summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/BlockFrequencyInfoImpl.h
blob: f891afdf551bcd53313fa10ebe8ff57ea8a8ed00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Shared implementation of BlockFrequencyInfo for IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
#include <vector>

namespace llvm {


class BranchProbabilityInfo;
class BlockFrequencyInfo;
class MachineBranchProbabilityInfo;
class MachineBlockFrequencyInfo;

namespace bfi_detail {
template <class BlockT> struct TypeMap {};
template <> struct TypeMap<BasicBlock> {
  typedef BasicBlock BlockT;
  typedef Function FunctionT;
  typedef BranchProbabilityInfo BranchProbabilityInfoT;
};
template <> struct TypeMap<MachineBasicBlock> {
  typedef MachineBasicBlock BlockT;
  typedef MachineFunction FunctionT;
  typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
};
}

/// BlockFrequencyInfoImpl implements block frequency algorithm for IR and
/// Machine Instructions. Algorithm starts with value ENTRY_FREQ
/// for the entry block and then propagates frequencies using branch weights
/// from (Machine)BranchProbabilityInfo. LoopInfo is not required because
/// algorithm can find "backedges" by itself.
template <class BT>
class BlockFrequencyInfoImpl {
  typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
  typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
  typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
  BranchProbabilityInfoT;

  DenseMap<const BlockT *, BlockFrequency> Freqs;

  BranchProbabilityInfoT *BPI;

  FunctionT *Fn;

  typedef GraphTraits< Inverse<BlockT *> > GT;

  static const uint64_t EntryFreq = 1 << 14;

  std::string getBlockName(BasicBlock *BB) const {
    return BB->getName().str();
  }

  std::string getBlockName(MachineBasicBlock *MBB) const {
    std::string str;
    raw_string_ostream ss(str);
    ss << "BB#" << MBB->getNumber();

    if (const BasicBlock *BB = MBB->getBasicBlock())
      ss << " derived from LLVM BB " << BB->getName();

    return ss.str();
  }

  void setBlockFreq(BlockT *BB, BlockFrequency Freq) {
    Freqs[BB] = Freq;
    DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") = ";
          printBlockFreq(dbgs(), Freq) << "\n");
  }

  /// getEdgeFreq - Return edge frequency based on SRC frequency and Src -> Dst
  /// edge probability.
  BlockFrequency getEdgeFreq(BlockT *Src, BlockT *Dst) const {
    BranchProbability Prob = BPI->getEdgeProbability(Src, Dst);
    return getBlockFreq(Src) * Prob;
  }

  /// incBlockFreq - Increase BB block frequency by FREQ.
  ///
  void incBlockFreq(BlockT *BB, BlockFrequency Freq) {
    Freqs[BB] += Freq;
    DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") += ";
          printBlockFreq(dbgs(), Freq) << " --> ";
          printBlockFreq(dbgs(), Freqs[BB]) << "\n");
  }

  // All blocks in postorder.
  std::vector<BlockT *> POT;

  // Map Block -> Position in reverse-postorder list.
  DenseMap<BlockT *, unsigned> RPO;

  // For each loop header, record the per-iteration probability of exiting the
  // loop. This is the reciprocal of the expected number of loop iterations.
  typedef DenseMap<BlockT*, BranchProbability> LoopExitProbMap;
  LoopExitProbMap LoopExitProb;

  // (reverse-)postorder traversal iterators.
  typedef typename std::vector<BlockT *>::iterator pot_iterator;
  typedef typename std::vector<BlockT *>::reverse_iterator rpot_iterator;

  pot_iterator pot_begin() { return POT.begin(); }
  pot_iterator pot_end() { return POT.end(); }

  rpot_iterator rpot_begin() { return POT.rbegin(); }
  rpot_iterator rpot_end() { return POT.rend(); }

  rpot_iterator rpot_at(BlockT *BB) {
    rpot_iterator I = rpot_begin();
    unsigned idx = RPO.lookup(BB);
    assert(idx);
    std::advance(I, idx - 1);

    assert(*I == BB);
    return I;
  }

  /// isBackedge - Return if edge Src -> Dst is a reachable backedge.
  ///
  bool isBackedge(BlockT *Src, BlockT *Dst) const {
    unsigned a = RPO.lookup(Src);
    if (!a)
      return false;
    unsigned b = RPO.lookup(Dst);
    assert(b && "Destination block should be reachable");
    return a >= b;
  }

  /// getSingleBlockPred - return single BB block predecessor or NULL if
  /// BB has none or more predecessors.
  BlockT *getSingleBlockPred(BlockT *BB) {
    typename GT::ChildIteratorType
      PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
      PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);

    if (PI == PE)
      return nullptr;

    BlockT *Pred = *PI;

    ++PI;
    if (PI != PE)
      return nullptr;

    return Pred;
  }

  void doBlock(BlockT *BB, BlockT *LoopHead,
               SmallPtrSet<BlockT *, 8> &BlocksInLoop) {

    DEBUG(dbgs() << "doBlock(" << getBlockName(BB) << ")\n");
    setBlockFreq(BB, 0);

    if (BB == LoopHead) {
      setBlockFreq(BB, EntryFreq);
      return;
    }

    if (BlockT *Pred = getSingleBlockPred(BB)) {
      if (BlocksInLoop.count(Pred))
        setBlockFreq(BB, getEdgeFreq(Pred, BB));
      // TODO: else? irreducible, ignore it for now.
      return;
    }

    bool isInLoop = false;
    bool isLoopHead = false;

    for (typename GT::ChildIteratorType
         PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
         PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
         PI != PE; ++PI) {
      BlockT *Pred = *PI;

      if (isBackedge(Pred, BB)) {
        isLoopHead = true;
      } else if (BlocksInLoop.count(Pred)) {
        incBlockFreq(BB, getEdgeFreq(Pred, BB));
        isInLoop = true;
      }
      // TODO: else? irreducible.
    }

    if (!isInLoop)
      return;

    if (!isLoopHead)
      return;

    // This block is a loop header, so boost its frequency by the expected
    // number of loop iterations. The loop blocks will be revisited so they all
    // get this boost.
    typename LoopExitProbMap::const_iterator I = LoopExitProb.find(BB);
    assert(I != LoopExitProb.end() && "Loop header missing from table");
    Freqs[BB] /= I->second;
    DEBUG(dbgs() << "Loop header scaled to ";
          printBlockFreq(dbgs(), Freqs[BB]) << ".\n");
  }

  /// doLoop - Propagate block frequency down through the loop.
  void doLoop(BlockT *Head, BlockT *Tail) {
    DEBUG(dbgs() << "doLoop(" << getBlockName(Head) << ", "
                 << getBlockName(Tail) << ")\n");

    SmallPtrSet<BlockT *, 8> BlocksInLoop;

    for (rpot_iterator I = rpot_at(Head), E = rpot_at(Tail); ; ++I) {
      BlockT *BB = *I;
      doBlock(BB, Head, BlocksInLoop);

      BlocksInLoop.insert(BB);
      if (I == E)
        break;
    }

    // Compute loop's cyclic probability using backedges probabilities.
    BlockFrequency BackFreq;
    for (typename GT::ChildIteratorType
         PI = GraphTraits< Inverse<BlockT *> >::child_begin(Head),
         PE = GraphTraits< Inverse<BlockT *> >::child_end(Head);
         PI != PE; ++PI) {
      BlockT *Pred = *PI;
      assert(Pred);
      if (isBackedge(Pred, Head))
        BackFreq += getEdgeFreq(Pred, Head);
    }

    // The cyclic probability is freq(BackEdges) / freq(Head), where freq(Head)
    // only counts edges entering the loop, not the loop backedges.
    // The probability of leaving the loop on each iteration is:
    //
    //   ExitProb = 1 - CyclicProb
    //
    // The Expected number of loop iterations is:
    //
    //   Iterations = 1 / ExitProb
    //
    uint64_t D = std::max(getBlockFreq(Head).getFrequency(), UINT64_C(1));
    uint64_t N = std::max(BackFreq.getFrequency(), UINT64_C(1));
    if (N < D)
      N = D - N;
    else
      // We'd expect N < D, but rounding and saturation means that can't be
      // guaranteed.
      N = 1;

    // Now ExitProb = N / D, make sure it fits in an i32/i32 fraction.
    assert(N <= D);
    if (D > UINT32_MAX) {
      unsigned Shift = 32 - countLeadingZeros(D);
      D >>= Shift;
      N >>= Shift;
      if (N == 0)
        N = 1;
    }
    BranchProbability LEP = BranchProbability(N, D);
    LoopExitProb.insert(std::make_pair(Head, LEP));
    DEBUG(dbgs() << "LoopExitProb[" << getBlockName(Head) << "] = " << LEP
          << " from 1 - ";
          printBlockFreq(dbgs(), BackFreq) << " / ";
          printBlockFreq(dbgs(), getBlockFreq(Head)) << ".\n");
  }

  friend class BlockFrequencyInfo;
  friend class MachineBlockFrequencyInfo;

  BlockFrequencyInfoImpl() { }

  void doFunction(FunctionT *fn, BranchProbabilityInfoT *bpi) {
    Fn = fn;
    BPI = bpi;

    // Clear everything.
    RPO.clear();
    POT.clear();
    LoopExitProb.clear();
    Freqs.clear();

    BlockT *EntryBlock = fn->begin();

    std::copy(po_begin(EntryBlock), po_end(EntryBlock), std::back_inserter(POT));

    unsigned RPOidx = 0;
    for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
      BlockT *BB = *I;
      RPO[BB] = ++RPOidx;
      DEBUG(dbgs() << "RPO[" << getBlockName(BB) << "] = " << RPO[BB] << "\n");
    }

    // Travel over all blocks in postorder.
    for (pot_iterator I = pot_begin(), E = pot_end(); I != E; ++I) {
      BlockT *BB = *I;
      BlockT *LastTail = nullptr;
      DEBUG(dbgs() << "POT: " << getBlockName(BB) << "\n");

      for (typename GT::ChildIteratorType
           PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
           PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
           PI != PE; ++PI) {

        BlockT *Pred = *PI;
        if (isBackedge(Pred, BB) && (!LastTail || RPO[Pred] > RPO[LastTail]))
          LastTail = Pred;
      }

      if (LastTail)
        doLoop(BB, LastTail);
    }

    // At the end assume the whole function as a loop, and travel over it once
    // again.
    doLoop(*(rpot_begin()), *(pot_begin()));
  }

public:

  uint64_t getEntryFreq() { return EntryFreq; }

  /// getBlockFreq - Return block frequency. Return 0 if we don't have it.
  BlockFrequency getBlockFreq(const BlockT *BB) const {
    typename DenseMap<const BlockT *, BlockFrequency>::const_iterator
      I = Freqs.find(BB);
    if (I != Freqs.end())
      return I->second;
    return 0;
  }

  void print(raw_ostream &OS) const {
    OS << "\n\n---- Block Freqs ----\n";
    for (typename FunctionT::iterator I = Fn->begin(), E = Fn->end(); I != E;) {
      BlockT *BB = I++;
      OS << " " << getBlockName(BB) << " = ";
      printBlockFreq(OS, getBlockFreq(BB)) << "\n";

      for (typename GraphTraits<BlockT *>::ChildIteratorType
           SI = GraphTraits<BlockT *>::child_begin(BB),
           SE = GraphTraits<BlockT *>::child_end(BB); SI != SE; ++SI) {
        BlockT *Succ = *SI;
        OS << "  " << getBlockName(BB) << " -> " << getBlockName(Succ)
           << " = "; printBlockFreq(OS, getEdgeFreq(BB, Succ)) << "\n";
      }
    }
  }

  void dump() const {
    print(dbgs());
  }

  // Utility method that looks up the block frequency associated with BB and
  // prints it to OS.
  raw_ostream &printBlockFreq(raw_ostream &OS,
                              const BlockT *BB) {
    return printBlockFreq(OS, getBlockFreq(BB));
  }

  raw_ostream &printBlockFreq(raw_ostream &OS,
                              const BlockFrequency &Freq) const {
    // Convert fixed-point number to decimal.
    uint64_t Frequency = Freq.getFrequency();
    OS << Frequency / EntryFreq << ".";
    uint64_t Rem = Frequency % EntryFreq;
    uint64_t Eps = 1;
    do {
      Rem *= 10;
      Eps *= 10;
      OS << Rem / EntryFreq;
      Rem = Rem % EntryFreq;
    } while (Rem >= Eps/2);
    return OS;
  }

};

}

#endif