summaryrefslogtreecommitdiff
path: root/include/Support/SCCIterator.h
blob: e737f7c99072b29429cb2b112734ebd4b93fe0a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
//===-- Support/TarjanSCCIterator.h -Generic Tarjan SCC iterator -*- C++ -*--=//
//
// This builds on the Support/GraphTraits.h file to find the strongly 
// connected components (SCCs) of a graph in O(N+E) time using
// Tarjan's DFS algorithm.
//
// The SCC iterator has the important property that if a node in SCC S1
// has an edge to a node in SCC S2, then it visits S1 *after* S2.
// 
// To visit S1 *before* S2, use the TarjanSCCIterator on the Inverse graph.
// (NOTE: This requires some simple wrappers and is not supported yet.)
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_TARJANSCC_ITERATOR_H
#define LLVM_SUPPORT_TARJANSCC_ITERATOR_H

#include "Support/GraphTraits.h"
#include <Support/Statistic.h>
#include <Support/iterator>
#include <vector>
#include <stack>
#include <map>


//--------------------------------------------------------------------------
// class SCC : A simple representation of an SCC in a generic Graph.
//--------------------------------------------------------------------------

template<class GraphT, class GT = GraphTraits<GraphT> >
struct SCC: public std::vector<typename GT::NodeType*> {

  typedef typename GT::NodeType NodeType;
  typedef typename GT::ChildIteratorType ChildItTy;

  typedef std::vector<typename GT::NodeType*> super;
  typedef typename super::iterator               iterator;
  typedef typename super::const_iterator         const_iterator;
  typedef typename super::reverse_iterator       reverse_iterator;
  typedef typename super::const_reverse_iterator const_reverse_iterator;

  // HasLoop() -- Test if this SCC has a loop.  If it has more than one
  // node, this is trivially true.  If not, it may still contain a loop
  // if the node has an edge back to itself.
  bool HasLoop() const {
    if (size() > 1) return true;
    NodeType* N = front();
    for (ChildItTy CI=GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI)
      if (*CI == N)
        return true;
    return false;
  }
};

//--------------------------------------------------------------------------
// class TarjanSCC_iterator: Enumerate the SCCs of a directed graph, in
// reverse topological order of the SCC DAG.
//--------------------------------------------------------------------------

const unsigned long MAXLONG = (1 << (8 * sizeof(unsigned long) - 1));

namespace {
  Statistic<> NumSCCs("NumSCCs", "Number of Strongly Connected Components");
  Statistic<> MaxSCCSize("MaxSCCSize", "Size of largest Strongly Connected Component");
}

template<class GraphT, class GT = GraphTraits<GraphT> >
class TarjanSCC_iterator : public forward_iterator<SCC<GraphT, GT>, ptrdiff_t>
{
  typedef SCC<GraphT, GT> SccTy;
  typedef forward_iterator<SccTy, ptrdiff_t> super;
  typedef typename super::reference reference;
  typedef typename super::pointer pointer;
  typedef typename GT::NodeType          NodeType;
  typedef typename GT::ChildIteratorType ChildItTy;

  // The visit counters used to detect when a complete SCC is on the stack.
  // visitNum is the global counter.
  // nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
  unsigned long visitNum;
  std::map<NodeType *, unsigned long> nodeVisitNumbers;

  // SCCNodeStack - Stack holding nodes of the SCC.
  std::stack<NodeType *> SCCNodeStack;

  // CurrentSCC - The current SCC, retrieved using operator*().
  SccTy CurrentSCC;

  // VisitStack - Used to maintain the ordering.  Top = current block
  // First element is basic block pointer, second is the 'next child' to visit
  std::stack<std::pair<NodeType *, ChildItTy> > VisitStack;

  // MinVistNumStack - Stack holding the "min" values for each node in the DFS.
  // This is used to track the minimum uplink values for all children of
  // the corresponding node on the VisitStack.
  std::stack<unsigned long> MinVisitNumStack;

  // A single "visit" within the non-recursive DFS traversal.
  void DFSVisitOne(NodeType* N) {
    ++visitNum;                         // Global counter for the visit order
    nodeVisitNumbers[N] = visitNum;
    SCCNodeStack.push(N);
    MinVisitNumStack.push(visitNum);
    VisitStack.push(make_pair(N, GT::child_begin(N)));
    DEBUG(std::cerr << "TarjanSCC: Node " << N <<
          " : visitNum = " << visitNum << "\n");
  }

  // The stack-based DFS traversal; defined below.
  void DFSVisitChildren() {
    assert(!VisitStack.empty());
    while (VisitStack.top().second != GT::child_end(VisitStack.top().first))
      { // TOS has at least one more child so continue DFS
        NodeType *childN = *VisitStack.top().second++;
        if (nodeVisitNumbers.find(childN) == nodeVisitNumbers.end())
          { // this node has never been seen
            DFSVisitOne(childN);
          }
        else
          {
            unsigned long childNum = nodeVisitNumbers[childN];
            if (MinVisitNumStack.top() > childNum)
              MinVisitNumStack.top() = childNum;
          }
      }
  }

  // Compute the next SCC using the DFS traversal.
  void GetNextSCC() {
    assert(VisitStack.size() == MinVisitNumStack.size());
    CurrentSCC.clear();                 // Prepare to compute the next SCC
    while (! VisitStack.empty())
      {
        DFSVisitChildren();

        assert(VisitStack.top().second==GT::child_end(VisitStack.top().first));
        NodeType* visitingN = VisitStack.top().first;
        unsigned long minVisitNum = MinVisitNumStack.top();
        VisitStack.pop();
        MinVisitNumStack.pop();
        if (! MinVisitNumStack.empty() && MinVisitNumStack.top() > minVisitNum)
          MinVisitNumStack.top() = minVisitNum;

        DEBUG(std::cerr << "TarjanSCC: Popped node " << visitingN <<
              " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
              nodeVisitNumbers[visitingN] << "\n");

        if (minVisitNum == nodeVisitNumbers[visitingN])
          { // A full SCC is on the SCCNodeStack!  It includes all nodes below
            // visitingN on the stack.  Copy those nodes to CurrentSCC,
            // reset their minVisit values, and return (this suspends
            // the DFS traversal till the next ++).
            do {
              CurrentSCC.push_back(SCCNodeStack.top());
              SCCNodeStack.pop();
              nodeVisitNumbers[CurrentSCC.back()] = MAXLONG; 
            } while (CurrentSCC.back() != visitingN);

            ++NumSCCs;
            if (CurrentSCC.size() > MaxSCCSize) MaxSCCSize = CurrentSCC.size();
            
            return;
          }
      }
  }

  inline TarjanSCC_iterator(NodeType *entryN) : visitNum(0) {
    DFSVisitOne(entryN);
    GetNextSCC();
  }
  inline TarjanSCC_iterator() { /* End is when DFS stack is empty */ }

public:
  typedef TarjanSCC_iterator<GraphT, GT> _Self;

  // Provide static "constructors"...
  static inline _Self begin(GraphT& G) { return _Self(GT::getEntryNode(G)); }
  static inline _Self end  (GraphT& G) { return _Self(); }

  // Direct loop termination test (I.fini() is more efficient than I == end())
  inline bool fini() const {
    return VisitStack.empty();
  }

  inline bool operator==(const _Self& x) const { 
    return VisitStack == x.VisitStack;
  }
  inline bool operator!=(const _Self& x) const { return !operator==(x); }

  // Iterator traversal: forward iteration only
  inline _Self& operator++() {          // Preincrement
    GetNextSCC();
    return *this; 
  }
  inline _Self operator++(int) {        // Postincrement
    _Self tmp = *this; ++*this; return tmp; 
  }

  // Retrieve a pointer to the current SCC.  Returns NULL when done.
  inline const SccTy* operator*() const { 
    assert(!CurrentSCC.empty() || fini());
    return CurrentSCC.empty()? NULL : &CurrentSCC;
  }
  inline SccTy* operator*() { 
    assert(!CurrentSCC.empty() || fini());
    return CurrentSCC.empty()? NULL : &CurrentSCC;
  }
};


// Global constructor for the Tarjan SCC iterator.  Use *I == NULL or I.fini()
// to test termination efficiently, instead of I == the "end" iterator.
template <class T>
TarjanSCC_iterator<T> tarj_begin(T G)
{
  return TarjanSCC_iterator<T>::begin(G);
}


//===----------------------------------------------------------------------===//

#endif