summaryrefslogtreecommitdiff
path: root/include/llvm/Module.h
blob: 4afcc4bd0fa95b6009762bca73974b9c5f3d9c83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
//===-- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*--=//
//
// This file contains the declarations for the Module class that is used to 
// maintain all the information related to a VM module.
//
// A module also maintains a GlobalValRefMap object that is used to hold all
// constant references to global variables in the module.  When a global
// variable is destroyed, it should have no entries in the GlobalValueRefMap.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_MODULE_H
#define LLVM_MODULE_H

#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
class GlobalVariable;
class GlobalValueRefMap;   // Used by ConstantVals.cpp
class ConstantPointerRef;
class FunctionType;
class SymbolTable;

template<> struct ilist_traits<Function>
  : public SymbolTableListTraits<Function, Module, Module> {
  // createNode is used to create a node that marks the end of the list...
  static Function *createNode();
  static iplist<Function> &getList(Module *M);
};
template<> struct ilist_traits<GlobalVariable>
  : public SymbolTableListTraits<GlobalVariable, Module, Module> {
  // createNode is used to create a node that marks the end of the list...
  static GlobalVariable *createNode();
  static iplist<GlobalVariable> &getList(Module *M);
};

struct Module : public Annotable {
  typedef iplist<GlobalVariable> GlobalListType;
  typedef iplist<Function> FunctionListType;

  // Global Variable iterators...
  typedef GlobalListType::iterator                             giterator;
  typedef GlobalListType::const_iterator                 const_giterator;
  typedef std::reverse_iterator<giterator>             reverse_giterator;
  typedef std::reverse_iterator<const_giterator> const_reverse_giterator;

  // Function iterators...
  typedef FunctionListType::iterator                          iterator;
  typedef FunctionListType::const_iterator              const_iterator;
  typedef std::reverse_iterator<iterator>             reverse_iterator;
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

  enum Endianness  { AnyEndianness, LittleEndian, BigEndian };
  enum PointerSize { AnyPointerSize, Pointer32, Pointer64 };

private:
  GlobalListType GlobalList;     // The Global Variables in the module
  FunctionListType FunctionList; // The Functions in the module
  GlobalValueRefMap *GVRefMap;   // Keep track of GlobalValueRef's
  SymbolTable *SymTab;           // Symbol Table for the module
  std::string ModuleID;    // Human readable identifier for the module

  // These flags are probably not the right long-term way to handle this kind of
  // target information, but it is sufficient for now.
  Endianness  Endian;       // True if target is little endian
  PointerSize PtrSize;    // True if target has 32-bit pointers (false = 64-bit)

  // Accessor for the underlying GVRefMap... only through the Constant class...
  friend class Constant;
  friend class ConstantPointerRef;
  void mutateConstantPointerRef(GlobalValue *OldGV, GlobalValue *NewGV);
  ConstantPointerRef *getConstantPointerRef(GlobalValue *GV);
  void destroyConstantPointerRef(ConstantPointerRef *CPR);

public:
  Module(const std::string &ModuleID);
  ~Module();

  const std::string &getModuleIdentifier() const { return ModuleID; }

  /// Target endian information...
  Endianness getEndianness() const { return Endian; }
  void setEndianness(Endianness E) { Endian = E; }

  /// Target Pointer Size information...
  PointerSize getPointerSize() const { return PtrSize; }
  void setPointerSize(PointerSize PS) { PtrSize = PS; }

  /// getOrInsertFunction - Look up the specified function in the module symbol
  /// table.  If it does not exist, add a prototype for the function and return
  /// it.
  Function *getOrInsertFunction(const std::string &Name, const FunctionType *T);

  /// getOrInsertFunction - Look up the specified function in the module symbol
  /// table.  If it does not exist, add a prototype for the function and return
  /// it.  This version of the method takes a null terminated list of function
  /// arguments, which makes it easier for clients to use.
  Function *getOrInsertFunction(const std::string &Name, const Type *RetTy,...);

  /// getFunction - Look up the specified function in the module symbol table.
  /// If it does not exist, return null.
  ///
  Function *getFunction(const std::string &Name, const FunctionType *Ty);

  /// getMainFunction - This function looks up main efficiently.  This is such a
  /// common case, that it is a method in Module.  If main cannot be found, a
  /// null pointer is returned.
  ///
  Function *getMainFunction();

  /// getNamedFunction - Return the first function in the module with the
  /// specified name, of arbitrary type.  This method returns null if a function
  /// with the specified name is not found.
  ///
  Function *getNamedFunction(const std::string &Name);

  /// addTypeName - Insert an entry in the symbol table mapping Str to Type.  If
  /// there is already an entry for this name, true is returned and the symbol
  /// table is not modified.
  ///
  bool addTypeName(const std::string &Name, const Type *Ty);

  /// getTypeName - If there is at least one entry in the symbol table for the
  /// specified type, return it.
  ///
  std::string getTypeName(const Type *Ty);

  /// Get the underlying elements of the Module...
  inline const GlobalListType &getGlobalList() const  { return GlobalList; }
  inline       GlobalListType &getGlobalList()        { return GlobalList; }
  inline const FunctionListType &getFunctionList() const { return FunctionList;}
  inline       FunctionListType &getFunctionList()       { return FunctionList;}


  //===--------------------------------------------------------------------===//
  // Symbol table support functions...
  
  /// getSymbolTable() - Get access to the symbol table for the module, where
  /// global variables and functions are identified.
  ///
  inline       SymbolTable &getSymbolTable()       { return *SymTab; }
  inline const SymbolTable &getSymbolTable() const { return *SymTab; }


  //===--------------------------------------------------------------------===//
  // Module iterator forwarding functions
  //
  inline giterator                gbegin()       { return GlobalList.begin(); }
  inline const_giterator          gbegin() const { return GlobalList.begin(); }
  inline giterator                gend  ()       { return GlobalList.end();   }
  inline const_giterator          gend  () const { return GlobalList.end();   }

  inline reverse_giterator       grbegin()       { return GlobalList.rbegin(); }
  inline const_reverse_giterator grbegin() const { return GlobalList.rbegin(); }
  inline reverse_giterator       grend  ()       { return GlobalList.rend();   }
  inline const_reverse_giterator grend  () const { return GlobalList.rend();   }

  inline unsigned                  gsize() const { return GlobalList.size(); }
  inline bool                     gempty() const { return GlobalList.empty(); }
  inline const GlobalVariable    &gfront() const { return GlobalList.front(); }
  inline       GlobalVariable    &gfront()       { return GlobalList.front(); }
  inline const GlobalVariable     &gback() const { return GlobalList.back(); }
  inline       GlobalVariable     &gback()       { return GlobalList.back(); }



  inline iterator                begin()       { return FunctionList.begin(); }
  inline const_iterator          begin() const { return FunctionList.begin(); }
  inline iterator                end  ()       { return FunctionList.end();   }
  inline const_iterator          end  () const { return FunctionList.end();   }

  inline reverse_iterator       rbegin()       { return FunctionList.rbegin(); }
  inline const_reverse_iterator rbegin() const { return FunctionList.rbegin(); }
  inline reverse_iterator       rend  ()       { return FunctionList.rend();   }
  inline const_reverse_iterator rend  () const { return FunctionList.rend();   }

  inline unsigned                 size() const { return FunctionList.size(); }
  inline bool                    empty() const { return FunctionList.empty(); }
  inline const Function         &front() const { return FunctionList.front(); }
  inline       Function         &front()       { return FunctionList.front(); }
  inline const Function          &back() const { return FunctionList.back(); }
  inline       Function          &back()       { return FunctionList.back(); }

  void print(std::ostream &OS) const;
  void dump() const;

  /// dropAllReferences() - This function causes all the subinstructions to "let
  /// go" of all references that they are maintaining.  This allows one to
  /// 'delete' a whole class at a time, even though there may be circular
  /// references... first all references are dropped, and all use counts go to
  /// zero.  Then everything is delete'd for real.  Note that no operations are
  /// valid on an object that has "dropped all references", except operator 
  /// delete.
  ///
  void dropAllReferences();
};

inline std::ostream &operator<<(std::ostream &O, const Module *M) {
  M->print(O);
  return O;
}

inline std::ostream &operator<<(std::ostream &O, const Module &M) {
  M.print(O);
  return O;
}

#endif