summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/Dominators.h
blob: c1cdae50f2352e3c46fe56f90ea4438b4604d18a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the following classes:
//  1. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
//     and their immediate dominator.
//  2. DominatorSet: Calculates the [reverse] dominator set for a function
//  3. DominatorTree: Represent the ImmediateDominator as an explicit tree
//     structure.
//  4. DominanceFrontier: Calculate and hold the dominance frontier for a 
//     function.
//
//  These data structures are listed in increasing order of complexity.  It
//  takes longer to calculate the dominator frontier, for example, than the 
//  ImmediateDominator mapping.
// 
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H

#include "llvm/Pass.h"
#include <set>

namespace llvm {

class Instruction;

template <typename GraphType> struct GraphTraits;

//===----------------------------------------------------------------------===//
/// DominatorBase - Base class that other, more interesting dominator analyses
/// inherit from.
///
class DominatorBase : public FunctionPass {
protected:
  std::vector<BasicBlock*> Roots;
  const bool IsPostDominators;

  inline DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {}
public:
  /// getRoots -  Return the root blocks of the current CFG.  This may include
  /// multiple blocks if we are computing post dominators.  For forward
  /// dominators, this will always be a single block (the entry node).
  ///
  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }

  /// isPostDominator - Returns true if analysis based of postdoms
  ///
  bool isPostDominator() const { return IsPostDominators; }
};


//===----------------------------------------------------------------------===//
/// ImmediateDominators - Calculate the immediate dominator for each node in a
/// function.
///
class ImmediateDominatorsBase : public DominatorBase {
protected:
  std::map<BasicBlock*, BasicBlock*> IDoms;
public:
  ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {}

  virtual void releaseMemory() { IDoms.clear(); }

  // Accessor interface:
  typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
  typedef IDomMapType::const_iterator const_iterator;
  inline const_iterator begin() const { return IDoms.begin(); }
  inline const_iterator end()   const { return IDoms.end(); }
  inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}

  /// operator[] - Return the idom for the specified basic block.  The start
  /// node returns null, because it does not have an immediate dominator.
  ///
  inline BasicBlock *operator[](BasicBlock *BB) const {
    return get(BB);
  }

  /// get() - Synonym for operator[].
  ///
  inline BasicBlock *get(BasicBlock *BB) const {
    std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
    return I != IDoms.end() ? I->second : 0;
  }

  //===--------------------------------------------------------------------===//
  // API to update Immediate(Post)Dominators information based on modifications
  // to the CFG...

  /// addNewBlock - Add a new block to the CFG, with the specified immediate
  /// dominator.
  ///
  void addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
    assert(get(BB) == 0 && "BasicBlock already in idom info!");
    IDoms[BB] = IDom;
  }

  /// setImmediateDominator - Update the immediate dominator information to
  /// change the current immediate dominator for the specified block to another
  /// block.  This method requires that BB already have an IDom, otherwise just
  /// use addNewBlock.
  ///
  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom) {
    assert(IDoms.find(BB) != IDoms.end() && "BB doesn't have idom yet!");
    IDoms[BB] = NewIDom;
  }

  /// print - Convert to human readable form
  ///
  virtual void print(std::ostream &OS) const;
};

//===-------------------------------------
/// ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase
/// that is used to compute a normal immediate dominator set.
///
struct ImmediateDominators : public ImmediateDominatorsBase {
  ImmediateDominators() : ImmediateDominatorsBase(false) {}

  BasicBlock *getRoot() const {
    assert(Roots.size() == 1 && "Should always have entry node!");
    return Roots[0];
  }

  virtual bool runOnFunction(Function &F);

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }

private:
  struct InfoRec {
    unsigned Semi;
    unsigned Size;
    BasicBlock *Label, *Parent, *Child, *Ancestor;
    
    std::vector<BasicBlock*> Bucket;
    
    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
  };

  // Vertex - Map the DFS number to the BasicBlock*
  std::vector<BasicBlock*> Vertex;

  // Info - Collection of information used during the computation of idoms.
  std::map<BasicBlock*, InfoRec> Info;

  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
  void Compress(BasicBlock *V, InfoRec &VInfo);
  BasicBlock *Eval(BasicBlock *v);
  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
};



//===----------------------------------------------------------------------===//
/// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
/// function, that represents the blocks that dominate the block.  If the block
/// is unreachable in this function, the set will be empty.  This cannot happen
/// for reachable code, because every block dominates at least itself.
///
struct DominatorSetBase : public DominatorBase {
  typedef std::set<BasicBlock*> DomSetType;    // Dom set for a bb
  // Map of dom sets
  typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
protected:
  DomSetMapType Doms;
public:
  DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}

  virtual void releaseMemory() { Doms.clear(); }

  // Accessor interface:
  typedef DomSetMapType::const_iterator const_iterator;
  typedef DomSetMapType::iterator iterator;
  inline const_iterator begin() const { return Doms.begin(); }
  inline       iterator begin()       { return Doms.begin(); }
  inline const_iterator end()   const { return Doms.end(); }
  inline       iterator end()         { return Doms.end(); }
  inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
  inline       iterator find(BasicBlock* B)       { return Doms.find(B); }


  /// getDominators - Return the set of basic blocks that dominate the specified
  /// block.
  ///
  inline const DomSetType &getDominators(BasicBlock *BB) const {
    const_iterator I = find(BB);
    assert(I != end() && "BB not in function!");
    return I->second;
  }

  /// isReachable - Return true if the specified basicblock is reachable.  If
  /// the block is reachable, we have dominator set information for it.
  ///
  bool isReachable(BasicBlock *BB) const {
    return !getDominators(BB).empty();
  }

  /// dominates - Return true if A dominates B.
  ///
  inline bool dominates(BasicBlock *A, BasicBlock *B) const {
    return getDominators(B).count(A) != 0;
  }

  /// properlyDominates - Return true if A dominates B and A != B.
  ///
  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
    return dominates(A, B) && A != B;
  }

  /// print - Convert to human readable form
  ///
  virtual void print(std::ostream &OS) const;

  /// dominates - Return true if A dominates B.  This performs the special
  /// checks necessary if A and B are in the same basic block.
  ///
  bool dominates(Instruction *A, Instruction *B) const;

  //===--------------------------------------------------------------------===//
  // API to update (Post)DominatorSet information based on modifications to
  // the CFG...

  /// addBasicBlock - Call to update the dominator set with information about a
  /// new block that was inserted into the function.
  ///
  void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
    assert(find(BB) == end() && "Block already in DominatorSet!");
    Doms.insert(std::make_pair(BB, Dominators));
  }

  /// addDominator - If a new block is inserted into the CFG, then method may be
  /// called to notify the blocks it dominates that it is in their set.
  ///
  void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
    iterator I = find(BB);
    assert(I != end() && "BB is not in DominatorSet!");
    I->second.insert(NewDominator);
  }
};


//===-------------------------------------
/// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
/// compute a normal dominator set.
///
struct DominatorSet : public DominatorSetBase {
  DominatorSet() : DominatorSetBase(false) {}

  virtual bool runOnFunction(Function &F);

  BasicBlock *getRoot() const {
    assert(Roots.size() == 1 && "Should always have entry node!");
    return Roots[0];
  }

  /// getAnalysisUsage - This simply provides a dominator set
  ///
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired<ImmediateDominators>();
    AU.setPreservesAll();
  }

  // stub - dummy function, just ignore it
  static void stub();
};


//===----------------------------------------------------------------------===//
/// DominatorTree - Calculate the immediate dominator tree for a function.
///
struct DominatorTreeBase : public DominatorBase {
  class Node;
protected:
  std::map<BasicBlock*, Node*> Nodes;
  void reset();
  typedef std::map<BasicBlock*, Node*> NodeMapType;

  Node *RootNode;
public:
  class Node {
    friend struct DominatorTree;
    friend struct PostDominatorTree;
    friend struct DominatorTreeBase;
    BasicBlock *TheBB;
    Node *IDom;
    std::vector<Node*> Children;
  public:
    typedef std::vector<Node*>::iterator iterator;
    typedef std::vector<Node*>::const_iterator const_iterator;

    iterator begin()             { return Children.begin(); }
    iterator end()               { return Children.end(); }
    const_iterator begin() const { return Children.begin(); }
    const_iterator end()   const { return Children.end(); }

    inline BasicBlock *getBlock() const { return TheBB; }
    inline Node *getIDom() const { return IDom; }
    inline const std::vector<Node*> &getChildren() const { return Children; }

    /// dominates - Returns true iff this dominates N.  Note that this is not a 
    /// constant time operation!
    ///
    inline bool dominates(const Node *N) const {
      const Node *IDom;
      while ((IDom = N->getIDom()) != 0 && IDom != this)
      N = IDom;   // Walk up the tree
      return IDom != 0;
    }

  private:
    inline Node(BasicBlock *BB, Node *iDom) : TheBB(BB), IDom(iDom) {}
    inline Node *addChild(Node *C) { Children.push_back(C); return C; }

    void setIDom(Node *NewIDom);
  };

public:
  DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {}
  ~DominatorTreeBase() { reset(); }

  virtual void releaseMemory() { reset(); }

  /// getNode - return the (Post)DominatorTree node for the specified basic
  /// block.  This is the same as using operator[] on this class.
  ///
  inline Node *getNode(BasicBlock *BB) const {
    NodeMapType::const_iterator i = Nodes.find(BB);
    return (i != Nodes.end()) ? i->second : 0;
  }

  inline Node *operator[](BasicBlock *BB) const {
    return getNode(BB);
  }

  /// getRootNode - This returns the entry node for the CFG of the function.  If
  /// this tree represents the post-dominance relations for a function, however,
  /// this root may be a node with the block == NULL.  This is the case when
  /// there are multiple exit nodes from a particular function.  Consumers of
  /// post-dominance information must be capable of dealing with this
  /// possibility.
  ///
  Node *getRootNode() { return RootNode; }
  const Node *getRootNode() const { return RootNode; }

  //===--------------------------------------------------------------------===//
  // API to update (Post)DominatorTree information based on modifications to
  // the CFG...

  /// createNewNode - Add a new node to the dominator tree information.  This
  /// creates a new node as a child of IDomNode, linking it into the children
  /// list of the immediate dominator.
  ///
  Node *createNewNode(BasicBlock *BB, Node *IDomNode) {
    assert(getNode(BB) == 0 && "Block already in dominator tree!");
    assert(IDomNode && "Not immediate dominator specified for block!");
    return Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
  }

  /// changeImmediateDominator - This method is used to update the dominator
  /// tree information when a node's immediate dominator changes.
  ///
  void changeImmediateDominator(Node *N, Node *NewIDom) {
    assert(N && NewIDom && "Cannot change null node pointers!");
    N->setIDom(NewIDom);
  }

  /// print - Convert to human readable form
  ///
  virtual void print(std::ostream &OS) const;
};


//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
struct DominatorTree : public DominatorTreeBase {
  DominatorTree() : DominatorTreeBase(false) {}

  BasicBlock *getRoot() const {
    assert(Roots.size() == 1 && "Should always have entry node!");
    return Roots[0];
  }

  virtual bool runOnFunction(Function &F) {
    reset();     // Reset from the last time we were run...
    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
    Roots = ID.getRoots();
    calculate(ID);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addRequired<ImmediateDominators>();
  }
private:
  void calculate(const ImmediateDominators &ID);
  Node *getNodeForBlock(BasicBlock *BB);
};

//===-------------------------------------
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
///
template <> struct GraphTraits<DominatorTree::Node*> {
  typedef DominatorTree::Node NodeType;
  typedef NodeType::iterator  ChildIteratorType;

  static NodeType *getEntryNode(NodeType *N) {
    return N;
  }
  static inline ChildIteratorType child_begin(NodeType* N) {
    return N->begin();
  }
  static inline ChildIteratorType child_end(NodeType* N) {
    return N->end();
  }
};

template <> struct GraphTraits<DominatorTree*>
  : public GraphTraits<DominatorTree::Node*> {
  static NodeType *getEntryNode(DominatorTree *DT) {
    return DT->getRootNode();
  }
};

//===----------------------------------------------------------------------===//
/// DominanceFrontier - Calculate the dominance frontiers for a function.
///
struct DominanceFrontierBase : public DominatorBase {
  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
protected:
  DomSetMapType Frontiers;
public:
  DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {}

  virtual void releaseMemory() { Frontiers.clear(); }

  // Accessor interface:
  typedef DomSetMapType::iterator iterator;
  typedef DomSetMapType::const_iterator const_iterator;
  iterator       begin()       { return Frontiers.begin(); }
  const_iterator begin() const { return Frontiers.begin(); }
  iterator       end()         { return Frontiers.end(); }
  const_iterator end()   const { return Frontiers.end(); }
  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }

  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
    assert(find(BB) == end() && "Block already in DominanceFrontier!");
    Frontiers.insert(std::make_pair(BB, frontier));
  }

  void addToFrontier(iterator I, BasicBlock *Node) {
    assert(I != end() && "BB is not in DominanceFrontier!");
    I->second.insert(Node);
  }

  void removeFromFrontier(iterator I, BasicBlock *Node) {
    assert(I != end() && "BB is not in DominanceFrontier!");
    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
    I->second.erase(Node);
  }

  /// print - Convert to human readable form
  ///
  virtual void print(std::ostream &OS) const;
};


//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
struct DominanceFrontier : public DominanceFrontierBase {
  DominanceFrontier() : DominanceFrontierBase(false) {}

  BasicBlock *getRoot() const {
    assert(Roots.size() == 1 && "Should always have entry node!");
    return Roots[0];
  }

  virtual bool runOnFunction(Function &) {
    Frontiers.clear();
    DominatorTree &DT = getAnalysis<DominatorTree>();
    Roots = DT.getRoots();
    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
    calculate(DT, DT[Roots[0]]);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addRequired<DominatorTree>();
  }
private:
  const DomSetType &calculate(const DominatorTree &DT,
                              const DominatorTree::Node *Node);
};

// Make sure that any clients of this file link in Dominators.cpp
static IncludeFile
DOMINATORS_INCLUDE_FILE((void*)&DominatorSet::stub);
} // End llvm namespace

#endif