summaryrefslogtreecommitdiff
path: root/include/llvm/InstrTypes.h
blob: bac363ee8bdb67ca7942c21e48a1054ef7292642 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the 
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_INSTRUCTION_TYPES_H
#define LLVM_INSTRUCTION_TYPES_H

#include "llvm/Instruction.h"

namespace llvm {

//===----------------------------------------------------------------------===//
//                            TerminatorInst Class
//===----------------------------------------------------------------------===//

/// TerminatorInst - Subclasses of this class are all able to terminate a basic 
/// block.  Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
  TerminatorInst(Instruction::TermOps iType, Instruction *InsertBefore = 0);
  TerminatorInst(const Type *Ty, Instruction::TermOps iType,
                 const std::string &Name = "", Instruction *InsertBefore = 0)
    : Instruction(Ty, iType, Name, InsertBefore) {}

  TerminatorInst(Instruction::TermOps iType, BasicBlock *InsertAtEnd);
  TerminatorInst(const Type *Ty, Instruction::TermOps iType,
                 const std::string &Name, BasicBlock *InsertAtEnd)
    : Instruction(Ty, iType, Name, InsertAtEnd) {}

public:

  /// Terminators must implement the methods required by Instruction...
  virtual Instruction *clone() const = 0;

  /// Additionally, they must provide a method to get at the successors of this
  /// terminator instruction.  'idx' may not be >= the number of successors
  /// returned by getNumSuccessors()!
  ///
  virtual const BasicBlock *getSuccessor(unsigned idx) const = 0;
  virtual unsigned getNumSuccessors() const = 0;
  
  /// Set a successor at a given index
  virtual void setSuccessor(unsigned idx, BasicBlock *B) = 0;

  inline BasicBlock *getSuccessor(unsigned idx) {
    const TerminatorInst *TI = this;
    return const_cast<BasicBlock*>(TI->getSuccessor(idx));
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const TerminatorInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() >= TermOpsBegin && I->getOpcode() < TermOpsEnd;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
protected:
  void init(BinaryOps iType, Value *S1, Value *S2);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
                 const std::string &Name, Instruction *InsertBefore)
    : Instruction(Ty, iType, Name, InsertBefore) {
    init(iType, S1, S2);
  }
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
                 const std::string &Name, BasicBlock *InsertAtEnd)
    : Instruction(Ty, iType, Name, InsertAtEnd) {
    init(iType, S1, S2);
  }

public:

  /// create() - Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *create(BinaryOps Op, Value *S1, Value *S2,
				const std::string &Name = "",
                                Instruction *InsertBefore = 0);
                               
  /// create() - Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *create(BinaryOps Op, Value *S1, Value *S2,
				const std::string &Name,
                                BasicBlock *InsertAtEnd);

  /// create* - These methods just forward to create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *create##OPC(Value *V1, Value *V2, \
                                     const std::string &Name = "") {\
    return create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *create##OPC(Value *V1, Value *V2, \
                                     const std::string &Name, BasicBlock *BB) {\
    return create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *create##OPC(Value *V1, Value *V2, \
                                     const std::string &Name, Instruction *I) {\
    return create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/Instruction.def"
                               

  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  /// 
  /// createNeg, createNot - Create the NEG and NOT
  ///     instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *createNeg(Value *Op, const std::string &Name = "",
                                   Instruction *InsertBefore = 0);
  static BinaryOperator *createNeg(Value *Op, const std::string &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *createNot(Value *Op, const std::string &Name = "",
                                   Instruction *InsertBefore = 0);
  static BinaryOperator *createNot(Value *Op, const std::string &Name,
                                   BasicBlock *InsertAtEnd);

  /// isNeg, isNot - Check if the given Value is a NEG or NOT instruction.
  ///
  static bool            isNeg(const Value *V);
  static bool            isNot(const Value *V);

  /// getNegArgument, getNotArgument - Helper functions to extract the
  ///     unary argument of a NEG or NOT operation implemented via Sub or Xor.
  /// 
  static const Value*    getNegArgument(const BinaryOperator* Bop);
  static       Value*    getNegArgument(      BinaryOperator* Bop);
  static const Value*    getNotArgument(const BinaryOperator* Bop);
  static       Value*    getNotArgument(      BinaryOperator* Bop);

  BinaryOps getOpcode() const { 
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  virtual BinaryOperator *clone() const;

  /// swapOperands - Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the
  /// instruction is order dependent (SetLT f.e.) the opcode is
  /// changed.  If the instruction cannot be reversed (ie, it's a Div),
  /// then return true.
  ///
  bool swapOperands();

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BinaryOperator *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() >= BinaryOpsBegin && I->getOpcode() < BinaryOpsEnd; 
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

} // End llvm namespace

#endif