summaryrefslogtreecommitdiff
path: root/include/llvm/CodeGen/SelectionDAGNodes.h
blob: d605961bb4571b51d20925b8c177a5cb75d6d255 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// 
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG.  These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H

#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <vector>

namespace llvm {

class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class SDNode;
template <typename T> struct simplify_type;

/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
  //===--------------------------------------------------------------------===//
  /// ISD::NodeType enum - This enum defines all of the operators valid in a
  /// SelectionDAG.
  ///
  enum NodeType {
    // EntryToken - This is the marker used to indicate the start of the region.
    EntryToken,

    // Token factor - This node is takes multiple tokens as input and produces a
    // single token result.  This is used to represent the fact that the operand
    // operators are independent of each other.
    TokenFactor,
    
    // Various leaf nodes.
    Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
    BasicBlock, ExternalSymbol,

    // CopyToReg - This node has chain and child nodes, and an associated
    // register number.  The instruction selector must guarantee that the value
    // of the value node is available in the register stored in the RegSDNode
    // object.
    CopyToReg,

    // CopyFromReg - This node indicates that the input value is a virtual or
    // physical register that is defined outside of the scope of this
    // SelectionDAG.  The register is available from the RegSDNode object.
    CopyFromReg,

    // ImplicitDef - This node indicates that the specified register is
    // implicitly defined by some operation (e.g. its a live-in argument).  This
    // register is indicated in the RegSDNode object.  The only operand to this
    // is the token chain coming in, the only result is the token chain going
    // out.
    ImplicitDef,

    // UNDEF - An undefined node
    UNDEF,

    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
    // a Constant, which is required to be operand #1), element of the aggregate
    // value specified as operand #0.  This is only for use before legalization,
    // for values that will be broken into multiple registers.
    EXTRACT_ELEMENT,

    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
    // two values of the same integer value type, this produces a value twice as
    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
    BUILD_PAIR,


    // Simple binary arithmetic operators.
    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,

    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
    // an unsigned/signed value of type i[2*n], then return the top part.
    MULHU, MULHS,

    // Bitwise operators.
    AND, OR, XOR, SHL, SRA, SRL,

    // Select operator.
    SELECT,

    // SetCC operator - This evaluates to a boolean (i1) true value if the
    // condition is true.  These nodes are instances of the
    // SetCCSDNode class, which contains the condition code as extra
    // state.
    SETCC,

    // ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
    // broken into a multiple pieces each, and return the resulting pieces of
    // doing an atomic add/sub operation.  This is used to handle add/sub of
    // expanded types.  The operation ordering is:
    //       [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
    ADD_PARTS, SUB_PARTS,

    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
    // integer shift operations, just like ADD/SUB_PARTS.  The operation
    // ordering is:
    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
    SHL_PARTS, SRA_PARTS, SRL_PARTS,

    // Conversion operators.  These are all single input single output
    // operations.  For all of these, the result type must be strictly
    // wider or narrower (depending on the operation) than the source
    // type.

    // SIGN_EXTEND - Used for integer types, replicating the sign bit
    // into new bits.
    SIGN_EXTEND,

    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
    ZERO_EXTEND,

    // TRUNCATE - Completely drop the high bits.
    TRUNCATE,

    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
    // depends on the first letter) to floating point.
    SINT_TO_FP,
    UINT_TO_FP,

    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
    // sign extend a small value in a large integer register (e.g. sign
    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
    // with the 7th bit).  The size of the smaller type is indicated by the
    // ExtraValueType in the MVTSDNode for the operator.
    SIGN_EXTEND_INREG,

    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
    // integer.
    FP_TO_SINT,
    FP_TO_UINT,

    // FP_ROUND - Perform a rounding operation from the current
    // precision down to the specified precision (currently always 64->32).
    FP_ROUND,

    // FP_ROUND_INREG - This operator takes a floating point register, and
    // rounds it to a floating point value.  It then promotes it and returns it
    // in a register of the same size.  This operation effectively just discards
    // excess precision.  The type to round down to is specified by the
    // ExtraValueType in the MVTSDNode (currently always 64->32->64).
    FP_ROUND_INREG,

    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
    FP_EXTEND,

    // FNEG, FABS - Perform unary floating point negation and absolute value
    // operations.
    FNEG, FABS,

    // Other operators.  LOAD and STORE have token chains as their first
    // operand, then the same operands as an LLVM load/store instruction.
    LOAD, STORE,

    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators are instances of the
    // MVTSDNode.  All of these load a value from memory and extend them to a
    // larger value (e.g. load a byte into a word register).  All three of these
    // have two operands, a chain and a pointer to load from.  The extra value
    // type is the source type being loaded.
    //
    // SEXTLOAD loads the integer operand and sign extends it to a larger
    //          integer result type.
    // ZEXTLOAD loads the integer operand and zero extends it to a larger
    //          integer result type.
    // EXTLOAD  is used for two things: floating point extending loads, and 
    //          integer extending loads where it doesn't matter what the high
    //          bits are set to.  The code generator is allowed to codegen this
    //          into whichever operation is more efficient.
    EXTLOAD, SEXTLOAD, ZEXTLOAD,

    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
    // value and stores it to memory in one operation.  This can be used for
    // either integer or floating point operands, and the stored type
    // represented as the 'extra' value type in the MVTSDNode representing the
    // operator.  This node has the same three operands as a standard store.
    TRUNCSTORE,

    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
    // to a specified boundary.  The first operand is the token chain, the
    // second is the number of bytes to allocate, and the third is the alignment
    // boundary.
    DYNAMIC_STACKALLOC,

    // Control flow instructions.  These all have token chains.
    
    // BR - Unconditional branch.  The first operand is the chain
    // operand, the second is the MBB to branch to.
    BR,

    // BRCOND - Conditional branch.  The first operand is the chain,
    // the second is the condition, the third is the block to branch
    // to if the condition is true.
    BRCOND,

    // BRCONDTWOWAY - Two-way conditional branch.  The first operand is the
    // chain, the second is the condition, the third is the block to branch to
    // if true, and the forth is the block to branch to if false.  Targets
    // usually do not implement this, preferring to have legalize demote the
    // operation to BRCOND/BR pairs when necessary.
    BRCONDTWOWAY,

    // RET - Return from function.  The first operand is the chain,
    // and any subsequent operands are the return values for the
    // function.  This operation can have variable number of operands.
    RET,

    // CALL - Call to a function pointer.  The first operand is the chain, the
    // second is the destination function pointer (a GlobalAddress for a direct
    // call).  Arguments have already been lowered to explicit DAGs according to
    // the calling convention in effect here.
    CALL,

    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
    // correspond to the operands of the LLVM intrinsic functions.  The only
    // result is a token chain.  The alignment argument is guaranteed to be a
    // Constant node.
    MEMSET,
    MEMMOVE,
    MEMCPY,
    
    // ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
    // end of a call sequence and indicate how much the stack pointer needs to
    // be adjusted for that particular call.  The first operand is a chain, the
    // second is a ConstantSDNode of intptr type.
    ADJCALLSTACKDOWN,  // Beginning of a call sequence
    ADJCALLSTACKUP,    // End of a call sequence

    // PCMARKER - This corresponds to the pcmarker intrinsic.
    PCMARKER,

    // BUILTIN_OP_END - This must be the last enum value in this list.
    BUILTIN_OP_END,
  };

  //===--------------------------------------------------------------------===//
  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
  /// below work out, when considering SETFALSE (something that never exists
  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
  /// to.  If the "N" column is 1, the result of the comparison is undefined if
  /// the input is a NAN.
  ///
  /// All of these (except for the 'always folded ops') should be handled for
  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
  ///
  /// Note that these are laid out in a specific order to allow bit-twiddling
  /// to transform conditions.
  enum CondCode {
    // Opcode          N U L G E       Intuitive operation
    SETFALSE,      //    0 0 0 0       Always false (always folded)
    SETOEQ,        //    0 0 0 1       True if ordered and equal
    SETOGT,        //    0 0 1 0       True if ordered and greater than
    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
    SETOLT,        //    0 1 0 0       True if ordered and less than
    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
    SETO,          //    0 1 1 1       True if ordered (no nans)
    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
    SETUEQ,        //    1 0 0 1       True if unordered or equal
    SETUGT,        //    1 0 1 0       True if unordered or greater than
    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
    SETULT,        //    1 1 0 0       True if unordered or less than
    SETULE,        //    1 1 0 1       True if unordered, less than, or equal 
    SETUNE,        //    1 1 1 0       True if unordered or not equal
    SETTRUE,       //    1 1 1 1       Always true (always folded)
    // Don't care operations: undefined if the input is a nan.
    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
    SETEQ,         //  1 X 0 0 1       True if equal
    SETGT,         //  1 X 0 1 0       True if greater than
    SETGE,         //  1 X 0 1 1       True if greater than or equal
    SETLT,         //  1 X 1 0 0       True if less than
    SETLE,         //  1 X 1 0 1       True if less than or equal 
    SETNE,         //  1 X 1 1 0       True if not equal
    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)

    SETCC_INVALID,      // Marker value.
  };

  /// isSignedIntSetCC - Return true if this is a setcc instruction that
  /// performs a signed comparison when used with integer operands.
  inline bool isSignedIntSetCC(CondCode Code) {
    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
  }

  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
  /// performs an unsigned comparison when used with integer operands.
  inline bool isUnsignedIntSetCC(CondCode Code) {
    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
  }

  /// isTrueWhenEqual - Return true if the specified condition returns true if
  /// the two operands to the condition are equal.  Note that if one of the two
  /// operands is a NaN, this value is meaningless.
  inline bool isTrueWhenEqual(CondCode Cond) {
    return ((int)Cond & 1) != 0;
  }

  /// getUnorderedFlavor - This function returns 0 if the condition is always
  /// false if an operand is a NaN, 1 if the condition is always true if the
  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
  /// NaN.
  inline unsigned getUnorderedFlavor(CondCode Cond) {
    return ((int)Cond >> 3) & 3;
  }

  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
  /// 'op' is a valid SetCC operation.
  CondCode getSetCCInverse(CondCode Operation, bool isInteger);

  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
  /// when given the operation for (X op Y).
  CondCode getSetCCSwappedOperands(CondCode Operation);

  /// getSetCCOrOperation - Return the result of a logical OR between different
  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
  /// function returns SETCC_INVALID if it is not possible to represent the
  /// resultant comparison.
  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);

  /// getSetCCAndOperation - Return the result of a logical AND between
  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
  /// function returns SETCC_INVALID if it is not possible to represent the
  /// resultant comparison.
  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
}  // end llvm::ISD namespace


//===----------------------------------------------------------------------===//
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation.  Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node.  This pair
/// of information is represented with the SDOperand value type.
///
class SDOperand {
public:
  SDNode *Val;        // The node defining the value we are using.
  unsigned ResNo;     // Which return value of the node we are using.

  SDOperand() : Val(0) {}
  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}

  bool operator==(const SDOperand &O) const {
    return Val == O.Val && ResNo == O.ResNo;
  }
  bool operator!=(const SDOperand &O) const {
    return !operator==(O);
  }
  bool operator<(const SDOperand &O) const {
    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
  }

  SDOperand getValue(unsigned R) const {
    return SDOperand(Val, R);
  }

  /// getValueType - Return the ValueType of the referenced return value.
  ///
  inline MVT::ValueType getValueType() const;
  
  // Forwarding methods - These forward to the corresponding methods in SDNode.
  inline unsigned getOpcode() const;
  inline unsigned getNodeDepth() const;
  inline unsigned getNumOperands() const;
  inline const SDOperand &getOperand(unsigned i) const;

  /// hasOneUse - Return true if there is exactly one operation using this
  /// result value of the defining operator.
  inline bool hasOneUse() const;
};


/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDOperand> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
    return static_cast<SimpleType>(Val.Val);
  }
};
template<> struct simplify_type<const SDOperand> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
    return static_cast<SimpleType>(Val.Val);
  }
};


/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode {
  /// NodeType - The operation that this node performs.
  ///
  unsigned short NodeType;

  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
  /// means that leaves have a depth of 1, things that use only leaves have a
  /// depth of 2, etc.
  unsigned short NodeDepth;

  /// Operands - The values that are used by this operation.
  ///
  std::vector<SDOperand> Operands;

  /// Values - The types of the values this node defines.  SDNode's may define
  /// multiple values simultaneously.
  std::vector<MVT::ValueType> Values;

  /// Uses - These are all of the SDNode's that use a value produced by this
  /// node.
  std::vector<SDNode*> Uses;
public:

  //===--------------------------------------------------------------------===//
  //  Accessors
  //
  unsigned getOpcode()  const { return NodeType; }

  size_t use_size() const { return Uses.size(); }
  bool use_empty() const { return Uses.empty(); }
  bool hasOneUse() const { return Uses.size() == 1; }

  /// getNodeDepth - Return the distance from this node to the leaves in the
  /// graph.  The leaves have a depth of 1.
  unsigned getNodeDepth() const { return NodeDepth; }

  typedef std::vector<SDNode*>::const_iterator use_iterator;
  use_iterator use_begin() const { return Uses.begin(); }
  use_iterator use_end() const { return Uses.end(); }

  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
  /// indicated value.  This method ignores uses of other values defined by this
  /// operation.
  bool hasNUsesOfValue(unsigned NUses, unsigned Value);

  /// getNumOperands - Return the number of values used by this operation.
  ///
  unsigned getNumOperands() const { return Operands.size(); }

  const SDOperand &getOperand(unsigned Num) {
    assert(Num < Operands.size() && "Invalid child # of SDNode!");
    return Operands[Num];
  }

  const SDOperand &getOperand(unsigned Num) const {
    assert(Num < Operands.size() && "Invalid child # of SDNode!");
    return Operands[Num];
  }

  /// getNumValues - Return the number of values defined/returned by this
  /// operator.
  ///
  unsigned getNumValues() const { return Values.size(); }

  /// getValueType - Return the type of a specified result.
  ///
  MVT::ValueType getValueType(unsigned ResNo) const {
    assert(ResNo < Values.size() && "Illegal result number!");
    return Values[ResNo];
  }

  /// getOperationName - Return the opcode of this operation for printing.
  ///
  const char* getOperationName() const;
  void dump() const;

  static bool classof(const SDNode *) { return true; }

protected:
  friend class SelectionDAG;

  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
    Values.reserve(1);
    Values.push_back(VT);
  }
  SDNode(unsigned NT, SDOperand Op)
    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
    Operands.reserve(1); Operands.push_back(Op);
    Op.Val->Uses.push_back(this);
  }
  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
    : NodeType(NT) {
    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
      NodeDepth = N1.Val->getNodeDepth()+1;
    else
      NodeDepth = N2.Val->getNodeDepth()+1;
    Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
  }
  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
    : NodeType(NT) {
    unsigned ND = N1.Val->getNodeDepth();
    if (ND < N2.Val->getNodeDepth())
      ND = N2.Val->getNodeDepth();
    if (ND < N3.Val->getNodeDepth())
      ND = N3.Val->getNodeDepth();
    NodeDepth = ND+1;

    Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
    Operands.push_back(N3);
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
    N3.Val->Uses.push_back(this);
  }
  SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
    Operands.swap(Nodes);
    unsigned ND = 0;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      Operands[i].Val->Uses.push_back(this);
      if (ND < Operands[i].Val->getNodeDepth())
        ND = Operands[i].Val->getNodeDepth();
    }
    NodeDepth = ND+1;
  }

  virtual ~SDNode() {
    // FIXME: Drop uses.
  }

  void setValueTypes(MVT::ValueType VT) {
    Values.reserve(1);
    Values.push_back(VT);
  }
  void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
    Values.reserve(2);
    Values.push_back(VT1);
    Values.push_back(VT2);
  }
  /// Note: this method destroys the vector passed in.
  void setValueTypes(std::vector<MVT::ValueType> &VTs) {
    std::swap(Values, VTs);
  }

  void removeUser(SDNode *User) {
    // Remove this user from the operand's use list.
    for (unsigned i = Uses.size(); ; --i) {
      assert(i != 0 && "Didn't find user!");
      if (Uses[i-1] == User) {
        Uses.erase(Uses.begin()+i-1);
        break;
      }
    }
  }
};


// Define inline functions from the SDOperand class.

inline unsigned SDOperand::getOpcode() const {
  return Val->getOpcode();
}
inline unsigned SDOperand::getNodeDepth() const {
  return Val->getNodeDepth();
}
inline MVT::ValueType SDOperand::getValueType() const {
  return Val->getValueType(ResNo);
}
inline unsigned SDOperand::getNumOperands() const {
  return Val->getNumOperands();
}
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
  return Val->getOperand(i);
}
inline bool SDOperand::hasOneUse() const {
  return Val->hasNUsesOfValue(1, ResNo);
}


class ConstantSDNode : public SDNode {
  uint64_t Value;
protected:
  friend class SelectionDAG;
  ConstantSDNode(uint64_t val, MVT::ValueType VT)
    : SDNode(ISD::Constant, VT), Value(val) {
  }
public:

  uint64_t getValue() const { return Value; }

  int64_t getSignExtended() const {
    unsigned Bits = MVT::getSizeInBits(getValueType(0));
    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
  }

  bool isNullValue() const { return Value == 0; }
  bool isAllOnesValue() const {
    int NumBits = MVT::getSizeInBits(getValueType(0));
    if (NumBits == 64) return Value+1 == 0;
    return Value == (1ULL << NumBits)-1;
  }

  static bool classof(const ConstantSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::Constant;
  }
};

class ConstantFPSDNode : public SDNode {
  double Value;
protected:
  friend class SelectionDAG;
  ConstantFPSDNode(double val, MVT::ValueType VT)
    : SDNode(ISD::ConstantFP, VT), Value(val) {
  }
public:

  double getValue() const { return Value; }

  /// isExactlyValue - We don't rely on operator== working on double values, as
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.
  bool isExactlyValue(double V) const {
    union {
      double V;
      uint64_t I;
    } T1;
    T1.V = Value;
    union {
      double V;
      uint64_t I;
    } T2;
    T2.V = V;
    return T1.I == T2.I;
  }

  static bool classof(const ConstantFPSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantFP;
  }
};

class GlobalAddressSDNode : public SDNode {
  GlobalValue *TheGlobal;
protected:
  friend class SelectionDAG;
  GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
    : SDNode(ISD::GlobalAddress, VT) {
    TheGlobal = const_cast<GlobalValue*>(GA);
  }
public:

  GlobalValue *getGlobal() const { return TheGlobal; }

  static bool classof(const GlobalAddressSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::GlobalAddress;
  }
};


class FrameIndexSDNode : public SDNode {
  int FI;
protected:
  friend class SelectionDAG;
  FrameIndexSDNode(int fi, MVT::ValueType VT)
    : SDNode(ISD::FrameIndex, VT), FI(fi) {}
public:

  int getIndex() const { return FI; }

  static bool classof(const FrameIndexSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::FrameIndex;
  }
};

class ConstantPoolSDNode : public SDNode {
  unsigned CPI;
protected:
  friend class SelectionDAG;
  ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
    : SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
public:

  unsigned getIndex() const { return CPI; }

  static bool classof(const ConstantPoolSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantPool;
  }
};

class BasicBlockSDNode : public SDNode {
  MachineBasicBlock *MBB;
protected:
  friend class SelectionDAG;
  BasicBlockSDNode(MachineBasicBlock *mbb)
    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
public:

  MachineBasicBlock *getBasicBlock() const { return MBB; }

  static bool classof(const BasicBlockSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::BasicBlock;
  }
};


class RegSDNode : public SDNode {
  unsigned Reg;
protected:
  friend class SelectionDAG;
  RegSDNode(unsigned Opc, SDOperand Chain, SDOperand Src, unsigned reg)
    : SDNode(Opc, Chain, Src), Reg(reg) {
  }
  RegSDNode(unsigned Opc, SDOperand Chain, unsigned reg)
    : SDNode(Opc, Chain), Reg(reg) {}
public:

  unsigned getReg() const { return Reg; }

  static bool classof(const RegSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::CopyToReg ||
           N->getOpcode() == ISD::CopyFromReg ||
           N->getOpcode() == ISD::ImplicitDef;
  }
};

class ExternalSymbolSDNode : public SDNode {
  const char *Symbol;
protected:
  friend class SelectionDAG;
  ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
    : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
    }
public:

  const char *getSymbol() const { return Symbol; }

  static bool classof(const ExternalSymbolSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ExternalSymbol;
  }
};

class SetCCSDNode : public SDNode {
  ISD::CondCode Condition;
protected:
  friend class SelectionDAG;
  SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
    : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
  }
public:

  ISD::CondCode getCondition() const { return Condition; }

  static bool classof(const SetCCSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::SETCC;
  }
};

/// MVTSDNode - This class is used for operators that require an extra
/// value-type to be kept with the node.
class MVTSDNode : public SDNode {
  MVT::ValueType ExtraValueType;
protected:
  friend class SelectionDAG;
  MVTSDNode(unsigned Opc, MVT::ValueType VT1, SDOperand Op0, MVT::ValueType EVT)
    : SDNode(Opc, Op0), ExtraValueType(EVT) {
    setValueTypes(VT1);
  }
  MVTSDNode(unsigned Opc, MVT::ValueType VT1, MVT::ValueType VT2,
            SDOperand Op0, SDOperand Op1, MVT::ValueType EVT)
    : SDNode(Opc, Op0, Op1), ExtraValueType(EVT) {
    setValueTypes(VT1, VT2);
  }
  MVTSDNode(unsigned Opc, MVT::ValueType VT,
            SDOperand Op0, SDOperand Op1, SDOperand Op2, MVT::ValueType EVT)
    : SDNode(Opc, Op0, Op1, Op2), ExtraValueType(EVT) {
    setValueTypes(VT);
  }
public:

  MVT::ValueType getExtraValueType() const { return ExtraValueType; }

  static bool classof(const MVTSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return 
      N->getOpcode() == ISD::SIGN_EXTEND_INREG ||
      N->getOpcode() == ISD::FP_ROUND_INREG ||
      N->getOpcode() == ISD::EXTLOAD  ||
      N->getOpcode() == ISD::SEXTLOAD || 
      N->getOpcode() == ISD::ZEXTLOAD ||
      N->getOpcode() == ISD::TRUNCSTORE;
  }
};

class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
  SDNode *Node;
  unsigned Operand;
  
  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
  bool operator==(const SDNodeIterator& x) const {
    return Operand == x.Operand;
  }
  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }

  const SDNodeIterator &operator=(const SDNodeIterator &I) {
    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
    Operand = I.Operand;
    return *this;
  }
  
  pointer operator*() const {
    return Node->getOperand(Operand).Val;
  }
  pointer operator->() const { return operator*(); }
  
  SDNodeIterator& operator++() {                // Preincrement
    ++Operand;
    return *this;
  }
  SDNodeIterator operator++(int) { // Postincrement
    SDNodeIterator tmp = *this; ++*this; return tmp; 
  }

  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
  static SDNodeIterator end  (SDNode *N) {
    return SDNodeIterator(N, N->getNumOperands());
  }

  unsigned getOperand() const { return Operand; }
  const SDNode *getNode() const { return Node; }
};

template <> struct GraphTraits<SDNode*> {
  typedef SDNode NodeType;
  typedef SDNodeIterator ChildIteratorType;
  static inline NodeType *getEntryNode(SDNode *N) { return N; }
  static inline ChildIteratorType child_begin(NodeType *N) { 
    return SDNodeIterator::begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) { 
    return SDNodeIterator::end(N);
  }
};




} // end llvm namespace

#endif