summaryrefslogtreecommitdiff
path: root/docs/tutorial/LangImpl1.html
blob: 2ce59b98ebd963a10a3479580532c34577bb4012 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
  <title>Kaleidoscope: The basic language, with its lexer</title>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  <meta name="author" content="Chris Lattner">
  <link rel="stylesheet" href="../llvm.css" type="text/css">
</head>

<body>

<div class="doc_title">Kaleidoscope: The basic language, with its lexer</div>

<ul>
<li><a href="index.html">Up to Tutorial Index</a></li>
<li>Chapter 1
  <ol>
    <li><a href="#intro">Tutorial Introduction</a></li>
    <li><a href="#language">The Basic Language</a></li>
    <li><a href="#lexer">The Lexer</a></li>
  </ol>
</li>
<li><a href="LangImpl2.html">Chapter 2</a>: Implementing a Parser and AST</li>
</ul>

<div class="doc_author">
  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="intro">Tutorial Introduction</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>Welcome to the "Implementing a language with LLVM" tutorial.  This tutorial
will run the through implementation of a simple language, showing how fun and
easy it can be.  This tutorial will get you up and started as well as help to 
build a framework you can extend to other languages.  You can also use this
tutorial to help you start playing with other LLVM specific things.
</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="language">The Basic Language</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>This tutorial will be illustrated with a toy language that we'll call
"<a href="http://en.wikipedia.org/wiki/Kaleidoscope">Kaleidoscope</a>".
Kaleidoscope is a procedural language that allows you to define functions, use
conditionals, math, etc.  Over the course of the tutorial, we'll extend
Kaleidoscope to support the if/then/else construct, a for loop, user defined
operators, JIT compilation with a simple command line interface, etc.</p>

<p>Because we want to keep things simple, the only datatype in Kaleidoscope is a
64-bit floating point type (aka 'double' in C parlance).  As such, all values
are implicitly double precision and the language doesn't require type
declarations.  This gives the language a very nice and simple syntax.  For
example, the following simple example computes <a 
href="http://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci numbers:</a></p>

<div class="doc_code">
<pre>
# Compute the x'th fibonacci number.
def fib(x)
  if x &lt; 3 then
    1
  else
    fib(x-1)+fib(x-2)

# This expression will compute the 40th number.
fib(40)
</pre>
</div>

<p>We also allow Kaleidoscope to call into standard library functions (the LLVM
JIT makes this completely trivial).  This means that you can use the 'extern'
keyword to define a function before you use it (this is also useful for mutually
recursive functions).  For example:</p>

<div class="doc_code">
<pre>
extern sin(arg);
extern cos(arg);
extern atan2(arg1 arg2);

atan2(sin(.4), cos(42))
</pre>
</div>

<p>In the first incarnation of the language, we will only support basic
arithmetic: if/then/else will be added in a future installment.  Another
interesting aspect of the first implementation is that it is a completely
functional language, which does not allow you to have side-effects, etc.  We
will eventually add side effects for those who prefer them.</p>

<p>In order to make this tutorial
maximally understandable and hackable, we choose to implement everything in C++
instead of using lexer and parser generators.  LLVM obviously works just fine
with such tools, and making use of them doesn't impact the overall design.</p>

<p>A note about this tutorial: we expect you to extend the language and play
with it on your own.  Take the code and go crazy hacking away at it.  It can be
a lot of fun to play with languages!</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="lexer">The Lexer</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>When it comes to implementing a language, the first thing needed is
the ability to process a text file and recognize what it says.  The traditional
way to do this is to use a "<a 
href="http://en.wikipedia.org/wiki/Lexical_analysis">lexer</a>" (aka 'scanner')
to break the input up into "tokens".  Each token returned by the lexer includes
a token code and potentially some metadata (e.g. the numeric value of a number).
First, we define the possibilities:
</p>

<div class="doc_code">
<pre>
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
  tok_eof = -1,

  // commands
  tok_def = -2, tok_extern = -3,

  // primary
  tok_identifier = -4, tok_number = -5,
};

static std::string IdentifierStr;  // Filled in if tok_identifier
static double NumVal;              // Filled in if tok_number
</pre>
</div>

<p>Each token returned by our lexer will either be one of the Token enum values
or it will be an 'unknown' character like '+', which is returned as its ascii
value.  If the current token is an identifier, the <tt>IdentifierStr</tt>
global variable holds the name of the identifier.  If the current token is a
numeric literal (like 1.0), <tt>NumVal</tt> holds its value.  Note that we use
global variables for simplicity, this is not the best choice for a real language
implementation :).
</p>

<p>The actual implementation of the lexer is a single function named
<tt>gettok</tt>. The <tt>gettok</tt> function is called to return the next token
from standard input.  Its definition starts as:</p>

<div class="doc_code">
<pre>
/// gettok - Return the next token from standard input.
static int gettok() {
  static int LastChar = ' ';

  // Skip any whitespace.
  while (isspace(LastChar))
    LastChar = getchar();
</pre>
</div>

<p>
<tt>gettok</tt> works by calling the C <tt>getchar()</tt> function to read
characters one at a time from standard input.  It eats them as it recognizes
them and stores the last character read, but not processed, in LastChar.  The
first thing that it has to do is ignore whitespace between tokens.  This is 
accomplished with the loop above.</p>

<p>The next thing <tt>gettok</tt> needs to do is recognize identifiers and
specific keywords like "def".  Kaleidoscope does this with this simple loop:</p>

<div class="doc_code">
<pre>
  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    IdentifierStr = LastChar;
    while (isalnum((LastChar = getchar())))
      IdentifierStr += LastChar;

    if (IdentifierStr == "def") return tok_def;
    if (IdentifierStr == "extern") return tok_extern;
    return tok_identifier;
  }
</pre>
</div>

<p>Note that this code sets the '<tt>IdentifierStr</tt>' global whenever it
lexes an identifier.  Also, since language keywords are matched by the same
loop, we handle them here inline.  Numeric values are similar:</p>

<div class="doc_code">
<pre>
  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    std::string NumStr;
    do {
      NumStr += LastChar;
      LastChar = getchar();
    } while (isdigit(LastChar) || LastChar == '.');

    NumVal = strtod(NumStr.c_str(), 0);
    return tok_number;
  }
</pre>
</div>

<p>This is all pretty straight-forward code for processing input.  When reading
a numeric value from input, we use the C <tt>strtod</tt> function to convert it
to a numeric value that we store in <tt>NumVal</tt>.  Note that this isn't doing
sufficient error checking: it will incorrectly read "1.23.45.67" and handle it as
if you typed in "1.23".  Feel free to extend it :).  Next we handle comments:
</p>

<div class="doc_code">
<pre>
  if (LastChar == '#') {
    // Comment until end of line.
    do LastChar = getchar();
    while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp; LastChar != '\r');
    
    if (LastChar != EOF)
      return gettok();
  }
</pre>
</div>

<p>We handle comments by skipping to the end of the line and then return the
next comment.  Finally, if the input doesn't match one of the above cases, it is
either an operator character like '+' or the end of the file.  These are handled with
this code:</p>

<div class="doc_code">
<pre>
  // Check for end of file.  Don't eat the EOF.
  if (LastChar == EOF)
    return tok_eof;
  
  // Otherwise, just return the character as its ascii value.
  int ThisChar = LastChar;
  LastChar = getchar();
  return ThisChar;
}
</pre>
</div>

<p>With this, we have the complete lexer for the basic Kaleidoscope language
(the <a href="LangImpl2.html#code">full code listing</a> for the Lexer is
available in the <a href="LangImpl2.html">next chapter</a> of the tutorial).
Next we'll <a href="LangImpl2.html">build a simple parser that uses this to 
build an Abstract Syntax Tree</a>.  When we have that, we'll include a driver
so that you can use the lexer and parser together.
</p>

</div>

<!-- *********************************************************************** -->
<hr>
<address>
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
  <a href="http://validator.w3.org/check/referer"><img
  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>

  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
  Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
</address>
</body>
</html>