summaryrefslogtreecommitdiff
path: root/include/llvm/CodeGen/ValueTypes.h
blob: d59670410bf816685ab6337ac1604b9c3add4673 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of low-level target independent types which various
// values in the code generator are.  This allows the target specific behavior
// of instructions to be described to target independent passes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_VALUETYPES_H
#define LLVM_CODEGEN_VALUETYPES_H

#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <string>

namespace llvm {
  class Type;
  class LLVMContext;
  struct EVT;

  /// MVT - Machine Value Type. Every type that is supported natively by some
  /// processor targeted by LLVM occurs here. This means that any legal value
  /// type can be represented by an MVT.
  class MVT {
  public:
    enum SimpleValueType {
      // INVALID_SIMPLE_VALUE_TYPE - Simple value types less than zero are
      // considered extended value types.
      INVALID_SIMPLE_VALUE_TYPE = -1,

      // If you change this numbering, you must change the values in
      // ValueTypes.td as well!
      Other          =   0,   // This is a non-standard value
      i1             =   1,   // This is a 1 bit integer value
      i8             =   2,   // This is an 8 bit integer value
      i16            =   3,   // This is a 16 bit integer value
      i32            =   4,   // This is a 32 bit integer value
      i64            =   5,   // This is a 64 bit integer value
      i128           =   6,   // This is a 128 bit integer value

      FIRST_INTEGER_VALUETYPE = i1,
      LAST_INTEGER_VALUETYPE  = i128,

      f16            =   7,   // This is a 16 bit floating point value
      f32            =   8,   // This is a 32 bit floating point value
      f64            =   9,   // This is a 64 bit floating point value
      f80            =  10,   // This is a 80 bit floating point value
      f128           =  11,   // This is a 128 bit floating point value
      ppcf128        =  12,   // This is a PPC 128-bit floating point value

      FIRST_FP_VALUETYPE = f16,
      LAST_FP_VALUETYPE  = ppcf128,

      v2i1           =  13,   //  2 x i1
      v4i1           =  14,   //  4 x i1
      v8i1           =  15,   //  8 x i1
      v16i1          =  16,   // 16 x i1
      v32i1          =  17,   // 32 x i1
      v64i1          =  18,   // 64 x i1

      v1i8           =  19,   //  1 x i8
      v2i8           =  20,   //  2 x i8
      v4i8           =  21,   //  4 x i8
      v8i8           =  22,   //  8 x i8
      v16i8          =  23,   // 16 x i8
      v32i8          =  24,   // 32 x i8
      v64i8          =  25,   // 64 x i8
      v1i16          =  26,   //  1 x i16
      v2i16          =  27,   //  2 x i16
      v4i16          =  28,   //  4 x i16
      v8i16          =  29,   //  8 x i16
      v16i16         =  30,   // 16 x i16
      v32i16         =  31,   // 32 x i16
      v1i32          =  32,   //  1 x i32
      v2i32          =  33,   //  2 x i32
      v4i32          =  34,   //  4 x i32
      v8i32          =  35,   //  8 x i32
      v16i32         =  36,   // 16 x i32
      v1i64          =  37,   //  1 x i64
      v2i64          =  38,   //  2 x i64
      v4i64          =  39,   //  4 x i64
      v8i64          =  40,   //  8 x i64
      v16i64         =  41,   // 16 x i64

      FIRST_INTEGER_VECTOR_VALUETYPE = v2i1,
      LAST_INTEGER_VECTOR_VALUETYPE = v16i64,

      v2f16          =  42,   //  2 x f16
      v4f16          =  43,   //  4 x f16
      v8f16          =  44,   //  8 x f16
      v1f32          =  45,   //  1 x f32
      v2f32          =  46,   //  2 x f32
      v4f32          =  47,   //  4 x f32
      v8f32          =  48,   //  8 x f32
      v16f32         =  49,   // 16 x f32
      v1f64          =  50,   //  1 x f64
      v2f64          =  51,   //  2 x f64
      v4f64          =  52,   //  4 x f64
      v8f64          =  53,   //  8 x f64

      FIRST_FP_VECTOR_VALUETYPE = v2f16,
      LAST_FP_VECTOR_VALUETYPE = v8f64,

      FIRST_VECTOR_VALUETYPE = v2i1,
      LAST_VECTOR_VALUETYPE  = v8f64,

      x86mmx         =  54,   // This is an X86 MMX value

      Glue           =  55,   // This glues nodes together during pre-RA sched

      isVoid         =  56,   // This has no value

      Untyped        =  57,   // This value takes a register, but has
                              // unspecified type.  The register class
                              // will be determined by the opcode.

      LAST_VALUETYPE =  58,   // This always remains at the end of the list.

      // This is the current maximum for LAST_VALUETYPE.
      // MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
      // This value must be a multiple of 32.
      MAX_ALLOWED_VALUETYPE = 64,

      // Metadata - This is MDNode or MDString.
      Metadata       = 250,

      // iPTRAny - An int value the size of the pointer of the current
      // target to any address space. This must only be used internal to
      // tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
      iPTRAny        = 251,

      // vAny - A vector with any length and element size. This is used
      // for intrinsics that have overloadings based on vector types.
      // This is only for tblgen's consumption!
      vAny           = 252,

      // fAny - Any floating-point or vector floating-point value. This is used
      // for intrinsics that have overloadings based on floating-point types.
      // This is only for tblgen's consumption!
      fAny           = 253,

      // iAny - An integer or vector integer value of any bit width. This is
      // used for intrinsics that have overloadings based on integer bit widths.
      // This is only for tblgen's consumption!
      iAny           = 254,

      // iPTR - An int value the size of the pointer of the current
      // target.  This should only be used internal to tblgen!
      iPTR           = 255
    };

    SimpleValueType SimpleTy;

    MVT() : SimpleTy((SimpleValueType)(INVALID_SIMPLE_VALUE_TYPE)) {}
    MVT(SimpleValueType SVT) : SimpleTy(SVT) { }

    bool operator>(const MVT& S)  const { return SimpleTy >  S.SimpleTy; }
    bool operator<(const MVT& S)  const { return SimpleTy <  S.SimpleTy; }
    bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
    bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; }
    bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
    bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }

    /// isFloatingPoint - Return true if this is a FP, or a vector FP type.
    bool isFloatingPoint() const {
      return ((SimpleTy >= MVT::FIRST_FP_VALUETYPE &&
               SimpleTy <= MVT::LAST_FP_VALUETYPE) ||
              (SimpleTy >= MVT::FIRST_FP_VECTOR_VALUETYPE &&
               SimpleTy <= MVT::LAST_FP_VECTOR_VALUETYPE));
    }

    /// isInteger - Return true if this is an integer, or a vector integer type.
    bool isInteger() const {
      return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
               SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
              (SimpleTy >= MVT::FIRST_INTEGER_VECTOR_VALUETYPE &&
               SimpleTy <= MVT::LAST_INTEGER_VECTOR_VALUETYPE));
    }

    /// isVector - Return true if this is a vector value type.
    bool isVector() const {
      return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
              SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
    }

    /// is16BitVector - Return true if this is a 16-bit vector type.
    bool is16BitVector() const {
      return (SimpleTy == MVT::v2i8  || SimpleTy == MVT::v1i16 ||
              SimpleTy == MVT::v16i1);
    }

    /// is32BitVector - Return true if this is a 32-bit vector type.
    bool is32BitVector() const {
      return (SimpleTy == MVT::v4i8  || SimpleTy == MVT::v2i16 ||
              SimpleTy == MVT::v1i32);
    }

    /// is64BitVector - Return true if this is a 64-bit vector type.
    bool is64BitVector() const {
      return (SimpleTy == MVT::v8i8  || SimpleTy == MVT::v4i16 ||
              SimpleTy == MVT::v2i32 || SimpleTy == MVT::v1i64 ||
              SimpleTy == MVT::v1f64 || SimpleTy == MVT::v2f32);
    }

    /// is128BitVector - Return true if this is a 128-bit vector type.
    bool is128BitVector() const {
      return (SimpleTy == MVT::v16i8 || SimpleTy == MVT::v8i16 ||
              SimpleTy == MVT::v4i32 || SimpleTy == MVT::v2i64 ||
              SimpleTy == MVT::v4f32 || SimpleTy == MVT::v2f64);
    }

    /// is256BitVector - Return true if this is a 256-bit vector type.
    bool is256BitVector() const {
      return (SimpleTy == MVT::v8f32 || SimpleTy == MVT::v4f64  ||
              SimpleTy == MVT::v32i8 || SimpleTy == MVT::v16i16 ||
              SimpleTy == MVT::v8i32 || SimpleTy == MVT::v4i64);
    }

    /// is512BitVector - Return true if this is a 512-bit vector type.
    bool is512BitVector() const {
      return (SimpleTy == MVT::v8f64 || SimpleTy == MVT::v16f32 ||
              SimpleTy == MVT::v64i8 || SimpleTy == MVT::v32i16 ||
              SimpleTy == MVT::v8i64 || SimpleTy == MVT::v16i32);
    }

    /// is1024BitVector - Return true if this is a 1024-bit vector type.
    bool is1024BitVector() const {
      return (SimpleTy == MVT::v16i64);
    }

    /// isOverloaded - Return true if this is an overloaded type for TableGen.
    bool isOverloaded() const {
      return (SimpleTy==MVT::iAny || SimpleTy==MVT::fAny ||
              SimpleTy==MVT::vAny || SimpleTy==MVT::iPTRAny);
    }

    /// isPow2VectorType - Returns true if the given vector is a power of 2.
    bool isPow2VectorType() const {
      unsigned NElts = getVectorNumElements();
      return !(NElts & (NElts - 1));
    }

    /// getPow2VectorType - Widens the length of the given vector MVT up to
    /// the nearest power of 2 and returns that type.
    MVT getPow2VectorType() const {
      if (isPow2VectorType())
        return *this;

      unsigned NElts = getVectorNumElements();
      unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
      return MVT::getVectorVT(getVectorElementType(), Pow2NElts);
    }

    /// getScalarType - If this is a vector type, return the element type,
    /// otherwise return this.
    MVT getScalarType() const {
      return isVector() ? getVectorElementType() : *this;
    }

    MVT getVectorElementType() const {
      switch (SimpleTy) {
      default:
        llvm_unreachable("Not a vector MVT!");
      case v2i1 :
      case v4i1 :
      case v8i1 :
      case v16i1 :
      case v32i1 :
      case v64i1: return i1;
      case v1i8 :
      case v2i8 :
      case v4i8 :
      case v8i8 :
      case v16i8:
      case v32i8:
      case v64i8: return i8;
      case v1i16:
      case v2i16:
      case v4i16:
      case v8i16:
      case v16i16:
      case v32i16: return i16;
      case v1i32:
      case v2i32:
      case v4i32:
      case v8i32:
      case v16i32: return i32;
      case v1i64:
      case v2i64:
      case v4i64:
      case v8i64:
      case v16i64: return i64;
      case v2f16:
      case v4f16:
      case v8f16: return f16;
      case v1f32:
      case v2f32:
      case v4f32:
      case v8f32:
      case v16f32: return f32;
      case v1f64:
      case v2f64:
      case v4f64:
      case v8f64: return f64;
      }
    }

    unsigned getVectorNumElements() const {
      switch (SimpleTy) {
      default:
        llvm_unreachable("Not a vector MVT!");
      case v32i1:
      case v32i8:
      case v32i16: return 32;
      case v64i1:
      case v64i8: return 64;
      case v16i1:
      case v16i8:
      case v16i16:
      case v16i32:
      case v16i64:
      case v16f32: return 16;
      case v8i1 :
      case v8i8 :
      case v8i16:
      case v8i32:
      case v8i64:
      case v8f16:
      case v8f32:
      case v8f64: return 8;
      case v4i1:
      case v4i8:
      case v4i16:
      case v4i32:
      case v4i64:
      case v4f16:
      case v4f32:
      case v4f64: return 4;
      case v2i1:
      case v2i8:
      case v2i16:
      case v2i32:
      case v2i64:
      case v2f16:
      case v2f32:
      case v2f64: return 2;
      case v1i8:
      case v1i16:
      case v1i32:
      case v1i64:
      case v1f32:
      case v1f64: return 1;
      }
    }

    unsigned getSizeInBits() const {
      switch (SimpleTy) {
      default:
        llvm_unreachable("getSizeInBits called on extended MVT.");
      case Other:
        llvm_unreachable("Value type is non-standard value, Other.");
      case iPTR:
        llvm_unreachable("Value type size is target-dependent. Ask TLI.");
      case iPTRAny:
      case iAny:
      case fAny:
      case vAny:
        llvm_unreachable("Value type is overloaded.");
      case Metadata:
        llvm_unreachable("Value type is metadata.");
      case i1  :  return 1;
      case v2i1:  return 2;
      case v4i1:  return 4;
      case i8  :
      case v1i8:
      case v8i1: return 8;
      case i16 :
      case f16:
      case v16i1:
      case v2i8:
      case v1i16: return 16;
      case f32 :
      case i32 :
      case v32i1:
      case v4i8:
      case v2i16:
      case v2f16:
      case v1f32:
      case v1i32: return 32;
      case x86mmx:
      case f64 :
      case i64 :
      case v64i1:
      case v8i8:
      case v4i16:
      case v2i32:
      case v1i64:
      case v4f16:
      case v2f32:
      case v1f64: return 64;
      case f80 :  return 80;
      case f128:
      case ppcf128:
      case i128:
      case v16i8:
      case v8i16:
      case v4i32:
      case v2i64:
      case v8f16:
      case v4f32:
      case v2f64: return 128;
      case v32i8:
      case v16i16:
      case v8i32:
      case v4i64:
      case v8f32:
      case v4f64: return 256;
      case v64i8:
      case v32i16:
      case v16i32:
      case v8i64:
      case v16f32:
      case v8f64: return 512;
      case v16i64:return 1024;
      }
    }

    /// getStoreSize - Return the number of bytes overwritten by a store
    /// of the specified value type.
    unsigned getStoreSize() const {
      return (getSizeInBits() + 7) / 8;
    }

    /// getStoreSizeInBits - Return the number of bits overwritten by a store
    /// of the specified value type.
    unsigned getStoreSizeInBits() const {
      return getStoreSize() * 8;
    }

    /// Return true if this has more bits than VT.
    bool bitsGT(MVT VT) const {
      return getSizeInBits() > VT.getSizeInBits();
    }

    /// Return true if this has no less bits than VT.
    bool bitsGE(MVT VT) const {
      return getSizeInBits() >= VT.getSizeInBits();
    }

    /// Return true if this has less bits than VT.
    bool bitsLT(MVT VT) const {
      return getSizeInBits() < VT.getSizeInBits();
    }

    /// Return true if this has no more bits than VT.
    bool bitsLE(MVT VT) const {
      return getSizeInBits() <= VT.getSizeInBits();
    }


    static MVT getFloatingPointVT(unsigned BitWidth) {
      switch (BitWidth) {
      default:
        llvm_unreachable("Bad bit width!");
      case 16:
        return MVT::f16;
      case 32:
        return MVT::f32;
      case 64:
        return MVT::f64;
      case 80:
        return MVT::f80;
      case 128:
        return MVT::f128;
      }
    }

    static MVT getIntegerVT(unsigned BitWidth) {
      switch (BitWidth) {
      default:
        return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
      case 1:
        return MVT::i1;
      case 8:
        return MVT::i8;
      case 16:
        return MVT::i16;
      case 32:
        return MVT::i32;
      case 64:
        return MVT::i64;
      case 128:
        return MVT::i128;
      }
    }

    static MVT getVectorVT(MVT VT, unsigned NumElements) {
      switch (VT.SimpleTy) {
      default:
        break;
      case MVT::i1:
        if (NumElements == 2)  return MVT::v2i1;
        if (NumElements == 4)  return MVT::v4i1;
        if (NumElements == 8)  return MVT::v8i1;
        if (NumElements == 16) return MVT::v16i1;
        if (NumElements == 32) return MVT::v32i1;
        if (NumElements == 64) return MVT::v64i1;
        break;
      case MVT::i8:
        if (NumElements == 1)  return MVT::v1i8;
        if (NumElements == 2)  return MVT::v2i8;
        if (NumElements == 4)  return MVT::v4i8;
        if (NumElements == 8)  return MVT::v8i8;
        if (NumElements == 16) return MVT::v16i8;
        if (NumElements == 32) return MVT::v32i8;
        if (NumElements == 64) return MVT::v64i8;
        break;
      case MVT::i16:
        if (NumElements == 1)  return MVT::v1i16;
        if (NumElements == 2)  return MVT::v2i16;
        if (NumElements == 4)  return MVT::v4i16;
        if (NumElements == 8)  return MVT::v8i16;
        if (NumElements == 16) return MVT::v16i16;
        if (NumElements == 32) return MVT::v32i16;
        break;
      case MVT::i32:
        if (NumElements == 1)  return MVT::v1i32;
        if (NumElements == 2)  return MVT::v2i32;
        if (NumElements == 4)  return MVT::v4i32;
        if (NumElements == 8)  return MVT::v8i32;
        if (NumElements == 16) return MVT::v16i32;
        break;
      case MVT::i64:
        if (NumElements == 1)  return MVT::v1i64;
        if (NumElements == 2)  return MVT::v2i64;
        if (NumElements == 4)  return MVT::v4i64;
        if (NumElements == 8)  return MVT::v8i64;
        if (NumElements == 16) return MVT::v16i64;
        break;
      case MVT::f16:
        if (NumElements == 2)  return MVT::v2f16;
        if (NumElements == 4)  return MVT::v4f16;
        if (NumElements == 8)  return MVT::v8f16;
        break;
      case MVT::f32:
        if (NumElements == 1)  return MVT::v1f32;
        if (NumElements == 2)  return MVT::v2f32;
        if (NumElements == 4)  return MVT::v4f32;
        if (NumElements == 8)  return MVT::v8f32;
        if (NumElements == 16) return MVT::v16f32;
        break;
      case MVT::f64:
        if (NumElements == 1)  return MVT::v1f64;
        if (NumElements == 2)  return MVT::v2f64;
        if (NumElements == 4)  return MVT::v4f64;
        if (NumElements == 8)  return MVT::v8f64;
        break;
      }
      return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
    }

    /// Return the value type corresponding to the specified type.  This returns
    /// all pointers as iPTR.  If HandleUnknown is true, unknown types are
    /// returned as Other, otherwise they are invalid.
    static MVT getVT(Type *Ty, bool HandleUnknown = false);

  };


  /// EVT - Extended Value Type.  Capable of holding value types which are not
  /// native for any processor (such as the i12345 type), as well as the types
  /// a MVT can represent.
  struct EVT {
  private:
    MVT V;
    Type *LLVMTy;

  public:
    EVT() : V((MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE)),
            LLVMTy(0) {}
    EVT(MVT::SimpleValueType SVT) : V(SVT), LLVMTy(0) { }
    EVT(MVT S) : V(S), LLVMTy(0) {}

    bool operator==(EVT VT) const {
      return !(*this != VT);
    }
    bool operator!=(EVT VT) const {
      if (V.SimpleTy != VT.V.SimpleTy)
        return true;
      if (V.SimpleTy < 0)
        return LLVMTy != VT.LLVMTy;
      return false;
    }

    /// getFloatingPointVT - Returns the EVT that represents a floating point
    /// type with the given number of bits.  There are two floating point types
    /// with 128 bits - this returns f128 rather than ppcf128.
    static EVT getFloatingPointVT(unsigned BitWidth) {
      return MVT::getFloatingPointVT(BitWidth);
    }

    /// getIntegerVT - Returns the EVT that represents an integer with the given
    /// number of bits.
    static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth) {
      MVT M = MVT::getIntegerVT(BitWidth);
      if (M.SimpleTy >= 0)
        return M;
      return getExtendedIntegerVT(Context, BitWidth);
    }

    /// getVectorVT - Returns the EVT that represents a vector NumElements in
    /// length, where each element is of type VT.
    static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements) {
      MVT M = MVT::getVectorVT(VT.V, NumElements);
      if (M.SimpleTy >= 0)
        return M;
      return getExtendedVectorVT(Context, VT, NumElements);
    }

    /// changeVectorElementTypeToInteger - Return a vector with the same number
    /// of elements as this vector, but with the element type converted to an
    /// integer type with the same bitwidth.
    EVT changeVectorElementTypeToInteger() const {
      if (!isSimple())
        return changeExtendedVectorElementTypeToInteger();
      MVT EltTy = getSimpleVT().getVectorElementType();
      unsigned BitWidth = EltTy.getSizeInBits();
      MVT IntTy = MVT::getIntegerVT(BitWidth);
      MVT VecTy = MVT::getVectorVT(IntTy, getVectorNumElements());
      assert(VecTy.SimpleTy >= 0 &&
             "Simple vector VT not representable by simple integer vector VT!");
      return VecTy;
    }

    /// isSimple - Test if the given EVT is simple (as opposed to being
    /// extended).
    bool isSimple() const {
      return V.SimpleTy >= 0;
    }

    /// isExtended - Test if the given EVT is extended (as opposed to
    /// being simple).
    bool isExtended() const {
      return !isSimple();
    }

    /// isFloatingPoint - Return true if this is a FP, or a vector FP type.
    bool isFloatingPoint() const {
      return isSimple() ? V.isFloatingPoint() : isExtendedFloatingPoint();
    }

    /// isInteger - Return true if this is an integer, or a vector integer type.
    bool isInteger() const {
      return isSimple() ? V.isInteger() : isExtendedInteger();
    }

    /// isVector - Return true if this is a vector value type.
    bool isVector() const {
      return isSimple() ? V.isVector() : isExtendedVector();
    }

    /// is16BitVector - Return true if this is a 16-bit vector type.
    bool is16BitVector() const {
      return isSimple() ? V.is16BitVector() : isExtended16BitVector();
    }

    /// is32BitVector - Return true if this is a 32-bit vector type.
    bool is32BitVector() const {
      return isSimple() ? V.is32BitVector() : isExtended32BitVector();
    }

    /// is64BitVector - Return true if this is a 64-bit vector type.
    bool is64BitVector() const {
      return isSimple() ? V.is64BitVector() : isExtended64BitVector();
    }

    /// is128BitVector - Return true if this is a 128-bit vector type.
    bool is128BitVector() const {
      return isSimple() ? V.is128BitVector() : isExtended128BitVector();
    }

    /// is256BitVector - Return true if this is a 256-bit vector type.
    bool is256BitVector() const {
      return isSimple() ? V.is256BitVector() : isExtended256BitVector();
    }

    /// is512BitVector - Return true if this is a 512-bit vector type.
    bool is512BitVector() const {
      return isSimple() ? V.is512BitVector() : isExtended512BitVector();
    }

    /// is1024BitVector - Return true if this is a 1024-bit vector type.
    bool is1024BitVector() const {
      return isSimple() ? V.is1024BitVector() : isExtended1024BitVector();
    }

    /// isOverloaded - Return true if this is an overloaded type for TableGen.
    bool isOverloaded() const {
      return (V==MVT::iAny || V==MVT::fAny || V==MVT::vAny || V==MVT::iPTRAny);
    }

    /// isByteSized - Return true if the bit size is a multiple of 8.
    bool isByteSized() const {
      return (getSizeInBits() & 7) == 0;
    }

    /// isRound - Return true if the size is a power-of-two number of bytes.
    bool isRound() const {
      unsigned BitSize = getSizeInBits();
      return BitSize >= 8 && !(BitSize & (BitSize - 1));
    }

    /// bitsEq - Return true if this has the same number of bits as VT.
    bool bitsEq(EVT VT) const {
      if (EVT::operator==(VT)) return true;
      return getSizeInBits() == VT.getSizeInBits();
    }

    /// bitsGT - Return true if this has more bits than VT.
    bool bitsGT(EVT VT) const {
      if (EVT::operator==(VT)) return false;
      return getSizeInBits() > VT.getSizeInBits();
    }

    /// bitsGE - Return true if this has no less bits than VT.
    bool bitsGE(EVT VT) const {
      if (EVT::operator==(VT)) return true;
      return getSizeInBits() >= VT.getSizeInBits();
    }

    /// bitsLT - Return true if this has less bits than VT.
    bool bitsLT(EVT VT) const {
      if (EVT::operator==(VT)) return false;
      return getSizeInBits() < VT.getSizeInBits();
    }

    /// bitsLE - Return true if this has no more bits than VT.
    bool bitsLE(EVT VT) const {
      if (EVT::operator==(VT)) return true;
      return getSizeInBits() <= VT.getSizeInBits();
    }


    /// getSimpleVT - Return the SimpleValueType held in the specified
    /// simple EVT.
    MVT getSimpleVT() const {
      assert(isSimple() && "Expected a SimpleValueType!");
      return V;
    }

    /// getScalarType - If this is a vector type, return the element type,
    /// otherwise return this.
    EVT getScalarType() const {
      return isVector() ? getVectorElementType() : *this;
    }

    /// getVectorElementType - Given a vector type, return the type of
    /// each element.
    EVT getVectorElementType() const {
      assert(isVector() && "Invalid vector type!");
      if (isSimple())
        return V.getVectorElementType();
      return getExtendedVectorElementType();
    }

    /// getVectorNumElements - Given a vector type, return the number of
    /// elements it contains.
    unsigned getVectorNumElements() const {
      assert(isVector() && "Invalid vector type!");
      if (isSimple())
        return V.getVectorNumElements();
      return getExtendedVectorNumElements();
    }

    /// getSizeInBits - Return the size of the specified value type in bits.
    unsigned getSizeInBits() const {
      if (isSimple())
        return V.getSizeInBits();
      return getExtendedSizeInBits();
    }

    /// getStoreSize - Return the number of bytes overwritten by a store
    /// of the specified value type.
    unsigned getStoreSize() const {
      return (getSizeInBits() + 7) / 8;
    }

    /// getStoreSizeInBits - Return the number of bits overwritten by a store
    /// of the specified value type.
    unsigned getStoreSizeInBits() const {
      return getStoreSize() * 8;
    }

    /// getRoundIntegerType - Rounds the bit-width of the given integer EVT up
    /// to the nearest power of two (and at least to eight), and returns the
    /// integer EVT with that number of bits.
    EVT getRoundIntegerType(LLVMContext &Context) const {
      assert(isInteger() && !isVector() && "Invalid integer type!");
      unsigned BitWidth = getSizeInBits();
      if (BitWidth <= 8)
        return EVT(MVT::i8);
      return getIntegerVT(Context, 1 << Log2_32_Ceil(BitWidth));
    }

    /// getHalfSizedIntegerVT - Finds the smallest simple value type that is
    /// greater than or equal to half the width of this EVT. If no simple
    /// value type can be found, an extended integer value type of half the
    /// size (rounded up) is returned.
    EVT getHalfSizedIntegerVT(LLVMContext &Context) const {
      assert(isInteger() && !isVector() && "Invalid integer type!");
      unsigned EVTSize = getSizeInBits();
      for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
          IntVT <= MVT::LAST_INTEGER_VALUETYPE; ++IntVT) {
        EVT HalfVT = EVT((MVT::SimpleValueType)IntVT);
        if (HalfVT.getSizeInBits() * 2 >= EVTSize)
          return HalfVT;
      }
      return getIntegerVT(Context, (EVTSize + 1) / 2);
    }

    /// isPow2VectorType - Returns true if the given vector is a power of 2.
    bool isPow2VectorType() const {
      unsigned NElts = getVectorNumElements();
      return !(NElts & (NElts - 1));
    }

    /// getPow2VectorType - Widens the length of the given vector EVT up to
    /// the nearest power of 2 and returns that type.
    EVT getPow2VectorType(LLVMContext &Context) const {
      if (!isPow2VectorType()) {
        unsigned NElts = getVectorNumElements();
        unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
        return EVT::getVectorVT(Context, getVectorElementType(), Pow2NElts);
      }
      else {
        return *this;
      }
    }

    /// getEVTString - This function returns value type as a string,
    /// e.g. "i32".
    std::string getEVTString() const;

    /// getTypeForEVT - This method returns an LLVM type corresponding to the
    /// specified EVT.  For integer types, this returns an unsigned type.  Note
    /// that this will abort for types that cannot be represented.
    Type *getTypeForEVT(LLVMContext &Context) const;

    /// getEVT - Return the value type corresponding to the specified type.
    /// This returns all pointers as iPTR.  If HandleUnknown is true, unknown
    /// types are returned as Other, otherwise they are invalid.
    static EVT getEVT(Type *Ty, bool HandleUnknown = false);

    intptr_t getRawBits() const {
      if (isSimple())
        return V.SimpleTy;
      else
        return (intptr_t)(LLVMTy);
    }

    /// compareRawBits - A meaningless but well-behaved order, useful for
    /// constructing containers.
    struct compareRawBits {
      bool operator()(EVT L, EVT R) const {
        if (L.V.SimpleTy == R.V.SimpleTy)
          return L.LLVMTy < R.LLVMTy;
        else
          return L.V.SimpleTy < R.V.SimpleTy;
      }
    };

  private:
    // Methods for handling the Extended-type case in functions above.
    // These are all out-of-line to prevent users of this header file
    // from having a dependency on Type.h.
    EVT changeExtendedVectorElementTypeToInteger() const;
    static EVT getExtendedIntegerVT(LLVMContext &C, unsigned BitWidth);
    static EVT getExtendedVectorVT(LLVMContext &C, EVT VT,
                                   unsigned NumElements);
    bool isExtendedFloatingPoint() const LLVM_READONLY;
    bool isExtendedInteger() const LLVM_READONLY;
    bool isExtendedVector() const LLVM_READONLY;
    bool isExtended16BitVector() const LLVM_READONLY;
    bool isExtended32BitVector() const LLVM_READONLY;
    bool isExtended64BitVector() const LLVM_READONLY;
    bool isExtended128BitVector() const LLVM_READONLY;
    bool isExtended256BitVector() const LLVM_READONLY;
    bool isExtended512BitVector() const LLVM_READONLY;
    bool isExtended1024BitVector() const LLVM_READONLY;
    EVT getExtendedVectorElementType() const;
    unsigned getExtendedVectorNumElements() const LLVM_READONLY;
    unsigned getExtendedSizeInBits() const;
  };

} // End llvm namespace

#endif