summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/BlockFrequencyInfoImpl.h
blob: 66d27b7e4a7ad8908f234aa7240ec46212645267 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Shared implementation of BlockFrequency for IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
#include <vector>

//===----------------------------------------------------------------------===//
//
// PositiveFloat definition.
//
// TODO: Make this private to BlockFrequencyInfoImpl or delete.
//
//===----------------------------------------------------------------------===//
namespace llvm {

class PositiveFloatBase {
public:
  static const int MaxExponent = 16383;
  static const int MinExponent = -16382;
  static const int DefaultPrecision = 10;

  static void dump(uint64_t D, int16_t E, int Width);
  static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
                            unsigned Precision);
  static std::string toString(uint64_t D, int16_t E, int Width,
                              unsigned Precision);
  static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
  static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
  static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }

  static std::pair<uint64_t, bool> splitSigned(int64_t N) {
    if (N >= 0)
      return std::make_pair(N, false);
    if (N == INT64_MIN)
      return std::make_pair(uint64_t(N) + 1, true);
    return std::make_pair(-N, true);
  }
  static int64_t joinSigned(uint64_t U, bool IsNeg) {
    if (U > INT64_MAX)
      return IsNeg ? INT64_MIN : INT64_MAX;
    return IsNeg ? -int16_t(U) : U;
  }

  static int32_t extractLg(const std::pair<int32_t, int> &Lg) {
    return Lg.first;
  }
  static int32_t extractLgFloor(const std::pair<int32_t, int> &Lg) {
    return Lg.first - (Lg.second > 0);
  }
  static int32_t extractLgCeiling(const std::pair<int32_t, int> &Lg) {
    return Lg.first + (Lg.second < 0);
  }
  static uint64_t getDiff(int16_t L, int16_t R) {
    assert(L <= R && "arguments in wrong order");
    return (uint64_t)R - (uint64_t)L;
  }

  static std::pair<uint64_t, int16_t> divide64(uint64_t L, uint64_t R);
  static std::pair<uint64_t, int16_t> multiply64(uint64_t L, uint64_t R);

  static int compare(uint64_t L, uint64_t R, int Shift) {
    assert(Shift >= 0);
    assert(Shift < 64);

    uint64_t L_adjusted = L >> Shift;
    if (L_adjusted < R)
      return -1;
    if (L_adjusted > R)
      return 1;

    return L > L_adjusted << Shift ? 1 : 0;
  }
};

/// \brief Simple representation of a positive floating point.
///
/// PositiveFloat is a positive floating point number.  It uses simple
/// saturation arithmetic, and every operation is well-defined for every value.
///
/// The number is split into a signed exponent and unsigned digits.  The number
/// represented is \c getDigits()*2^getExponent().  In this way, the digits are
/// much like the mantissa in the x87 long double, but there is no canonical
/// form, so the same number can be represented by many bit representations
/// (it's always in "denormal" mode).
///
/// PositiveFloat is templated on the underlying integer type for digits, which
/// is expected to be one of uint64_t, uint32_t, uint16_t or uint8_t.
///
/// Unlike builtin floating point types, PositiveFloat is portable.
///
/// Unlike APFloat, PositiveFloat does not model architecture floating point
/// behaviour (this should make it a little faster), and implements most
/// operators (this makes it usable).
///
/// PositiveFloat is totally ordered.  However, there is no canonical form, so
/// there are multiple representations of most scalars.  E.g.:
///
///     PositiveFloat(8u, 0) == PositiveFloat(4u, 1)
///     PositiveFloat(4u, 1) == PositiveFloat(2u, 2)
///     PositiveFloat(2u, 2) == PositiveFloat(1u, 3)
///
/// PositiveFloat implements most arithmetic operations.  Precision is kept
/// where possible.  Uses simple saturation arithmetic, so that operations
/// saturate to 0.0 or getLargest() rather than under or overflowing.  It has
/// some extra arithmetic for unit inversion.  0.0/0.0 is defined to be 0.0.
/// Any other division by 0.0 is defined to be getLargest().
///
/// As a convenience for modifying the exponent, left and right shifting are
/// both implemented, and both interpret negative shifts as positive shifts in
/// the opposite direction.
///
/// Future work might extract most of the implementation into a base class
/// (e.g., \c Float) that has an \c IsSigned template parameter.  The initial
/// use case for this only needed positive semantics, but it wouldn't take much
/// work to extend.
///
/// Exponents are limited to the range accepted by x87 long double.  This makes
/// it trivial to add functionality to convert to APFloat (this is already
/// relied on for the implementation of printing).
template <class DigitsT> class PositiveFloat : PositiveFloatBase {
public:
  static_assert(!std::numeric_limits<DigitsT>::is_signed,
                "only unsigned floats supported");

  typedef DigitsT DigitsType;

private:
  typedef std::numeric_limits<DigitsType> DigitsLimits;

  static const int Width = sizeof(DigitsType) * 8;
  static_assert(Width <= 64, "invalid integer width for digits");

private:
  DigitsType Digits;
  int16_t Exponent;

public:
  PositiveFloat() : Digits(0), Exponent(0) {}

  PositiveFloat(DigitsType Digits, int16_t Exponent)
      : Digits(Digits), Exponent(Exponent) {}

private:
  PositiveFloat(const std::pair<uint64_t, int16_t> &X)
      : Digits(X.first), Exponent(X.second) {}

public:
  static PositiveFloat getZero() { return PositiveFloat(0, 0); }
  static PositiveFloat getOne() { return PositiveFloat(1, 0); }
  static PositiveFloat getLargest() {
    return PositiveFloat(DigitsLimits::max(), MaxExponent);
  }
  static PositiveFloat getFloat(uint64_t N) { return adjustToWidth(N, 0); }
  static PositiveFloat getInverseFloat(uint64_t N) {
    return getFloat(N).invert();
  }
  static PositiveFloat getFraction(DigitsType N, DigitsType D) {
    return getQuotient(N, D);
  }

  int16_t getExponent() const { return Exponent; }
  DigitsType getDigits() const { return Digits; }

  template <class IntT> IntT toInt() const;

  bool isZero() const { return !Digits; }
  bool isLargest() const { return *this == getLargest(); }
  bool isOne() const {
    if (Exponent > 0 || Exponent <= -Width)
      return false;
    return Digits == DigitsType(1) << -Exponent;
  }

  /// \brief The log base 2, rounded.
  ///
  /// Get the lg of the scalar.  lg 0 is defined to be INT32_MIN.
  int32_t lg() const { return extractLg(lgImpl()); }

  /// \brief The log base 2, rounded towards INT32_MIN.
  ///
  /// Get the lg floor.  lg 0 is defined to be INT32_MIN.
  int32_t lgFloor() const { return extractLgFloor(lgImpl()); }

  /// \brief The log base 2, rounded towards INT32_MAX.
  ///
  /// Get the lg ceiling.  lg 0 is defined to be INT32_MIN.
  int32_t lgCeiling() const { return extractLgCeiling(lgImpl()); }

  bool operator==(const PositiveFloat &X) const { return compare(X) == 0; }
  bool operator<(const PositiveFloat &X) const { return compare(X) < 0; }
  bool operator!=(const PositiveFloat &X) const { return compare(X) != 0; }
  bool operator>(const PositiveFloat &X) const { return compare(X) > 0; }
  bool operator<=(const PositiveFloat &X) const { return compare(X) <= 0; }
  bool operator>=(const PositiveFloat &X) const { return compare(X) >= 0; }

  bool operator!() const { return isZero(); }

  /// \brief Convert to a decimal representation in a string.
  ///
  /// Convert to a string.  Uses scientific notation for very large/small
  /// numbers.  Scientific notation is used roughly for numbers outside of the
  /// range 2^-64 through 2^64.
  ///
  /// \c Precision indicates the number of decimal digits of precision to use;
  /// 0 requests the maximum available.
  ///
  /// As a special case to make debugging easier, if the number is small enough
  /// to convert without scientific notation and has more than \c Precision
  /// digits before the decimal place, it's printed accurately to the first
  /// digit past zero.  E.g., assuming 10 digits of precision:
  ///
  ///     98765432198.7654... => 98765432198.8
  ///      8765432198.7654... =>  8765432198.8
  ///       765432198.7654... =>   765432198.8
  ///        65432198.7654... =>    65432198.77
  ///         5432198.7654... =>     5432198.765
  std::string toString(unsigned Precision = DefaultPrecision) {
    return PositiveFloatBase::toString(Digits, Exponent, Width, Precision);
  }

  /// \brief Print a decimal representation.
  ///
  /// Print a string.  See toString for documentation.
  raw_ostream &print(raw_ostream &OS,
                     unsigned Precision = DefaultPrecision) const {
    return PositiveFloatBase::print(OS, Digits, Exponent, Width, Precision);
  }
  void dump() const { return PositiveFloatBase::dump(Digits, Exponent, Width); }

  PositiveFloat &operator+=(const PositiveFloat &X);
  PositiveFloat &operator-=(const PositiveFloat &X);
  PositiveFloat &operator*=(const PositiveFloat &X);
  PositiveFloat &operator/=(const PositiveFloat &X);
  PositiveFloat &operator<<=(int16_t Shift) { return shiftLeft(Shift); }
  PositiveFloat &operator>>=(int16_t Shift) { return shiftRight(Shift); }

private:
  PositiveFloat &shiftLeft(int32_t Shift);
  PositiveFloat &shiftRight(int32_t Shift);
  PositiveFloat normalizeExponents(PositiveFloat X);

public:
  /// \brief Scale a large number accurately.
  ///
  /// Scale N (multiply it by this).  Uses full precision multiplication, even
  /// if Width is smaller than 64, so information is not lost.
  uint64_t scale(uint64_t N) const;
  uint64_t scaleByInverse(uint64_t N) const {
    // TODO: implement directly, rather than relying on inverse.  Inverse is
    // expensive.
    return inverse().scale(N);
  }
  int64_t scale(int64_t N) const {
    std::pair<uint64_t, bool> Unsigned = splitSigned(N);
    return joinSigned(scale(Unsigned.first), Unsigned.second);
  }
  int64_t scaleByInverse(int64_t N) const {
    std::pair<uint64_t, bool> Unsigned = splitSigned(N);
    return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
  }

  int compare(const PositiveFloat &X) const;
  int compareTo(uint64_t N) const {
    PositiveFloat Float = getFloat(N);
    int Compare = compare(Float);
    if (Width == 64 || Compare != 0)
      return Compare;

    // Check for precision loss.  We know *this == RoundTrip.
    uint64_t RoundTrip = Float.template toInt<uint64_t>();
    return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
  }
  int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }

  PositiveFloat &invert() { return *this = PositiveFloat::getFloat(1) / *this; }
  PositiveFloat inverse() const { return PositiveFloat(*this).invert(); }

private:
  static PositiveFloat getProduct(DigitsType L, DigitsType R);
  static PositiveFloat getQuotient(DigitsType Dividend, DigitsType Divisor);

  std::pair<int32_t, int> lgImpl() const;
  static int countLeadingZerosWidth(DigitsType Digits) {
    if (Width == 64)
      return countLeadingZeros64(Digits);
    if (Width == 32)
      return countLeadingZeros32(Digits);
    return countLeadingZeros32(Digits) + Width - 32;
  }

  static PositiveFloat adjustToWidth(uint64_t N, int S) {
    assert(S >= MinExponent);
    assert(S <= MaxExponent);
    if (Width == 64 || N <= DigitsLimits::max())
      return PositiveFloat(N, S);

    // Shift right.
    int Shift = 64 - Width - countLeadingZeros64(N);
    DigitsType Shifted = N >> Shift;

    // Round.
    assert(S + Shift <= MaxExponent);
    return getRounded(PositiveFloat(Shifted, S + Shift),
                      N & UINT64_C(1) << (Shift - 1));
  }

  static PositiveFloat getRounded(PositiveFloat P, bool Round) {
    if (!Round)
      return P;
    if (P.Digits == DigitsLimits::max())
      // Careful of overflow in the exponent.
      return PositiveFloat(1, P.Exponent) <<= Width;
    return PositiveFloat(P.Digits + 1, P.Exponent);
  }
};

template <class DigitsT>
PositiveFloat<DigitsT> operator+(const PositiveFloat<DigitsT> &L,
                                 const PositiveFloat<DigitsT> &R) {
  return PositiveFloat<DigitsT>(L) += R;
}
template <class DigitsT>
PositiveFloat<DigitsT> operator-(const PositiveFloat<DigitsT> &L,
                                 const PositiveFloat<DigitsT> &R) {
  return PositiveFloat<DigitsT>(L) -= R;
}
template <class DigitsT>
PositiveFloat<DigitsT> operator*(const PositiveFloat<DigitsT> &L,
                                 const PositiveFloat<DigitsT> &R) {
  return PositiveFloat<DigitsT>(L) *= R;
}
template <class DigitsT>
PositiveFloat<DigitsT> operator/(const PositiveFloat<DigitsT> &L,
                                 const PositiveFloat<DigitsT> &R) {
  return PositiveFloat<DigitsT>(L) /= R;
}
template <class DigitsT>
PositiveFloat<DigitsT> operator<<(const PositiveFloat<DigitsT> &F,
                                  int16_t Shift) {
  return PositiveFloat<DigitsT>(F) <<= Shift;
}
template <class DigitsT>
PositiveFloat<DigitsT> operator>>(const PositiveFloat<DigitsT> &F,
                                  int16_t Shift) {
  return PositiveFloat<DigitsT>(F) >>= Shift;
}

template <class DigitsT>
raw_ostream &operator<<(raw_ostream &OS, const PositiveFloat<DigitsT> &X) {
  return X.print(OS, 10);
}

template <class DigitsT>
bool operator<(const PositiveFloat<DigitsT> &L, uint64_t R) {
  return L.compareTo(R) < 0;
}
template <class DigitsT>
bool operator>(const PositiveFloat<DigitsT> &L, uint64_t R) {
  return L.compareTo(R) > 0;
}
template <class DigitsT>
bool operator==(const PositiveFloat<DigitsT> &L, uint64_t R) {
  return L.compareTo(R) == 0;
}
template <class DigitsT>
bool operator!=(const PositiveFloat<DigitsT> &L, uint64_t R) {
  return L.compareTo(R) != 0;
}
template <class DigitsT>
bool operator<=(const PositiveFloat<DigitsT> &L, uint64_t R) {
  return L.compareTo(R) <= 0;
}
template <class DigitsT>
bool operator>=(const PositiveFloat<DigitsT> &L, uint64_t R) {
  return L.compareTo(R) >= 0;
}

template <class DigitsT>
bool operator<(const PositiveFloat<DigitsT> &L, int64_t R) {
  return L.compareTo(R) < 0;
}
template <class DigitsT>
bool operator>(const PositiveFloat<DigitsT> &L, int64_t R) {
  return L.compareTo(R) > 0;
}
template <class DigitsT>
bool operator==(const PositiveFloat<DigitsT> &L, int64_t R) {
  return L.compareTo(R) == 0;
}
template <class DigitsT>
bool operator!=(const PositiveFloat<DigitsT> &L, int64_t R) {
  return L.compareTo(R) != 0;
}
template <class DigitsT>
bool operator<=(const PositiveFloat<DigitsT> &L, int64_t R) {
  return L.compareTo(R) <= 0;
}
template <class DigitsT>
bool operator>=(const PositiveFloat<DigitsT> &L, int64_t R) {
  return L.compareTo(R) >= 0;
}

template <class DigitsT>
bool operator<(const PositiveFloat<DigitsT> &L, uint32_t R) {
  return L.compareTo(uint64_t(R)) < 0;
}
template <class DigitsT>
bool operator>(const PositiveFloat<DigitsT> &L, uint32_t R) {
  return L.compareTo(uint64_t(R)) > 0;
}
template <class DigitsT>
bool operator==(const PositiveFloat<DigitsT> &L, uint32_t R) {
  return L.compareTo(uint64_t(R)) == 0;
}
template <class DigitsT>
bool operator!=(const PositiveFloat<DigitsT> &L, uint32_t R) {
  return L.compareTo(uint64_t(R)) != 0;
}
template <class DigitsT>
bool operator<=(const PositiveFloat<DigitsT> &L, uint32_t R) {
  return L.compareTo(uint64_t(R)) <= 0;
}
template <class DigitsT>
bool operator>=(const PositiveFloat<DigitsT> &L, uint32_t R) {
  return L.compareTo(uint64_t(R)) >= 0;
}

template <class DigitsT>
bool operator<(const PositiveFloat<DigitsT> &L, int32_t R) {
  return L.compareTo(int64_t(R)) < 0;
}
template <class DigitsT>
bool operator>(const PositiveFloat<DigitsT> &L, int32_t R) {
  return L.compareTo(int64_t(R)) > 0;
}
template <class DigitsT>
bool operator==(const PositiveFloat<DigitsT> &L, int32_t R) {
  return L.compareTo(int64_t(R)) == 0;
}
template <class DigitsT>
bool operator!=(const PositiveFloat<DigitsT> &L, int32_t R) {
  return L.compareTo(int64_t(R)) != 0;
}
template <class DigitsT>
bool operator<=(const PositiveFloat<DigitsT> &L, int32_t R) {
  return L.compareTo(int64_t(R)) <= 0;
}
template <class DigitsT>
bool operator>=(const PositiveFloat<DigitsT> &L, int32_t R) {
  return L.compareTo(int64_t(R)) >= 0;
}

template <class DigitsT>
bool operator<(uint64_t L, const PositiveFloat<DigitsT> &R) {
  return R > L;
}
template <class DigitsT>
bool operator>(uint64_t L, const PositiveFloat<DigitsT> &R) {
  return R < L;
}
template <class DigitsT>
bool operator==(uint64_t L, const PositiveFloat<DigitsT> &R) {
  return R == L;
}
template <class DigitsT>
bool operator<=(uint64_t L, const PositiveFloat<DigitsT> &R) {
  return R >= L;
}
template <class DigitsT>
bool operator>=(uint64_t L, const PositiveFloat<DigitsT> &R) {
  return R <= L;
}
template <class DigitsT>
bool operator!=(uint64_t L, const PositiveFloat<DigitsT> &R) {
  return R != L;
}
template <class DigitsT>
bool operator<(int64_t L, const PositiveFloat<DigitsT> &R) {
  return R > L;
}
template <class DigitsT>
bool operator>(int64_t L, const PositiveFloat<DigitsT> &R) {
  return R < L;
}
template <class DigitsT>
bool operator==(int64_t L, const PositiveFloat<DigitsT> &R) {
  return R == L;
}
template <class DigitsT>
bool operator<=(int64_t L, const PositiveFloat<DigitsT> &R) {
  return R >= L;
}
template <class DigitsT>
bool operator>=(int64_t L, const PositiveFloat<DigitsT> &R) {
  return R <= L;
}
template <class DigitsT>
bool operator!=(int64_t L, const PositiveFloat<DigitsT> &R) {
  return R != L;
}
template <class DigitsT>
bool operator<(uint32_t L, const PositiveFloat<DigitsT> &R) {
  return R > L;
}
template <class DigitsT>
bool operator>(uint32_t L, const PositiveFloat<DigitsT> &R) {
  return R < L;
}
template <class DigitsT>
bool operator==(uint32_t L, const PositiveFloat<DigitsT> &R) {
  return R == L;
}
template <class DigitsT>
bool operator<=(uint32_t L, const PositiveFloat<DigitsT> &R) {
  return R >= L;
}
template <class DigitsT>
bool operator>=(uint32_t L, const PositiveFloat<DigitsT> &R) {
  return R <= L;
}
template <class DigitsT>
bool operator!=(uint32_t L, const PositiveFloat<DigitsT> &R) {
  return R != L;
}
template <class DigitsT>
bool operator<(int32_t L, const PositiveFloat<DigitsT> &R) {
  return R > L;
}
template <class DigitsT>
bool operator>(int32_t L, const PositiveFloat<DigitsT> &R) {
  return R < L;
}
template <class DigitsT>
bool operator==(int32_t L, const PositiveFloat<DigitsT> &R) {
  return R == L;
}
template <class DigitsT>
bool operator<=(int32_t L, const PositiveFloat<DigitsT> &R) {
  return R >= L;
}
template <class DigitsT>
bool operator>=(int32_t L, const PositiveFloat<DigitsT> &R) {
  return R <= L;
}
template <class DigitsT>
bool operator!=(int32_t L, const PositiveFloat<DigitsT> &R) {
  return R != L;
}

template <class DigitsT>
uint64_t PositiveFloat<DigitsT>::scale(uint64_t N) const {
  if (Width == 64 || N <= DigitsLimits::max())
    return (getFloat(N) * *this).template toInt<uint64_t>();
  std::pair<int32_t, int> Lg = lgImpl();
  if (extractLgFloor(Lg) >= 64)
    return UINT64_MAX;
  if (extractLgCeiling(Lg) <= -64)
    return 0;

  uint64_t Result = 0;
  for (int Bit = 0; Bit < 64; Bit += Width) {
    PositiveFloat Digit = getFloat(N & DigitsLimits::max() << Bit);
    Digit *= *this;

    uint64_t Sum = Result + (Digit.toInt<uint64_t>() >> Bit);
    if (Sum < Result)
      return UINT64_MAX;
    Result = Sum;
  }
  return Result;
}

template <class DigitsT>
PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getProduct(DigitsType L,
                                                          DigitsType R) {
  // Check for zero.
  if (!L || !R)
    return getZero();

  // Check for numbers that we can compute with 64-bit math.
  if (Width <= 32)
    return adjustToWidth(uint64_t(L) * uint64_t(R), 0);

  // Do the full thing.
  return PositiveFloat(multiply64(L, R));
}
template <class DigitsT>
PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getQuotient(DigitsType Dividend,
                                                           DigitsType Divisor) {
  // Check for zero.
  if (!Dividend)
    return getZero();
  if (!Divisor)
    return getLargest();

  if (Width == 64)
    return PositiveFloat(divide64(Dividend, Divisor));

  // We can compute this with 64-bit math.
  int Shift = countLeadingZeros64(Dividend);
  uint64_t Shifted = uint64_t(Dividend) << Shift;
  uint64_t Quotient = Shifted / Divisor;

  // If Quotient needs to be shifted, then adjustToWidth will round.
  if (Quotient > DigitsLimits::max())
    return adjustToWidth(Quotient, -Shift);

  // Round based on the value of the next bit.
  return getRounded(PositiveFloat(Quotient, -Shift),
                    Shifted % Divisor >= getHalf(Divisor));
}

template <class DigitsT>
template <class IntT>
IntT PositiveFloat<DigitsT>::toInt() const {
  typedef std::numeric_limits<IntT> Limits;
  if (*this < 1)
    return 0;
  if (*this >= Limits::max())
    return Limits::max();

  IntT N = Digits;
  if (Exponent > 0) {
    assert(size_t(Exponent) < sizeof(IntT) * 8);
    return N << Exponent;
  }
  if (Exponent < 0) {
    assert(size_t(-Exponent) < sizeof(IntT) * 8);
    return N >> -Exponent;
  }
  return N;
}

template <class DigitsT>
std::pair<int32_t, int> PositiveFloat<DigitsT>::lgImpl() const {
  if (isZero())
    return std::make_pair(INT32_MIN, 0);

  // Get the floor of the lg of Digits.
  int32_t LocalFloor = Width - countLeadingZerosWidth(Digits) - 1;

  // Get the floor of the lg of this.
  int32_t Floor = Exponent + LocalFloor;
  if (Digits == UINT64_C(1) << LocalFloor)
    return std::make_pair(Floor, 0);

  // Round based on the next digit.
  bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
  return std::make_pair(Floor + Round, Round ? 1 : -1);
}

template <class DigitsT>
PositiveFloat<DigitsT>
PositiveFloat<DigitsT>::normalizeExponents(PositiveFloat X) {
  if (isZero() || X.isZero())
    return X;

  if (Exponent > X.Exponent) {
    // Reverse the arguments.
    *this = X.normalizeExponents(*this);
    return X;
  }

  if (Exponent == X.Exponent)
    return X;

  int ExponentDiff = getDiff(Exponent, X.Exponent);
  if (ExponentDiff >= 2 * Width) {
    *this = getZero();
    return X;
  }

  // Use up any leading zeros on X, and then shift this.
  int ShiftX = std::min(countLeadingZerosWidth(X.Digits), ExponentDiff);
  int ShiftThis = ExponentDiff - ShiftX;

  if (ShiftThis >= Width) {
    *this = getZero();
    return X;
  }

  X.Digits <<= ShiftX;
  X.Exponent -= ShiftX;
  Digits >>= ShiftThis;
  Exponent += ShiftThis;
  return X;
}

template <class DigitsT>
PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
operator+=(const PositiveFloat &X) {
  if (isLargest() || X.isZero())
    return *this;
  if (isZero() || X.isLargest())
    return *this = X;

  // Normalize exponents.
  PositiveFloat Scaled = normalizeExponents(X);

  // Check for zero again.
  if (isZero())
    return *this = Scaled;
  if (Scaled.isZero())
    return *this;

  // Compute sum.
  DigitsType Sum = Digits + Scaled.Digits;
  bool DidOverflow = Sum < Digits || Sum < Scaled.Digits;
  Digits = Sum;
  if (!DidOverflow)
    return *this;

  if (Exponent == MaxExponent)
    return *this = getLargest();

  ++Exponent;
  Digits = Digits >> 1 | UINT64_C(1) << (Width - 1);

  return *this;
}
template <class DigitsT>
PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
operator-=(const PositiveFloat &X) {
  if (X.isZero())
    return *this;
  if (*this <= X)
    return *this = getZero();

  // Normalize exponents.
  PositiveFloat Scaled = normalizeExponents(X);
  assert(Digits >= Scaled.Digits);

  // Compute difference.
  if (!Scaled.isZero()) {
    Digits -= Scaled.Digits;
    return *this;
  }

  // Check if X just barely lost its last bit.  E.g., for 32-bit:
  //
  //   1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
  if (*this == PositiveFloat(1, X.lgFloor() + Width)) {
    Digits = DigitsType(0) - 1;
    --Exponent;
  }
  return *this;
}
template <class DigitsT>
PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
operator*=(const PositiveFloat &X) {
  if (isZero())
    return *this;
  if (X.isZero())
    return *this = X;

  // Save the exponents.
  int32_t Exponents = int32_t(Exponent) + int32_t(X.Exponent);

  // Get the raw product.
  *this = getProduct(Digits, X.Digits);

  // Combine with exponents.
  return *this <<= Exponents;
}
template <class DigitsT>
PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
operator/=(const PositiveFloat &X) {
  if (isZero())
    return *this;
  if (X.isZero())
    return *this = getLargest();

  // Save the exponents.
  int32_t Exponents = int32_t(Exponent) + -int32_t(X.Exponent);

  // Get the raw quotient.
  *this = getQuotient(Digits, X.Digits);

  // Combine with exponents.
  return *this <<= Exponents;
}
template <class DigitsT>
PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::shiftLeft(int32_t Shift) {
  if (Shift < 0)
    return shiftRight(-Shift);
  if (!Shift || isZero())
    return *this;

  // Shift as much as we can in the exponent.
  int16_t ExponentShift = std::min(Shift, MaxExponent - Exponent);
  Exponent += ExponentShift;
  if (ExponentShift == Shift)
    return *this;

  // Check this late, since it's rare.
  if (isLargest())
    return *this;

  // Shift as far as possible.
  int32_t RawShift = std::min(Shift, countLeadingZerosWidth(Digits));
  if (RawShift + ExponentShift < Shift)
    // Saturate.
    return *this = getLargest();

  Digits <<= Shift;
  return *this;
}

template <class DigitsT>
PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::shiftRight(int32_t Shift) {
  if (Shift < 0)
    return shiftLeft(-Shift);
  if (!Shift || isZero())
    return *this;

  // Shift as much as we can in the exponent.
  int16_t ExponentShift = std::min(Shift, Exponent - MinExponent);
  Exponent -= ExponentShift;
  if (ExponentShift == Shift)
    return *this;

  // Shift as far as possible.
  int32_t RawShift = Shift - ExponentShift;
  if (RawShift >= Width)
    // Saturate.
    return *this = getZero();

  // May result in zero.
  Digits >>= Shift;
  return *this;
}

template <class DigitsT>
int PositiveFloat<DigitsT>::compare(const PositiveFloat &X) const {
  // Check for zero.
  if (isZero())
    return X.isZero() ? 0 : -1;
  if (X.isZero())
    return 1;

  // Check for the scale.  Use lgFloor to be sure that the exponent difference
  // is always lower than 64.
  int32_t lgL = lgFloor(), lgR = X.lgFloor();
  if (lgL != lgR)
    return lgL < lgR ? -1 : 1;

  // Compare digits.
  if (Exponent < X.Exponent)
    return PositiveFloatBase::compare(Digits, X.Digits, X.Exponent - Exponent);

  return -PositiveFloatBase::compare(X.Digits, Digits, Exponent - X.Exponent);
}

template <class T> struct isPodLike<PositiveFloat<T>> {
  static const bool value = true;
};
}

//===----------------------------------------------------------------------===//
//
// BlockMass definition.
//
// TODO: Make this private to BlockFrequencyInfoImpl or delete.
//
//===----------------------------------------------------------------------===//
namespace llvm {

/// \brief Mass of a block.
///
/// This class implements a sort of fixed-point fraction always between 0.0 and
/// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
///
/// Masses can be added and subtracted.  Simple saturation arithmetic is used,
/// so arithmetic operations never overflow or underflow.
///
/// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
/// quite, maximum precision).
///
/// Masses can be scaled by \a BranchProbability at maximum precision.
class BlockMass {
  uint64_t Mass;

public:
  BlockMass() : Mass(0) {}
  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}

  static BlockMass getEmpty() { return BlockMass(); }
  static BlockMass getFull() { return BlockMass(UINT64_MAX); }

  uint64_t getMass() const { return Mass; }

  bool isFull() const { return Mass == UINT64_MAX; }
  bool isEmpty() const { return !Mass; }

  bool operator!() const { return isEmpty(); }

  /// \brief Add another mass.
  ///
  /// Adds another mass, saturating at \a isFull() rather than overflowing.
  BlockMass &operator+=(const BlockMass &X) {
    uint64_t Sum = Mass + X.Mass;
    Mass = Sum < Mass ? UINT64_MAX : Sum;
    return *this;
  }

  /// \brief Subtract another mass.
  ///
  /// Subtracts another mass, saturating at \a isEmpty() rather than
  /// undeflowing.
  BlockMass &operator-=(const BlockMass &X) {
    uint64_t Diff = Mass - X.Mass;
    Mass = Diff > Mass ? 0 : Diff;
    return *this;
  }

  /// \brief Scale by another mass.
  ///
  /// The current implementation is a little imprecise, but it's relatively
  /// fast, never overflows, and maintains the property that 1.0*1.0==1.0
  /// (where isFull represents the number 1.0).  It's an approximation of
  /// 128-bit multiply that gets right-shifted by 64-bits.
  ///
  /// For a given digit size, multiplying two-digit numbers looks like:
  ///
  ///                  U1 .    L1
  ///                * U2 .    L2
  ///                ============
  ///           0 .       . L1*L2
  ///     +     0 . U1*L2 .     0 // (shift left once by a digit-size)
  ///     +     0 . U2*L1 .     0 // (shift left once by a digit-size)
  ///     + U1*L2 .     0 .     0 // (shift left twice by a digit-size)
  ///
  /// BlockMass has 64-bit numbers.  Split each into two 32-bit digits, stored
  /// 64-bit.  Add 1 to the lower digits, to model isFull as 1.0; this won't
  /// overflow, since we have 64-bit storage for each digit.
  ///
  /// To do this accurately, (a) multiply into two 64-bit digits, incrementing
  /// the upper digit on overflows of the lower digit (carry), (b) subtract 1
  /// from the lower digit, decrementing the upper digit on underflow (carry),
  /// and (c) truncate the lower digit.  For the 1.0*1.0 case, the upper digit
  /// will be 0 at the end of step (a), and then will underflow back to isFull
  /// (1.0) in step (b).
  ///
  /// Instead, the implementation does something a little faster with a small
  /// loss of accuracy: ignore the lower 64-bit digit entirely.  The loss of
  /// accuracy is small, since the sum of the unmodelled carries is 0 or 1
  /// (i.e., step (a) will overflow at most once, and step (b) will underflow
  /// only if step (a) overflows).
  ///
  /// This is the formula we're calculating:
  ///
  ///     U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>32 + (U2 * (L1+1))>>32
  ///
  /// As a demonstration of 1.0*1.0, consider two 4-bit numbers that are both
  /// full (1111).
  ///
  ///     U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>2 + (U2 * (L1+1))>>2
  ///     11.11 * 11.11 == 11 * 11 + (11 * (11+1))/4 + (11 * (11+1))/4
  ///                   == 1001 + (11 * 100)/4 + (11 * 100)/4
  ///                   == 1001 + 1100/4 + 1100/4
  ///                   == 1001 + 0011 + 0011
  ///                   == 1111
  BlockMass &operator*=(const BlockMass &X) {
    uint64_t U1 = Mass >> 32, L1 = Mass & UINT32_MAX, U2 = X.Mass >> 32,
             L2 = X.Mass & UINT32_MAX;
    Mass = U1 * U2 + (U1 * (L2 + 1) >> 32) + ((L1 + 1) * U2 >> 32);
    return *this;
  }

  /// \brief Multiply by a branch probability.
  ///
  /// Multiply by P.  Guarantees full precision.
  ///
  /// This could be naively implemented by multiplying by the numerator and
  /// dividing by the denominator, but in what order?  Multiplying first can
  /// overflow, while dividing first will lose precision (potentially, changing
  /// a non-zero mass to zero).
  ///
  /// The implementation mixes the two methods.  Since \a BranchProbability
  /// uses 32-bits and \a BlockMass 64-bits, shift the mass as far to the left
  /// as there is room, then divide by the denominator to get a quotient.
  /// Multiplying by the numerator and right shifting gives a first
  /// approximation.
  ///
  /// Calculate the error in this first approximation by calculating the
  /// opposite mass (multiply by the opposite numerator and shift) and
  /// subtracting both from teh original mass.
  ///
  /// Add to the first approximation the correct fraction of this error value.
  /// This time, multiply first and then divide, since there is no danger of
  /// overflow.
  ///
  /// \pre P represents a fraction between 0.0 and 1.0.
  BlockMass &operator*=(const BranchProbability &P);

  bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
  bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
  bool operator!=(const BlockMass &X) const { return !(*this == X); }
  bool operator>(const BlockMass &X) const { return X < *this; }
  bool operator<=(const BlockMass &X) const { return !(*this > X); }
  bool operator>=(const BlockMass &X) const { return !(*this < X); }

  /// \brief Convert to floating point.
  ///
  /// Convert to a float.  \a isFull() gives 1.0, while \a isEmpty() gives
  /// slightly above 0.0.
  PositiveFloat<uint64_t> toFloat() const;

  void dump() const;
  raw_ostream &print(raw_ostream &OS) const;
};

inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
  return BlockMass(L) += R;
}
inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
  return BlockMass(L) -= R;
}
inline BlockMass operator*(const BlockMass &L, const BlockMass &R) {
  return BlockMass(L) *= R;
}
inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
  return BlockMass(L) *= R;
}
inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
  return BlockMass(R) *= L;
}

inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
  return X.print(OS);
}

template <> struct isPodLike<BlockMass> {
  static const bool value = true;
};
}

//===----------------------------------------------------------------------===//
//
// BlockFrequencyInfoImpl definition.
//
//===----------------------------------------------------------------------===//
namespace llvm {

class BasicBlock;
class BranchProbabilityInfo;
class Function;
class Loop;
class LoopInfo;
class MachineBasicBlock;
class MachineBranchProbabilityInfo;
class MachineFunction;
class MachineLoop;
class MachineLoopInfo;

/// \brief Base class for BlockFrequencyInfoImpl
///
/// BlockFrequencyInfoImplBase has supporting data structures and some
/// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
/// the block type (or that call such algorithms) are skipped here.
///
/// Nevertheless, the majority of the overall algorithm documention lives with
/// BlockFrequencyInfoImpl.  See there for details.
class BlockFrequencyInfoImplBase {
public:
  typedef PositiveFloat<uint64_t> Float;

  /// \brief Representative of a block.
  ///
  /// This is a simple wrapper around an index into the reverse-post-order
  /// traversal of the blocks.
  ///
  /// Unlike a block pointer, its order has meaning (location in the
  /// topological sort) and it's class is the same regardless of block type.
  struct BlockNode {
    typedef uint32_t IndexType;
    IndexType Index;

    bool operator==(const BlockNode &X) const { return Index == X.Index; }
    bool operator!=(const BlockNode &X) const { return Index != X.Index; }
    bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
    bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
    bool operator<(const BlockNode &X) const { return Index < X.Index; }
    bool operator>(const BlockNode &X) const { return Index > X.Index; }

    BlockNode() : Index(UINT32_MAX) {}
    BlockNode(IndexType Index) : Index(Index) {}

    bool isValid() const { return Index <= getMaxIndex(); }
    static size_t getMaxIndex() { return UINT32_MAX - 1; }
  };

  /// \brief Stats about a block itself.
  struct FrequencyData {
    Float Floating;
    uint64_t Integer;
  };

  /// \brief Index of loop information.
  struct WorkingData {
    BlockNode ContainingLoop; ///< The block whose loop this block is inside.
    uint32_t LoopIndex;       ///< Index into PackagedLoops.
    bool IsPackaged;          ///< Has ContainingLoop been packaged up?
    bool IsAPackage;          ///< Has this block's loop been packaged up?
    BlockMass Mass;           ///< Mass distribution from the entry block.

    WorkingData()
        : LoopIndex(UINT32_MAX), IsPackaged(false), IsAPackage(false) {}

    bool hasLoopHeader() const { return ContainingLoop.isValid(); }
    bool isLoopHeader() const { return LoopIndex != UINT32_MAX; }
  };

  /// \brief Unscaled probability weight.
  ///
  /// Probability weight for an edge in the graph (including the
  /// successor/target node).
  ///
  /// All edges in the original function are 32-bit.  However, exit edges from
  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
  /// space in general.
  ///
  /// In addition to the raw weight amount, Weight stores the type of the edge
  /// in the current context (i.e., the context of the loop being processed).
  /// Is this a local edge within the loop, an exit from the loop, or a
  /// backedge to the loop header?
  struct Weight {
    enum DistType { Local, Exit, Backedge };
    DistType Type;
    BlockNode TargetNode;
    uint64_t Amount;
    Weight() : Type(Local), Amount(0) {}
  };

  /// \brief Distribution of unscaled probability weight.
  ///
  /// Distribution of unscaled probability weight to a set of successors.
  ///
  /// This class collates the successor edge weights for later processing.
  ///
  /// \a DidOverflow indicates whether \a Total did overflow while adding to
  /// the distribution.  It should never overflow twice.  There's no flag for
  /// whether \a ForwardTotal overflows, since when \a Total exceeds 32-bits
  /// they both get re-computed during \a normalize().
  struct Distribution {
    typedef SmallVector<Weight, 4> WeightList;
    WeightList Weights;    ///< Individual successor weights.
    uint64_t Total;        ///< Sum of all weights.
    bool DidOverflow;      ///< Whether \a Total did overflow.
    uint32_t ForwardTotal; ///< Total excluding backedges.

    Distribution() : Total(0), DidOverflow(false), ForwardTotal(0) {}
    void addLocal(const BlockNode &Node, uint64_t Amount) {
      add(Node, Amount, Weight::Local);
    }
    void addExit(const BlockNode &Node, uint64_t Amount) {
      add(Node, Amount, Weight::Exit);
    }
    void addBackedge(const BlockNode &Node, uint64_t Amount) {
      add(Node, Amount, Weight::Backedge);
    }

    /// \brief Normalize the distribution.
    ///
    /// Combines multiple edges to the same \a Weight::TargetNode and scales
    /// down so that \a Total fits into 32-bits.
    ///
    /// This is linear in the size of \a Weights.  For the vast majority of
    /// cases, adjacent edge weights are combined by sorting WeightList and
    /// combining adjacent weights.  However, for very large edge lists an
    /// auxiliary hash table is used.
    void normalize();

  private:
    void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
  };

  /// \brief Data for a packaged loop.
  ///
  /// Contains the data necessary to represent represent a loop as a node once
  /// it's packaged.
  ///
  /// PackagedLoopData inherits from BlockData to give the node the necessary
  /// stats.  Further, it has a list of successors, list of members, and stores
  /// the backedge mass assigned to this loop.
  struct PackagedLoopData {
    typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
    typedef SmallVector<BlockNode, 4> MemberList;
    BlockNode Header;       ///< Header.
    ExitMap Exits;          ///< Successor edges (and weights).
    MemberList Members;     ///< Members of the loop.
    BlockMass BackedgeMass; ///< Mass returned to loop header.
    BlockMass Mass;
    Float Scale;

    PackagedLoopData(const BlockNode &Header) : Header(Header) {}
  };

  /// \brief Data about each block.  This is used downstream.
  std::vector<FrequencyData> Freqs;

  /// \brief Loop data: see initializeLoops().
  std::vector<WorkingData> Working;

  /// \brief Indexed information about packaged loops.
  std::vector<PackagedLoopData> PackagedLoops;

  /// \brief Create the initial loop packages.
  ///
  /// Initializes PackagedLoops using the data in Working about backedges
  /// and containing loops.  Called by initializeLoops().
  ///
  /// \post WorkingData::LoopIndex has been initialized for every loop header
  /// and PackagedLoopData::Members has been initialized.

  /// \brief Add all edges out of a packaged loop to the distribution.
  ///
  /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
  /// successor edge.
  void addLoopSuccessorsToDist(const BlockNode &LoopHead,
                               const BlockNode &LocalLoopHead,
                               Distribution &Dist);

  /// \brief Add an edge to the distribution.
  ///
  /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
  /// edge is forward/exit/backedge is in the context of LoopHead.  Otherwise,
  /// every edge should be a forward edge (since all the loops are packaged
  /// up).
  void addToDist(Distribution &Dist, const BlockNode &LoopHead,
                 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);

  PackagedLoopData &getLoopPackage(const BlockNode &Head) {
    assert(Head.Index < Working.size());
    size_t Index = Working[Head.Index].LoopIndex;
    assert(Index < PackagedLoops.size());
    return PackagedLoops[Index];
  }

  /// \brief Distribute mass according to a distribution.
  ///
  /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
  /// backedges and exits are stored in its entry in PackagedLoops.
  ///
  /// Mass is distributed in parallel from two copies of the source mass.
  ///
  /// The first mass (forward) represents the distribution of mass through the
  /// local DAG.  This distribution should lose mass at loop exits and ignore
  /// backedges.
  ///
  /// The second mass (general) represents the behavior of the loop in the
  /// global context.  In a given distribution from the head, how much mass
  /// exits, and to where?  How much mass returns to the loop head?
  ///
  /// The forward mass should be split up between local successors and exits,
  /// but only actually distributed to the local successors.  The general mass
  /// should be split up between all three types of successors, but distributed
  /// only to exits and backedges.
  void distributeMass(const BlockNode &Source, const BlockNode &LoopHead,
                      Distribution &Dist);

  /// \brief Compute the loop scale for a loop.
  void computeLoopScale(const BlockNode &LoopHead);

  /// \brief Package up a loop.
  void packageLoop(const BlockNode &LoopHead);

  /// \brief Finalize frequency metrics.
  ///
  /// Unwraps loop packages, calculates final frequencies, and cleans up
  /// no-longer-needed data structures.
  void finalizeMetrics();

  /// \brief Clear all memory.
  void clear();

  virtual std::string getBlockName(const BlockNode &Node) const;

  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
  void dump() const { print(dbgs()); }

  Float getFloatingBlockFreq(const BlockNode &Node) const;

  BlockFrequency getBlockFreq(const BlockNode &Node) const;

  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
  raw_ostream &printBlockFreq(raw_ostream &OS,
                              const BlockFrequency &Freq) const;

  uint64_t getEntryFreq() const {
    assert(!Freqs.empty());
    return Freqs[0].Integer;
  }
  /// \brief Virtual destructor.
  ///
  /// Need a virtual destructor to mask the compiler warning about
  /// getBlockName().
  virtual ~BlockFrequencyInfoImplBase() {}
};

namespace bfi_detail {
template <class BlockT> struct TypeMap {};
template <> struct TypeMap<BasicBlock> {
  typedef BasicBlock BlockT;
  typedef Function FunctionT;
  typedef BranchProbabilityInfo BranchProbabilityInfoT;
  typedef Loop LoopT;
  typedef LoopInfo LoopInfoT;
};
template <> struct TypeMap<MachineBasicBlock> {
  typedef MachineBasicBlock BlockT;
  typedef MachineFunction FunctionT;
  typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
  typedef MachineLoop LoopT;
  typedef MachineLoopInfo LoopInfoT;
};

/// \brief Get the name of a MachineBasicBlock.
///
/// Get the name of a MachineBasicBlock.  It's templated so that including from
/// CodeGen is unnecessary (that would be a layering issue).
///
/// This is used mainly for debug output.  The name is similar to
/// MachineBasicBlock::getFullName(), but skips the name of the function.
template <class BlockT> std::string getBlockName(const BlockT *BB) {
  assert(BB && "Unexpected nullptr");
  if (BB->getBasicBlock())
    return BB->getName().str();
  return (Twine("BB") + Twine(BB->getNumber())).str();
}
/// \brief Get the name of a BasicBlock.
template <> inline std::string getBlockName(const BasicBlock *BB) {
  assert(BB && "Unexpected nullptr");
  return BB->getName().str();
}
}

/// \brief Shared implementation for block frequency analysis.
///
/// This is a shared implementation of BlockFrequencyInfo and
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
/// blocks.
///
/// This algorithm leverages BlockMass and PositiveFloat to maintain precision,
/// separates mass distribution from loop scaling, and dithers to eliminate
/// probability mass loss.
///
/// The implementation is split between BlockFrequencyInfoImpl, which knows the
/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
/// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
/// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
/// reverse-post order.  This gives two advantages:  it's easy to compare the
/// relative ordering of two nodes, and maps keyed on BlockT can be represented
/// by vectors.
///
/// This algorithm is O(V+E), unless there is irreducible control flow, in
/// which case it's O(V*E) in the worst case.
///
/// These are the main stages:
///
///  0. Reverse post-order traversal (\a initializeRPOT()).
///
///     Run a single post-order traversal and save it (in reverse) in RPOT.
///     All other stages make use of this ordering.  Save a lookup from BlockT
///     to BlockNode (the index into RPOT) in Nodes.
///
///  1. Loop indexing (\a initializeLoops()).
///
///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
///     the algorithm.  In particular, store the immediate members of each loop
///     in reverse post-order.
///
///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
///
///     For each loop (bottom-up), distribute mass through the DAG resulting
///     from ignoring backedges and treating sub-loops as a single pseudo-node.
///     Track the backedge mass distributed to the loop header, and use it to
///     calculate the loop scale (number of loop iterations).
///
///     Visiting loops bottom-up is a post-order traversal of loop headers.
///     For each loop, immediate members that represent sub-loops will already
///     have been visited and packaged into a pseudo-node.
///
///     Distributing mass in a loop is a reverse-post-order traversal through
///     the loop.  Start by assigning full mass to the Loop header.  For each
///     node in the loop:
///
///         - Fetch and categorize the weight distribution for its successors.
///           If this is a packaged-subloop, the weight distribution is stored
///           in \a PackagedLoopData::Exits.  Otherwise, fetch it from
///           BranchProbabilityInfo.
///
///         - Each successor is categorized as \a Weight::Local, a normal
///           forward edge within the current loop, \a Weight::Backedge, a
///           backedge to the loop header, or \a Weight::Exit, any successor
///           outside the loop.  The weight, the successor, and its category
///           are stored in \a Distribution.  There can be multiple edges to
///           each successor.
///
///         - Normalize the distribution:  scale weights down so that their sum
///           is 32-bits, and coalesce multiple edges to the same node.
///
///         - Distribute the mass accordingly, dithering to minimize mass loss,
///           as described in \a distributeMass().  Mass is distributed in
///           parallel in two ways: forward, and general.  Local successors
///           take their mass from the forward mass, while exit and backedge
///           successors take their mass from the general mass.  Additionally,
///           exit edges use up (ignored) mass from the forward mass, and local
///           edges use up (ignored) mass from the general distribution.
///
///     Finally, calculate the loop scale from the accumulated backedge mass.
///
///  3. Distribute mass in the function (\a computeMassInFunction()).
///
///     Finally, distribute mass through the DAG resulting from packaging all
///     loops in the function.  This uses the same algorithm as distributing
///     mass in a loop, except that there are no exit or backedge edges.
///
///  4. Loop unpackaging and cleanup (\a finalizeMetrics()).
///
///     Initialize the frequency to a floating point representation of its
///     mass.
///
///     Visit loops top-down (reverse post-order), scaling the loop header's
///     frequency by its psuedo-node's mass and loop scale.  Keep track of the
///     minimum and maximum final frequencies.
///
///     Using the min and max frequencies as a guide, translate floating point
///     frequencies to an appropriate range in uint64_t.
///
/// It has some known flaws.
///
///   - Irreducible control flow isn't modelled correctly.  In particular,
///     LoopInfo and MachineLoopInfo ignore irreducible backedges.  The main
///     result is that irreducible SCCs will under-scaled.  No mass is lost,
///     but the computed branch weights for the loop pseudo-node will be
///     incorrect.
///
///     Modelling irreducible control flow exactly involves setting up and
///     solving a group of infinite geometric series.  Such precision is
///     unlikely to be worthwhile, since most of our algorithms give up on
///     irreducible control flow anyway.
///
///     Nevertheless, we might find that we need to get closer.  If
///     LoopInfo/MachineLoopInfo flags loops with irreducible control flow
///     (and/or the function as a whole), we can find the SCCs, compute an
///     approximate exit frequency for the SCC as a whole, and scale up
///     accordingly.
///
///   - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
///     BlockFrequency's 64-bit integer precision.
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
  typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
  typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
  typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
  BranchProbabilityInfoT;
  typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
  typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;

  typedef GraphTraits<const BlockT *> Successor;
  typedef GraphTraits<Inverse<const BlockT *>> Predecessor;

  const BranchProbabilityInfoT *BPI;
  const LoopInfoT *LI;
  const FunctionT *F;

  // All blocks in reverse postorder.
  std::vector<const BlockT *> RPOT;
  DenseMap<const BlockT *, BlockNode> Nodes;

  typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;

  rpot_iterator rpot_begin() const { return RPOT.begin(); }
  rpot_iterator rpot_end() const { return RPOT.end(); }

  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }

  BlockNode getNode(const rpot_iterator &I) const {
    return BlockNode(getIndex(I));
  }
  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }

  const BlockT *getBlock(const BlockNode &Node) const {
    return RPOT[Node.Index];
  }

  void initializeRPOT();
  void initializeLoops();
  void runOnFunction(const FunctionT *F);

  void propagateMassToSuccessors(const BlockNode &LoopHead,
                                 const BlockNode &Node);
  void computeMassInLoops();
  void computeMassInLoop(const BlockNode &LoopHead);
  void computeMassInFunction();

  std::string getBlockName(const BlockNode &Node) const override {
    return bfi_detail::getBlockName(getBlock(Node));
  }

public:
  const FunctionT *getFunction() const { return F; }

  void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
                  const LoopInfoT *LI);
  BlockFrequencyInfoImpl() : BPI(0), LI(0), F(0) {}

  using BlockFrequencyInfoImplBase::getEntryFreq;
  BlockFrequency getBlockFreq(const BlockT *BB) const {
    return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
  }
  Float getFloatingBlockFreq(const BlockT *BB) const {
    return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
  }

  /// \brief Print the frequencies for the current function.
  ///
  /// Prints the frequencies for the blocks in the current function.
  ///
  /// Blocks are printed in the natural iteration order of the function, rather
  /// than reverse post-order.  This provides two advantages:  writing -analyze
  /// tests is easier (since blocks come out in source order), and even
  /// unreachable blocks are printed.
  raw_ostream &print(raw_ostream &OS) const override;
  using BlockFrequencyInfoImplBase::dump;

  using BlockFrequencyInfoImplBase::printBlockFreq;
  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
    return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
  }
};

template <class BT>
void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
                                            const BranchProbabilityInfoT *BPI,
                                            const LoopInfoT *LI) {
  // Save the parameters.
  this->BPI = BPI;
  this->LI = LI;
  this->F = F;

  // Clean up left-over data structures.
  BlockFrequencyInfoImplBase::clear();
  RPOT.clear();
  Nodes.clear();

  // Initialize.
  DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
               << std::string(F->getName().size(), '=') << "\n");
  initializeRPOT();
  initializeLoops();

  // Visit loops in post-order to find thelocal mass distribution, and then do
  // the full function.
  computeMassInLoops();
  computeMassInFunction();
  finalizeMetrics();
}

template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
  const BlockT *Entry = F->begin();
  RPOT.reserve(F->size());
  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
  std::reverse(RPOT.begin(), RPOT.end());

  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
         "More nodes in function than Block Frequency Info supports");

  DEBUG(dbgs() << "reverse-post-order-traversal\n");
  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
    BlockNode Node = getNode(I);
    DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
    Nodes[*I] = Node;
  }

  Working.resize(RPOT.size());
  Freqs.resize(RPOT.size());
}

template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
  DEBUG(dbgs() << "loop-detection\n");
  if (LI->empty())
    return;

  // Visit loops top down and assign them an index.
  std::deque<const LoopT *> Q;
  Q.insert(Q.end(), LI->begin(), LI->end());
  while (!Q.empty()) {
    const LoopT *Loop = Q.front();
    Q.pop_front();
    Q.insert(Q.end(), Loop->begin(), Loop->end());

    // Save the order this loop was visited.
    BlockNode Header = getNode(Loop->getHeader());
    assert(Header.isValid());

    Working[Header.Index].LoopIndex = PackagedLoops.size();
    PackagedLoops.emplace_back(Header);
    DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
  }

  // Visit nodes in reverse post-order and add them to their deepest containing
  // loop.
  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
    const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
    if (!Loop)
      continue;

    // If this is a loop header, find its parent loop (if any).
    if (Working[Index].isLoopHeader())
      if (!(Loop = Loop->getParentLoop()))
        continue;

    // Add this node to its containing loop's member list.
    BlockNode Header = getNode(Loop->getHeader());
    assert(Header.isValid());
    const auto &HeaderData = Working[Header.Index];
    assert(HeaderData.isLoopHeader());

    Working[Index].ContainingLoop = Header;
    PackagedLoops[HeaderData.LoopIndex].Members.push_back(Index);
    DEBUG(dbgs() << " - loop = " << getBlockName(Header)
                 << ": member = " << getBlockName(Index) << "\n");
  }
}

template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
  // Visit loops with the deepest first, and the top-level loops last.
  for (auto L = PackagedLoops.rbegin(), LE = PackagedLoops.rend(); L != LE; ++L)
    computeMassInLoop(L->Header);
}

template <class BT>
void BlockFrequencyInfoImpl<BT>::computeMassInLoop(const BlockNode &LoopHead) {
  // Compute mass in loop.
  DEBUG(dbgs() << "compute-mass-in-loop: " << getBlockName(LoopHead) << "\n");

  Working[LoopHead.Index].Mass = BlockMass::getFull();
  propagateMassToSuccessors(LoopHead, LoopHead);

  for (const BlockNode &M : getLoopPackage(LoopHead).Members)
    propagateMassToSuccessors(LoopHead, M);

  computeLoopScale(LoopHead);
  packageLoop(LoopHead);
}

template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
  // Compute mass in function.
  DEBUG(dbgs() << "compute-mass-in-function\n");
  Working[0].Mass = BlockMass::getFull();
  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
    // Check for nodes that have been packaged.
    BlockNode Node = getNode(I);
    if (Working[Node.Index].hasLoopHeader())
      continue;

    propagateMassToSuccessors(BlockNode(), Node);
  }
}

template <class BT>
void
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(const BlockNode &LoopHead,
                                                      const BlockNode &Node) {
  DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
  // Calculate probability for successors.
  Distribution Dist;
  if (Node != LoopHead && Working[Node.Index].isLoopHeader())
    addLoopSuccessorsToDist(LoopHead, Node, Dist);
  else {
    const BlockT *BB = getBlock(Node);
    for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
         SI != SE; ++SI)
      // Do not dereference SI, or getEdgeWeight() is linear in the number of
      // successors.
      addToDist(Dist, LoopHead, Node, getNode(*SI), BPI->getEdgeWeight(BB, SI));
  }

  // Distribute mass to successors, saving exit and backedge data in the
  // loop header.
  distributeMass(Node, LoopHead, Dist);
}

template <class BT>
raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
  if (!F)
    return OS;
  OS << "block-frequency-info: " << F->getName() << "\n";
  for (const BlockT &BB : *F)
    OS << " - " << bfi_detail::getBlockName(&BB)
       << ": float = " << getFloatingBlockFreq(&BB)
       << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";

  // Add an extra newline for readability.
  OS << "\n";
  return OS;
}
}

#endif