summaryrefslogtreecommitdiff
path: root/include/llvm/CFG.h
blob: 73fbc164539e1a0cb7cae9e6bbe43f7da476fd98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//===-- llvm/CFG.h - CFG definitions and useful classes ----------*- C++ -*--=//
//
// This file contains the class definitions useful for operating on the control
// flow graph.
//
// Currently it contains functionality for these three applications:
//
//  1. Iterate over the predecessors of a basic block:
//     pred_iterator, pred_const_iterator, pred_begin, pred_end
//  2. Iterate over the successors of a basic block:
//     succ_iterator, succ_const_iterator, succ_begin, succ_end
//  3. Iterate over the basic blocks of a method in depth first ordering or 
//     reverse depth first order.  df_iterator, df_const_iterator, 
//     df_begin, df_end.  df_begin takes an arg to specify reverse or not.
//  4. Iterator over the basic blocks of a method in post order.
//  5. Iterator over a method in reverse post order.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CFG_H
#define LLVM_CFG_H

#include "llvm/CFGdecls.h"      // See this file for concise interface info
#include <set>
#include <stack>
#include <iterator>
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h"

namespace cfg {

//===----------------------------------------------------------------------===//
//                                Implementation
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Basic Block Predecessor Iterator
//

template <class _Ptr,  class _USE_iterator> // Predecessor Iterator
class PredIterator : public std::bidirectional_iterator<_Ptr, ptrdiff_t> {
  _Ptr *BB;
  _USE_iterator It;
public:
  typedef PredIterator<_Ptr,_USE_iterator> _Self;
  
  inline void advancePastConstPool() {
    // TODO: This is bad
    // Loop to ignore constant pool references
    while (It != BB->use_end() && 
	   ((!(*It)->isInstruction()) ||
	    !(((Instruction*)(*It))->isTerminator())))
      ++It;
  }
  
  inline PredIterator(_Ptr *bb) : BB(bb), It(bb->use_begin()) {
    advancePastConstPool();
  }
  inline PredIterator(_Ptr *bb, bool) : BB(bb), It(bb->use_end()) {}
  
  inline bool operator==(const _Self& x) const { return It == x.It; }
  inline bool operator!=(const _Self& x) const { return !operator==(x); }
  
  inline pointer operator*() const { 
    return (*It)->castInstructionAsserting()->getParent(); 
  }
  inline pointer *operator->() const { return &(operator*()); }
  
  inline _Self& operator++() {   // Preincrement
    ++It; advancePastConstPool();
    return *this; 
  }
  
  inline _Self operator++(int) { // Postincrement
    _Self tmp = *this; ++*this; return tmp; 
  }
  
  inline _Self& operator--() { --It; return *this; }  // Predecrement
  inline _Self operator--(int) { // Postdecrement
    _Self tmp = *this; --*this; return tmp;
  }
};

inline pred_iterator       pred_begin(      BasicBlock *BB) {
  return pred_iterator(BB);
}
inline pred_const_iterator pred_begin(const BasicBlock *BB) {
  return pred_const_iterator(BB);
}
inline pred_iterator       pred_end(      BasicBlock *BB) {
  return pred_iterator(BB,true);
}
inline pred_const_iterator pred_end(const BasicBlock *BB) {
  return pred_const_iterator(BB,true);
}


//===----------------------------------------------------------------------===//
// Basic Block Successor Iterator
//

template <class _Term, class _BB>           // Successor Iterator
class SuccIterator : public std::bidirectional_iterator<_BB, ptrdiff_t> {
  const _Term Term;
  unsigned idx;
public:
  typedef SuccIterator<_Term, _BB> _Self;
  // TODO: This can be random access iterator, need operator+ and stuff tho
  
  inline SuccIterator(_Term T) : Term(T), idx(0) {}         // begin iterator
  inline SuccIterator(_Term T, bool) 
    : Term(T), idx(Term->getNumSuccessors()) {}             // end iterator
  
  inline bool operator==(const _Self& x) const { return idx == x.idx; }
  inline bool operator!=(const _Self& x) const { return !operator==(x); }
  
  inline pointer operator*() const { return Term->getSuccessor(idx); }
  inline pointer operator->() const { return operator*(); }
  
  inline _Self& operator++() { ++idx; return *this; } // Preincrement
  inline _Self operator++(int) { // Postincrement
    _Self tmp = *this; ++*this; return tmp; 
  }
  
  inline _Self& operator--() { --idx; return *this; }  // Predecrement
  inline _Self operator--(int) { // Postdecrement
    _Self tmp = *this; --*this; return tmp;
  }
};

inline succ_iterator       succ_begin(      BasicBlock *BB) {
  return succ_iterator(BB->getTerminator());
}
inline succ_const_iterator succ_begin(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator());
}
inline succ_iterator       succ_end(      BasicBlock *BB) {
  return succ_iterator(BB->getTerminator(),true);
}
inline succ_const_iterator succ_end(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator(),true);
}


//===----------------------------------------------------------------------===//
// Graph Type Declarations
//
//             BasicBlockGraph - Represent a standard traversal of a CFG
//        ConstBasicBlockGraph - Represent a standard traversal of a const CFG
//      InverseBasicBlockGraph - Represent a inverse traversal of a CFG
// ConstInverseBasicBlockGraph - Represent a inverse traversal of a const CFG
//
// An Inverse traversal of a graph is where we chase predecessors, instead of
// successors.
//
struct BasicBlockGraph {
  typedef BasicBlock NodeType;
  typedef succ_iterator ChildIteratorType;
  static inline ChildIteratorType child_begin(NodeType *N) { 
    return succ_begin(N); 
  }
  static inline ChildIteratorType child_end(NodeType *N) { 
    return succ_end(N); 
  }
};

struct ConstBasicBlockGraph {
  typedef const BasicBlock NodeType;
  typedef succ_const_iterator ChildIteratorType;
  static inline ChildIteratorType child_begin(NodeType *N) { 
    return succ_begin(N); 
  }
  static inline ChildIteratorType child_end(NodeType *N) { 
    return succ_end(N); 
  }
};

struct InverseBasicBlockGraph {
  typedef BasicBlock NodeType;
  typedef pred_iterator ChildIteratorType;
  static inline ChildIteratorType child_begin(NodeType *N) { 
    return pred_begin(N); 
  }
  static inline ChildIteratorType child_end(NodeType *N) { 
    return pred_end(N); 
  }
};

struct ConstInverseBasicBlockGraph {
  typedef const BasicBlock NodeType;
  typedef pred_const_iterator ChildIteratorType;
  static inline ChildIteratorType child_begin(NodeType *N) { 
    return pred_begin(N); 
  }
  static inline ChildIteratorType child_end(NodeType *N) { 
    return pred_end(N); 
  }
};


//===----------------------------------------------------------------------===//
// Depth First Iterator
//

// BasicBlock Depth First Iterator
template<class GI>
class DFIterator : public std::forward_iterator<typename GI::NodeType,
						ptrdiff_t> {
  typedef typename GI::NodeType          NodeType;
  typedef typename GI::ChildIteratorType ChildItTy;

  set<NodeType *>   Visited;    // All of the blocks visited so far...
  // VisitStack - Used to maintain the ordering.  Top = current block
  // First element is basic block pointer, second is the 'next child' to visit
  stack<pair<NodeType *, ChildItTy> > VisitStack;
  const bool Reverse;         // Iterate over children before self?
private:
  void reverseEnterNode() {
    pair<NodeType *, ChildItTy> &Top = VisitStack.top();
    NodeType *BB    = Top.first;
    ChildItTy &It  = Top.second;
    for (; It != GI::child_end(BB); ++It) {
      NodeType *Child = *It;
      if (!Visited.count(Child)) {
	Visited.insert(Child);
	VisitStack.push(make_pair(Child, GI::child_begin(Child)));
	reverseEnterNode();
	return;
      }
    }
  }
public:
  typedef DFIterator<GI> _Self;

  inline DFIterator(NodeType *BB, bool reverse) : Reverse(reverse) {
    Visited.insert(BB);
    VisitStack.push(make_pair(BB, GI::child_begin(BB)));
    if (Reverse) reverseEnterNode();
  }
  inline DFIterator() { /* End is when stack is empty */ }

  inline bool operator==(const _Self& x) const { 
    return VisitStack == x.VisitStack;
  }
  inline bool operator!=(const _Self& x) const { return !operator==(x); }

  inline pointer operator*() const { 
    return VisitStack.top().first;
  }

  // This is a nonstandard operator-> that dereferences the pointer an extra
  // time... so that you can actually call methods ON the BasicBlock, because
  // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
  //
  inline NodeType *operator->() const { return operator*(); }

  inline _Self& operator++() {   // Preincrement
    if (Reverse) {               // Reverse Depth First Iterator
      if (VisitStack.top().second == GI::child_end(VisitStack.top().first))
	VisitStack.pop();
      if (!VisitStack.empty())
	reverseEnterNode();
    } else {                     // Normal Depth First Iterator
      do {
	pair<NodeType *, ChildItTy> &Top = VisitStack.top();
	NodeType *BB    = Top.first;
	ChildItTy &It  = Top.second;

	while (It != GI::child_end(BB)) {
	  NodeType *Next = *It++;
	  if (!Visited.count(Next)) {  // Has our next sibling been visited?
	    // No, do it now.
	    Visited.insert(Next);
	    VisitStack.push(make_pair(Next, GI::child_begin(Next)));
	    return *this;
	  }
	}
	
	// Oops, ran out of successors... go up a level on the stack.
	VisitStack.pop();
      } while (!VisitStack.empty());
    }
    return *this; 
  }

  inline _Self operator++(int) { // Postincrement
    _Self tmp = *this; ++*this; return tmp; 
  }
};

inline df_iterator df_begin(Method *M, bool Reverse = false) {
  return df_iterator(M->front(), Reverse);
}

inline df_const_iterator df_begin(const Method *M, bool Reverse = false) {
  return df_const_iterator(M->front(), Reverse);
}
inline df_iterator       df_end(Method*) { 
  return df_iterator(); 
}
inline df_const_iterator df_end(const Method*) {
  return df_const_iterator();
}

inline df_iterator df_begin(BasicBlock *BB, bool Reverse = false) { 
  return df_iterator(BB, Reverse);
}
inline df_const_iterator df_begin(const BasicBlock *BB, bool Reverse = false) { 
  return df_const_iterator(BB, Reverse);
}

inline df_iterator       df_end(BasicBlock*) { 
  return df_iterator(); 
}
inline df_const_iterator df_end(const BasicBlock*) {
  return df_const_iterator();
}



inline idf_iterator idf_begin(BasicBlock *BB, bool Reverse = false) { 
  return idf_iterator(BB, Reverse);
}
inline idf_const_iterator idf_begin(const BasicBlock *BB, bool Reverse = false) { 
  return idf_const_iterator(BB, Reverse);
}

inline idf_iterator       idf_end(BasicBlock*) { 
  return idf_iterator(); 
}
inline idf_const_iterator idf_end(const BasicBlock*) {
  return idf_const_iterator();
}

//===----------------------------------------------------------------------===//
// Post Order CFG iterator code
//

template<class BBType, class SuccItTy> 
class POIterator : public std::forward_iterator<BBType,	ptrdiff_t> {
  set<BBType *>   Visited;    // All of the blocks visited so far...
  // VisitStack - Used to maintain the ordering.  Top = current block
  // First element is basic block pointer, second is the 'next child' to visit
  stack<pair<BBType *, SuccItTy> > VisitStack;

  void traverseChild() {
    while (VisitStack.top().second != succ_end(VisitStack.top().first)) {
      BBType *BB = *VisitStack.top().second++;
      if (!Visited.count(BB)) {  // If the block is not visited...
	Visited.insert(BB);
	VisitStack.push(make_pair(BB, succ_begin(BB)));
      }
    }
  }
public:
  typedef POIterator<BBType, SuccItTy> _Self;

  inline POIterator(BBType *BB) {
    Visited.insert(BB);
    VisitStack.push(make_pair(BB, succ_begin(BB)));
    traverseChild();
  }
  inline POIterator() { /* End is when stack is empty */ }

  inline bool operator==(const _Self& x) const { 
    return VisitStack == x.VisitStack;
  }
  inline bool operator!=(const _Self& x) const { return !operator==(x); }

  inline pointer operator*() const { 
    return VisitStack.top().first;
  }

  // This is a nonstandard operator-> that dereferences the pointer an extra
  // time... so that you can actually call methods ON the BasicBlock, because
  // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
  //
  inline BBType *operator->() const { return operator*(); }

  inline _Self& operator++() {   // Preincrement
    VisitStack.pop();
    if (!VisitStack.empty())
      traverseChild();
    return *this; 
  }

  inline _Self operator++(int) { // Postincrement
    _Self tmp = *this; ++*this; return tmp; 
  }
};

inline po_iterator       po_begin(      Method *M) {
  return po_iterator(M->front());
}
inline po_const_iterator po_begin(const Method *M) {
  return po_const_iterator(M->front());
}
inline po_iterator       po_end  (      Method *M) {
  return po_iterator();
}
inline po_const_iterator po_end  (const Method *M) {
  return po_const_iterator();
}

inline po_iterator       po_begin(      BasicBlock *BB) {
  return po_iterator(BB);
}
inline po_const_iterator po_begin(const BasicBlock *BB) {
  return po_const_iterator(BB);
}
inline po_iterator       po_end  (      BasicBlock *BB) {
  return po_iterator();
}
inline po_const_iterator po_end  (const BasicBlock *BB) {
  return po_const_iterator();
}


//===----------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//

class ReversePostOrderTraversal {
  vector<BasicBlock*> Blocks;       // Block list in normal PO order
  inline void Initialize(BasicBlock *BB) {
    copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
  }
public:
  inline ReversePostOrderTraversal(Method *M) {
    Initialize(M->front());
  }
  inline ReversePostOrderTraversal(BasicBlock *BB) {
    Initialize(BB);
  }

  // Because we want a reverse post order, use reverse iterators from the vector
  inline rpo_iterator begin() { return Blocks.rbegin(); }
  inline rpo_iterator end()   { return Blocks.rend(); }
};

}    // End namespace cfg

#endif