summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/DominatorInternals.h
blob: 2adbefba3844be159e6b138296b77d6089b084d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
#define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H

#include "llvm/Analysis/Dominators.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
//===----------------------------------------------------------------------===//
//
// DominatorTree construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
//   A Fast Algorithm for Finding Dominators in a Flowgraph
//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
// LINK, but it turns out that the theoretically slower O(n*log(n))
// implementation is actually faster than the "efficient" algorithm (even for
// large CFGs) because the constant overheads are substantially smaller.  The
// lower-complexity version can be enabled with the following #define:
//
#define BALANCE_IDOM_TREE 0
//
//===----------------------------------------------------------------------===//

namespace llvm {

template<class GraphT>
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
                 typename GraphT::NodeType* V, unsigned N) {
  // This is more understandable as a recursive algorithm, but we can't use the
  // recursive algorithm due to stack depth issues.  Keep it here for
  // documentation purposes.
#if 0
  InfoRec &VInfo = DT.Info[DT.Roots[i]];
  VInfo.Semi = ++N;
  VInfo.Label = V;

  Vertex.push_back(V);        // Vertex[n] = V;
  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
  //Info[V].Child = 0;        // Child[v] = 0
  VInfo.Size = 1;             // Size[v] = 1

  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
    InfoRec &SuccVInfo = DT.Info[*SI];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = V;
      N = DTDFSPass(DT, *SI, N);
    }
  }
#else
  std::vector<std::pair<typename GraphT::NodeType*,
                        typename GraphT::ChildIteratorType> > Worklist;
  Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
  while (!Worklist.empty()) {
    typename GraphT::NodeType* BB = Worklist.back().first;
    typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;

    // First time we visited this BB?
    if (NextSucc == GraphT::child_begin(BB)) {
      typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
                                                                    DT.Info[BB];
      BBInfo.Semi = ++N;
      BBInfo.Label = BB;

      DT.Vertex.push_back(BB);       // Vertex[n] = V;
      //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
      //BBInfo[V].Child = 0;      // Child[v] = 0
      BBInfo.Size = 1;            // Size[v] = 1
    }
    
    // If we are done with this block, remove it from the worklist.
    if (NextSucc == GraphT::child_end(BB)) {
      Worklist.pop_back();
      continue;
    }

    // Increment the successor number for the next time we get to it.
    ++Worklist.back().second;
    
    // Visit the successor next, if it isn't already visited.
    typename GraphT::NodeType* Succ = *NextSucc;

    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
                                                                  DT.Info[Succ];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = BB;
      Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
    }
  }
#endif
    return N;
}

template<class GraphT>
void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
              typename GraphT::NodeType *VIn) {
  std::vector<typename GraphT::NodeType*> Work;
  SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
  typename GraphT::NodeType* VInAncestor = DT.Info[VIn].Ancestor;
  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInVAInfo =
                                                           DT.Info[VInAncestor];

  if (VInVAInfo.Ancestor != 0)
    Work.push_back(VIn);
  
  while (!Work.empty()) {
    typename GraphT::NodeType* V = Work.back();
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
                                                                     DT.Info[V];
    typename GraphT::NodeType* VAncestor = VInfo.Ancestor;
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
                                                             DT.Info[VAncestor];

    // Process Ancestor first
    if (Visited.insert(VAncestor) &&
        VAInfo.Ancestor != 0) {
      Work.push_back(VAncestor);
      continue;
    } 
    Work.pop_back(); 

    // Update VInfo based on Ancestor info
    if (VAInfo.Ancestor == 0)
      continue;
    typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
    typename GraphT::NodeType* VLabel = VInfo.Label;
    if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
      VInfo.Label = VAncestorLabel;
    VInfo.Ancestor = VAInfo.Ancestor;
  }
}

template<class GraphT>
typename GraphT::NodeType* Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
                                typename GraphT::NodeType *V) {
  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
                                                                     DT.Info[V];
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  if (VInfo.Ancestor == 0)
    return V;
  Compress<GraphT>(DT, V);
  return VInfo.Label;
#else
  // Lower-complexity but slower implementation
  if (VInfo.Ancestor == 0)
    return VInfo.Label;
  Compress<GraphT>(DT, V);
  GraphT::NodeType* VLabel = VInfo.Label;

  GraphT::NodeType* VAncestorLabel = DT.Info[VInfo.Ancestor].Label;
  if (DT.Info[VAncestorLabel].Semi >= DT.Info[VLabel].Semi)
    return VLabel;
  else
    return VAncestorLabel;
#endif
}

template<class GraphT>
void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
          typename GraphT::NodeType* V, typename GraphT::NodeType* W,
        typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo) {
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  WInfo.Ancestor = V;
#else
  // Lower-complexity but slower implementation
  GraphT::NodeType* WLabel = WInfo.Label;
  unsigned WLabelSemi = DT.Info[WLabel].Semi;
  GraphT::NodeType* S = W;
  InfoRec *SInfo = &DT.Info[S];

  GraphT::NodeType* SChild = SInfo->Child;
  InfoRec *SChildInfo = &DT.Info[SChild];

  while (WLabelSemi < DT.Info[SChildInfo->Label].Semi) {
    GraphT::NodeType* SChildChild = SChildInfo->Child;
    if (SInfo->Size+DT.Info[SChildChild].Size >= 2*SChildInfo->Size) {
      SChildInfo->Ancestor = S;
      SInfo->Child = SChild = SChildChild;
      SChildInfo = &DT.Info[SChild];
    } else {
      SChildInfo->Size = SInfo->Size;
      S = SInfo->Ancestor = SChild;
      SInfo = SChildInfo;
      SChild = SChildChild;
      SChildInfo = &DT.Info[SChild];
    }
  }

  DominatorTreeBase::InfoRec &VInfo = DT.Info[V];
  SInfo->Label = WLabel;

  assert(V != W && "The optimization here will not work in this case!");
  unsigned WSize = WInfo.Size;
  unsigned VSize = (VInfo.Size += WSize);

  if (VSize < 2*WSize)
    std::swap(S, VInfo.Child);

  while (S) {
    SInfo = &DT.Info[S];
    SInfo->Ancestor = V;
    S = SInfo->Child;
  }
#endif
}

template<class FuncT, class NodeT>
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
               FuncT& F) {
  typedef GraphTraits<NodeT> GraphT;
  
  // Step #1: Number blocks in depth-first order and initialize variables used
  // in later stages of the algorithm.
  unsigned N = 0;
  for (unsigned i = 0, e = DT.Roots.size(); i != e; ++i)
    N = DFSPass<GraphT>(DT, DT.Roots[i], N);

  for (unsigned i = N; i >= 2; --i) {
    typename GraphT::NodeType* W = DT.Vertex[i];
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
                                                                     DT.Info[W];

    // Step #2: Calculate the semidominators of all vertices
    for (typename GraphTraits<Inverse<NodeT> >::ChildIteratorType CI =
         GraphTraits<Inverse<NodeT> >::child_begin(W),
         E = GraphTraits<Inverse<NodeT> >::child_end(W); CI != E; ++CI)
      if (DT.Info.count(*CI)) {  // Only if this predecessor is reachable!
        unsigned SemiU = DT.Info[Eval<GraphT>(DT, *CI)].Semi;
        if (SemiU < WInfo.Semi)
          WInfo.Semi = SemiU;
      }

    DT.Info[DT.Vertex[WInfo.Semi]].Bucket.push_back(W);

    typename GraphT::NodeType* WParent = WInfo.Parent;
    Link<GraphT>(DT, WParent, W, WInfo);

    // Step #3: Implicitly define the immediate dominator of vertices
    std::vector<typename GraphT::NodeType*> &WParentBucket =
                                                        DT.Info[WParent].Bucket;
    while (!WParentBucket.empty()) {
      typename GraphT::NodeType* V = WParentBucket.back();
      WParentBucket.pop_back();
      typename GraphT::NodeType* U = Eval<GraphT>(DT, V);
      DT.IDoms[V] = DT.Info[U].Semi < DT.Info[V].Semi ? U : WParent;
    }
  }

  // Step #4: Explicitly define the immediate dominator of each vertex
  for (unsigned i = 2; i <= N; ++i) {
    typename GraphT::NodeType* W = DT.Vertex[i];
    typename GraphT::NodeType*& WIDom = DT.IDoms[W];
    if (WIDom != DT.Vertex[DT.Info[W].Semi])
      WIDom = DT.IDoms[WIDom];
  }
  
  if (DT.Roots.empty()) return;
  
  // Add a node for the root.  This node might be the actual root, if there is
  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
  // which postdominates all real exits if there are multiple exit blocks.
  typename GraphT::NodeType* Root = DT.Roots.size() == 1 ? DT.Roots[0]
                                                         : 0;
  DT.DomTreeNodes[Root] = DT.RootNode =
                        new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
  
  // Loop over all of the reachable blocks in the function...
  for (typename FuncT::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (typename GraphT::NodeType* ImmDom = DT.getIDom(I)) {
      // Reachable block.
      DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[I];
      if (BBNode) continue;  // Haven't calculated this node yet?

      // Get or calculate the node for the immediate dominator
      DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
                                                     DT.getNodeForBlock(ImmDom);

      // Add a new tree node for this BasicBlock, and link it as a child of
      // IDomNode
      DomTreeNodeBase<typename GraphT::NodeType> *C =
                    new DomTreeNodeBase<typename GraphT::NodeType>(I, IDomNode);
      DT.DomTreeNodes[I] = IDomNode->addChild(C);
    }
  
  // Free temporary memory used to construct idom's
  DT.IDoms.clear();
  DT.Info.clear();
  std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
  
  // FIXME: This does not work on PostDomTrees.  It seems likely that this is
  // due to an error in the algorithm for post-dominators.  This really should
  // be investigated and fixed at some point.
  // DT.updateDFSNumbers();

  // Start out with the DFS numbers being invalid.  Let them be computed if
  // demanded.
  DT.DFSInfoValid = false;
}

}

#endif