch_info">"info" interfaces</a>, and the
<a href="#arch_llvm-db"><tt>llvm-db</tt> tool</a> itself.
</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="arch_debugger">The Debugger and InferiorProcess classes</a>
</div>

<div class="doc_text">
<p>
The Debugger class (defined in the <tt>include/llvm/Debugger/</tt> directory) is
a low-level class which is used to maintain information about the loaded
program, as well as start and stop the program running as necessary.  This class
does not provide any high-level analysis or control over the program, only
exposing simple interfaces like <tt>load/unloadProgram</tt>,
<tt>create/killProgram</tt>, <tt>step/next/finish/contProgram</tt>, and
low-level methods for installing breakpoints.
</p>

<p>
The Debugger class is itself a wrapper around the lowest-level InferiorProcess
class.  This class is used to represent an instance of the program running under
debugger control.  The InferiorProcess class can be implemented in different
ways for different targets and execution scenarios (e.g., remote debugging).
The InferiorProcess class exposes a small and simple collection of interfaces
which are useful for inspecting the current state of the program (such as
collecting stack trace information, reading the memory image of the process,
etc).  The interfaces in this class are designed to be as low-level and simple
as possible, to make it easy to create new instances of the class.
</p>

<p>
The Debugger class exposes the currently active instance of InferiorProcess
through the <tt>Debugger::getRunningProcess</tt> method, which returns a
<tt>const</tt> reference to the class.  This means that clients of the Debugger
class can only <b>inspect</b> the running instance of the program directly.  To
change the executing process in some way, they must use the interces exposed by
the Debugger class.
</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="arch_info">The RuntimeInfo, ProgramInfo, and SourceLanguage classes</a>
</div>

<div class="doc_text">
<p>
The next-highest level of debugger abstraction is provided through the
ProgramInfo, RuntimeInfo, SourceLanguage and related classes (also defined in
the <tt>include/llvm/Debugger/</tt> directory).  These classes efficiently
decode the debugging information and low-level interfaces exposed by
InferiorProcess into a higher-level representation, suitable for analysis by the
debugger.
</p>

<p>
The ProgramInfo class exposes a variety of different kinds of information about
the program objects in the source-level-language.  The SourceFileInfo class
represents a source-file in the program (e.g. a .cpp or .h file).  The
SourceFileInfo class captures information such as which SourceLanguage was used
to compile the file, where the debugger can get access to the actual file text
(which is lazily loaded on demand), etc.  The SourceFunctionInfo class
represents a... <b>FIXME: finish</b>.  The ProgramInfo class provides interfaces
to lazily find and decode the information needed to create the Source*Info
classes requested by the debugger.
</p>

<p>
The RuntimeInfo class exposes information about the currently executed program,
by decoding information from the InferiorProcess and ProgramInfo classes.  It
provides a StackFrame class which provides an easy-to-use interface for
inspecting the current and suspended stack frames in the program.
</p>

<p>
The SourceLanguage class is an abstract interface used by the debugger to
perform all source-language-specific tasks.  For example, this interface is used
by the ProgramInfo class to decode language-specific types and functions and by
the debugger front-end (such as <a href="#arch_llvm-db"><tt>llvm-db</tt></a> to
evaluate source-langauge expressions typed into the debugger.  This class uses
the RuntimeInfo &amp; ProgramInfo classes to get information about the current
execution context and the loaded program, respectively.
</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="arch_llvm-db">The <tt>llvm-db</tt> tool</a>
</div>

<div class="doc_text">
<p>
The <tt>llvm-db</tt> is designed to be a debugger providing an interface as <a
href="#llvm-db">similar to GDB</a> as reasonable, but no more so than that.
Because the <a href="#arch_debugger">Debugger</a> and <a
href="#arch_info">info</a> classes implement all of the heavy lifting and
analysis, <tt>llvm-db</tt> (which lives in <tt>llvm/tools/llvm-db</tt>) consists
mainly of of code to interact with the user and parse commands.  The CLIDebugger
constructor registers all of the builtin commands for the debugger, and each
command is implemented as a CLIDebugger::[name]Command method.
</p>
</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="arch_todo">Short-term TODO list</a>
</div>

<div class="doc_text">

<p>
FIXME: this section will eventually go away.  These are notes to myself of
things that should be implemented, but haven't yet.
</p>

<p>
<b>Breakpoints:</b> Support is already implemented in the 'InferiorProcess'
class, though it hasn't been tested yet.  To finish breakpoint support, we need
to implement breakCommand (which should reuse the linespec parser from the list
command), and handle the fact that 'break foo' or 'break file.c:53' may insert
multiple breakpoints.  Also, if you say 'break file.c:53' and there is no
stoppoint on line 53, the breakpoint should go on the next available line.  My
idea was to have the Debugger class provide a "Breakpoint" class which
encapsulated this messiness, giving the debugger front-end a simple interface.
The debugger front-end would have to map the really complex semantics of
temporary breakpoints and 'conditional' breakpoints onto this intermediate
level. Also, breakpoints should survive as much as possible across program
reloads.
</p>

<p>
<b>UnixLocalInferiorProcess.cpp speedup</b>: There is no reason for the debugged
process to code gen the globals corresponding to debug information.  The
IntrinsicLowering object could instead change descriptors into constant expr
casts of the constant address of the LLVM objects for the descriptors.  This
would also allow us to eliminate the mapping back and forth between physical
addresses that must be done.</p>

<p>
<b>Process deaths</b>: The InferiorProcessDead exception should be extended to
know "how" a process died, i.e., it was killed by a signal.  This is easy to
collect in the UnixLocalInferiorProcess, we just need to represent it.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section">
  <a name="format">Debugging information format</a>
</div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>LLVM debugging information has been carefully designed to make it possible
for the optimizer to optimize the program and debugging information without
necessarily having to know anything about debugging information.  In particular,
the global constant merging pass automatically eliminates duplicated debugging
information (often caused by header files), the global dead code elimination
pass automatically deletes debugging information for a function if it decides to
delete the function, and the linker eliminates debug information when it merges
<tt>linkonce</tt> functions.</p>

<p>To do this, most of the debugging information (descriptors for types,
variables, functions, source files, etc) is inserted by the language front-end
in the form of LLVM global variables.  These LLVM global variables are no
different from any other global variables, except that they have a web of LLVM
intrinsic functions that point to them.  If the last references to a particular
piece of debugging information are deleted (for example, by the
<tt>-globaldce</tt> pass), the extraneous debug information will automatically
become dead and be removed by the optimizer.</p>

<p>The debugger is designed to be agnostic about the contents of most of the
debugging information.  It uses a <a href="#arch_info">source-language-specific
module</a> to decode the information that represents variables, types,
functions, namespaces, etc: this allows for arbitrary source-language semantics
and type-systems to be used, as long as there is a module written for the
debugger to interpret the information.
</p>

<p>
To provide basic functionality, the LLVM debugger does have to make some
assumptions about the source-level language being debugged, though it keeps
these to a minimum.  The only common features that the LLVM debugger assumes
exist are <a href="#format_common_source_files">source files</a>, and <a
href="#format_program_objects">program objects</a>.  These abstract objects are
used by the debugger to form stack traces, show information about local
variables, etc.

<p>This section of the documentation first describes the representation aspects
common to any source-language.  The <a href="#ccxx_frontend">next section</a>
describes the data layout conventions used by the C and C++ front-ends.</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="format_common_anchors">Anchors for global objects</a>
</div>

<div class="doc_text">
<p>
One important aspect of the LLVM debug representation is that it allows the LLVM
debugger to efficiently index all of the global objects without having the scan
the program.  To do this, all of the global objects use "anchor" globals of type
"<tt>{}</tt>", with designated names.  These anchor objects obviously do not
contain any content or meaning by themselves, but all of the global objects of a
particular type (e.g., source file descriptors) contain a pointer to the anchor.
This pointer allows the debugger to use def-use chains to find all global
objects of that type.
</p>

<p>
So far, the following names are recognized as anchors by the LLVM debugger:
</p>

<p><pre>
  %<a href="#format_common_source_files">llvm.dbg.translation_units</a> = linkonce global {} {}
  %<a href="#format_program_objects">llvm.dbg.globals</a>         = linkonce global {} {}
</pre></p>

<p>
Using anchors in this way (where the source file descriptor points to the
anchors, as opposed to having a list of source file descriptors) allows for the
standard dead global elimination and merging passes to automatically remove
unused debugging information.  If the globals were kept track of through lists,
there would always be an object pointing to the descriptors, thus would never be
deleted.
</p>

</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="format_common_stoppoint">
     Representing stopping points in the source program
  </a>
</div>

<div class="doc_text">

<p>LLVM debugger "stop points" are a key part of the debugging representation
that allows the LLVM to maintain simple semantics for <a
href="#debugopt">debugging optimized code</a>.  The basic idea is that the
front-end inserts calls to the <tt>%llvm.dbg.stoppoint</tt> intrinsic function
at every point in the program where the debugger should be able to inspect the
program (these correspond to places the debugger stops when you "<tt>step</tt>"
through it).  The front-end can choose to place these as fine-grained as it
would like (for example, before every subexpression evaluated), but it is
recommended to only put them after every source statement that includes
executable code.</p>

<p>
Using calls to this intrinsic function to demark legal points for the debugger
to inspect the program automatically disables any optimizations that could
potentially confuse debugging information.  To non-debug-information-aware
transformations, these calls simply look like calls to an external function,
which they must assume to do anything (including reading or writing to any part
of reachable memory).  On the other hand, it does not impact many optimizations,
such as code motion of non-trapping instructions, nor does it impact
optimization of subexpressions, code duplication transformations, or basic-block
reordering transformations.</p>

<p>
An important aspect of the calls to the <tt>%llvm.dbg.stoppoint</tt> intrinsic
is that the function-local debugging information is woven together with use-def
chains.  This makes it easy for the debugger to, for example, locate the 'next'
stop point.  For a concrete example of stop points, see the example in <a
href="#format_common_lifetime">the next section</a>.</p>

</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="format_common_lifetime">Object lifetimes and scoping</a>
</div>

<div class="doc_text">
<p>
In many languages, the local variables in functions can have their lifetime or
scope limited to a subset of a function.  In the C family of languages, for
example, variables are only live (readable and writable) within the source block
that they are defined in.  In functional languages, values are only readable
after they have been defined.  Though this is a very obvious concept, it is also
non-trivial to model in LLVM, because it has no notion of scoping in this sense,
and does not want to be tied to a language's scoping rules.
</p>

<p>
In order to handle this, the LLVM debug format uses the notion of "regions" of a
function, delineated by calls to intrinsic functions.  These intrinsic functions
define new regions of the program and indicate when the region lifetime expires.
Consider the following C fragment, for example:
</p>

<p><pre>
1.  void foo() {
2.    int X = ...;
3.    int Y = ...;
4.    {
5.      int Z = ...;
6.      ...
7.    }
8.    ...
9.  }
</pre></p>

<p>
Compiled to LLVM, this function would be represented like this (FIXME: CHECK AND
UPDATE THIS):
</p>

<p><pre>
void %foo() {
    %X = alloca int
    %Y = alloca int
    %Z = alloca int
    <a name="#icl_ex_D1">%D1</a> = call {}* %llvm.dbg.func.start(<a href="#format_program_objects">%lldb.global</a>* %d.foo)
    %D2 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D1, uint 2, uint 2, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)

    %D3 = call {}* %llvm.dbg.DEFINEVARIABLE({}* %D2, ...)
    <i>;; Evaluate expression on line 2, assigning to X.</i>
    %D4 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D3, uint 3, uint 2, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)

    %D5 = call {}* %llvm.dbg.DEFINEVARIABLE({}* %D4, ...)
    <i>;; Evaluate expression on line 3, assigning to Y.</i>
    %D6 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D5, uint 5, uint 4, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)

    <a name="#icl_ex_D1">%D7</a> = call {}* %llvm.region.start({}* %D6)
    %D8 = call {}* %llvm.dbg.DEFINEVARIABLE({}* %D7, ...)
    <i>;; Evaluate expression on line 5, assigning to Z.</i>
    %D9 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D8, uint 6, uint 4, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)

    <i>;; Code for line 6.</i>
    %D10 = call {}* %llvm.region.end({}* %D9)
    %D11 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D10, uint 8, uint 2, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)

    <i>;; Code for line 8.</i>
    <a name="#icl_ex_D1">%D12</a> = call {}* %llvm.region.end({}* %D11)
    ret void
}
</pre></p>

<p>
This example illustrates a few important details about the LLVM debugging
information.  In particular, it shows how the various intrinsics used are woven
together with def-use and use-def chains, similar to how <a
href="#format_common_anchors">anchors</a> are used with globals.  This allows the
debugger to analyze the relationship between statements, variable definitions,
and the code used to implement the function.</p>

<p>
In this example, two explicit regions are defined, one with the <a
href="#icl_ex_D1">definition of the <tt>%D1</tt> variable</a> and one with the
<a href="#icl_ex_D7">definition of <tt>%D7</tt></a>.  In the case of
<tt>%D1</tt>, the debug information indicates that the function whose <a
href="#format_program_objects">descriptor</a> is specified as an argument to the
intrinsic.  This defines a new stack frame whose lifetime ends when the region
is ended by <a href="#icl_ex_D12">the <tt>%D12</tt> call</a>.</p>

<p>
Using regions to represent the boundaries of source-level functions allow LLVM
interprocedural optimizations to arbitrarily modify LLVM functions without
having to worry about breaking mapping information between the LLVM code and the
and source-level program.  In particular, the inliner requires no modification
to support inlining with debugging information: there is no explicit correlation
drawn between LLVM functions and their source-level counterparts (note however,
that if the inliner inlines all instances of a non-strong-linkage function into
its caller that it will not be possible for the user to manually invoke the
inlined function from the debugger).</p>

<p>
Once the function has been defined, the <a
href="#format_common_stoppoint">stopping point</a> corresponding to line #2 of the
function is encountered.  At this point in the function, <b>no</b> local
variables are live.  As lines 2 and 3 of the example are executed, their
variable definitions are automatically introduced into the program, without the
need to specify a new region.  These variables do not require new regions to be
introduced because they go out of scope at the same point in the program: line
9.
</p>

<p>
In contrast, the <tt>Z</tt> variable goes out of scope at a different time, on
line 7.  For this reason, it is defined within <a href="#icl_ex_D7">the
<tt>%D7</tt> region</a>, which kills the availability of <tt>Z</tt> before the
code for line 8 is executed.  In this way, regions can support arbitrary
source-language scoping rules, as long as they can only be nested (ie, one scope
cannot partially overlap with a part of another scope).
</p>

<p>
It is worth noting that this scoping mechanism is used to control scoping of all
declarations, not just variable declarations.  For example, the scope of a C++
using declaration is controlled with this, and the <tt>llvm-db</tt> C++ support
routines could use this to change how name lookup is performed (though this is
not implemented yet).
</p>

</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="format_common_descriptors">Object descriptor formats</a>
</div>

<div class="doc_text">
<p>
The LLVM debugger expects the descriptors for program objects to start in a
canonical format, but the descriptors can include additional information
appended at the end that is source-language specific.  All LLVM debugging
information is versioned, allowing backwards compatibility in the case that the
core structures need to change in some way.  Also, all debugging information
objects start with a <a href="#format_common_tags">tag</a> to indicate what type
of object it is.  The source-language is allows to define its own objects, by
using unreserved tag numbers.</p>

<p>The lowest-level descriptor are those describing <a
href="#format_common_source_files">the files containing the program source
code</a>, as most other descriptors (sometimes indirectly) refer to them.
</p>
</div>


<!----------------------------------------------------------------------------->
<div class="doc_subsubsection">
  <a name="format_common_source_files">Representation of source files</a>
</div>

<div class="doc_text">
<p>
Source file descriptors are patterned after the Dwarf "compile_unit" object.
The descriptor currently is defined to have at least the following LLVM
type entries:</p>

<p><pre>
%lldb.compile_unit = type {
       uint,                 <i>;; Tag: <a href="#tag_compile_unit">LLVM_COMPILE_UNIT</a></i>
       ushort,               <i>;; LLVM debug version number</i>
       ushort,               <i>;; Dwarf language identifier</i>
       sbyte*,               <i>;; Filename</i>
       sbyte*,               <i>;; Working directory when compiled</i>
       sbyte*                <i>;; Producer of the debug information</i>
}
</pre></p>

<p>
These descriptors contain the version number for the debug info, a source
language ID for the file (we use the Dwarf 3.0 ID numbers, such as
<tt>DW_LANG_C89</tt>, <tt>DW_LANG_C_plus_plus</tt>, <tt>DW_LANG_Cobol74</tt>,
etc), three strings describing the filename, working directory of the compiler,
and an identifier string for the compiler that produced it.  Note that actual
compile_unit declarations must also include an <a
href="#format_common_anchors">anchor</a> to <tt>llvm.dbg.translation_units</tt>,
but it is not specified where the anchor is to be located.  Here is an example
descriptor:
</p>

<p><pre>
%arraytest_source_file = internal constant %lldb.compile_unit {
    <a href="#tag_compile_unit">uint 17</a>,                                                      ; Tag value
    ushort 0,                                                     ; Version #0
    ushort 1,                                                     ; DW_LANG_C89
    sbyte* getelementptr ([12 x sbyte]* %.str_1, long 0, long 0), ; filename
    sbyte* getelementptr ([12 x sbyte]* %.str_2, long 0, long 0), ; working dir
    sbyte* getelementptr ([12 x sbyte]* %.str_3, long 0, long 0), ; producer
    {}* %llvm.dbg.translation_units                               ; Anchor
}
%.str_1 = internal constant [12 x sbyte] c"arraytest.c\00"
%.str_2 = internal constant [12 x sbyte] c"/home/sabre\00"
%.str_3 = internal constant [12 x sbyte] c"llvmgcc 3.4\00"
</pre></p>

<p>
Note that the LLVM constant merging pass should eliminate duplicate copies of
the strings that get emitted to each translation unit, such as the producer.
</p>

</div>


<!----------------------------------------------------------------------------->
<div class="doc_subsubsection">
  <a name="format_program_objects">Representation of program objects</a>
</div>

<div class="doc_text">
<p>
The LLVM debugger needs to know about some source-language program objects, in
order to build stack traces, print information about local variables, and other
related activities.  The LLVM debugger differentiates between three different
types of program objects: subprograms (functions, messages, methods, etc),
variables (locals and globals), and others.  Because source-languages have
widely varying forms of these objects, the LLVM debugger expects only a few
fields in the descriptor for each object:
</p>

<p><pre>
%lldb.object = type {
       uint,                  <i>;; <a href="#format_common_tag">A tag</a></i>
       <i>any</i>*,                  <i>;; The <a href="#format_common_object_contexts">context</a> for the object</i>
       sbyte*                 <i>;; The object 'name'</i>
}
</pre></p>

<p>
The first field contains a tag for the descriptor.  The second field contains
either a pointer to the descriptor for the containing <a
href="#format_common_source_files">source file</a>, or it contains a pointer to
another program object whose context pointer eventually reaches a source file.
Through this <a href="#format_common_object_contexts">context</a> pointer, the
LLVM debugger can establish the debug version number of the object.</p>

<p>
The third field contains a string that the debugger can use to identify the
object if it does not contain explicit support for the source-language in use
(ie, the 'unknown' source language handler uses this string).  This should be
some sort of unmangled string that corresponds to the object, but it is a
quality of implementation issue what exactly it contains (it is legal, though
not useful, for all of these strings to be null).
</p>

<p>
Note again that descriptors can be extended to include source-language-specific
information in addition to the fields required by the LLVM debugger.  See the <a
href="#ccxx_descriptors">section on the C/C++ front-end</a> for more
information.  Also remember that global objects (functions, selectors, global
variables, etc) must contain an <a href="format_common_anchors">anchor</a> to
the <tt>llvm.dbg.globals</tt> variable.
</p>
</div>


<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="format_common_object_contexts">Program object contexts</a>
</div>

<div class="doc_text">
<p><pre>
Allow source-language specific contexts, use to identify namespaces etc
Must end up in a source file descriptor.
Debugger core ignores all unknown context objects.
</pre></p>
</div>



<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="format_common_intrinsics">Debugger intrinsic functions</a>
</div>

<div class="doc_text">
<p><pre>
Define each intrinsics, as an extension of the language reference manual.

llvm.dbg.stoppoint
llvm.dbg.region.start
llvm.dbg.region.end
llvm.dbg.function.start
llvm.dbg.declare
</pre></p>
</div>



<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="format_common_tags">Values for debugger tags</a>
</div>

<div class="doc_text">

<p>
Happen to be the same value as the similarly named Dwarf-3 tags, this may change
in the future.
</p>

</p>
<p><pre>
  <a name="tag_compile_unit">LLVM_COMPILE_UNIT</a>     : 17
  <a name="tag_subprogram">LLVM_SUBPROGRAM</a>       : 46
  <a name="tag_variable">LLVM_VARIABLE</a>         : 52
<!--  <a name="tag_formal_parameter">LLVM_FORMAL_PARAMETER :  5-->
</pre></p>
</div>



<!-- *********************************************************************** -->
<div class="doc_section">
  <a name="ccxx_frontend">C/C++ front-end specific debug information</a>
</div>

<div class="doc_text">

<p>
The C and C++ front-ends represent information about the program in a format
that is effectively identical to <a
href="http://www.eagercon.com/dwarf/dwarf3std.htm">Dwarf 3.0</a> in terms of
information content.  This allows code generators to trivially support native
debuggers by generating standard dwarf information, and contains enough
information for non-dwarf targets to translate it as needed.</p>

<p>
The basic debug information required by the debugger is (intentionally) designed
to be as minimal as possible.  This basic information is so minimal that it is
unlikely that <b>any</b> source-language could be adequately described by it.
Because of this, the debugger format was designed for extension to support
source-language-specific information.  The extended descriptors are read and
interpreted by the <a href="#arch_info">language-specific</a> modules in the
debugger if there is support available, otherwise it is ignored.
</p>

<p>
This section describes the extensions used to represent C and C++ programs.
Other languages could pattern themselves after this (which itself is tuned to
representing programs in the same way that Dwarf 3 does), or they could choose
to provide completely different extensions if they don't fit into the Dwarf
model.  As support for debugging information gets added to the various LLVM
source-language front-ends, the information used should be documented here.
</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="ccxx_pse">Program Scope Entries</a>
</div>

<div class="doc_text">
<p>

</p>
</div>

<!----------------------------------------------------------------------------->
<div class="doc_subsubsection">
  <a name="ccxx_compilation_units">Compilation unit entries</a>
</div>

<div class="doc_text">
<p>
Translation units do not add any information over the standard <a
href="#format_common_source_files">source file representation</a> already
expected by the debugger.  As such, it uses descriptors of the type specified,
with a trailing <a href="#format_common_anchors">anchor</a>.
</p>
</div>

<!----------------------------------------------------------------------------->
<div class="doc_subsubsection">
  <a name="ccxx_modules">Module, namespace, and importing entries</a>
</div>

<div class="doc_text">
<p>

</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="ccxx_dataobjects">Data objects (program variables)</a>
</div>

<div class="doc_text">
<p>

</p>
</div>


<!-- *********************************************************************** -->
<hr>
<div class="doc_footer">
  <address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
  <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a>
  <br>
  Last modified: $Date$
</div>

</body>
</html>