summaryrefslogtreecommitdiff
path: root/include/llvm/Target/MachineInstrInfo.h
blob: ea623760488f05dbc22b2c1aa3c070feb3f7a220 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//===-- llvm/Target/InstrInfo.h - Target Instruction Information --*-C++-*-==//
//
// This file describes the target machine instructions to the code generator.
//
//===---------------------------------------------------------------------===//

#ifndef LLVM_TARGET_MACHINEINSTRINFO_H
#define LLVM_TARGET_MACHINEINSTRINFO_H

#include "Support/NonCopyable.h"
#include "Support/DataTypes.h"
#include <string>
#include <vector>

class MachineInstrDescriptor;
class TmpInstruction;
class MachineInstr;
class TargetMachine;
class Value;
class Instruction;
class Method;

//---------------------------------------------------------------------------
// Data types used to define information about a single machine instruction
//---------------------------------------------------------------------------

typedef int MachineOpCode;
typedef int OpCodeMask;
typedef int InstrSchedClass;

// Global variable holding an array of descriptors for machine instructions.
// The actual object needs to be created separately for each target machine.
// This variable is initialized and reset by class MachineInstrInfo.
// 
// FIXME: This should be a property of the target so that more than one target
// at a time can be active...
//
extern const MachineInstrDescriptor *TargetInstrDescriptors;


//---------------------------------------------------------------------------
// struct MachineInstrDescriptor:
//	Predefined information about each machine instruction.
//	Designed to initialized statically.
// 
// class MachineInstructionInfo
//	Interface to description of machine instructions
// 
//---------------------------------------------------------------------------


const unsigned int	M_NOP_FLAG		= 1;
const unsigned int	M_BRANCH_FLAG		= 1 << 1;
const unsigned int	M_CALL_FLAG		= 1 << 2;
const unsigned int	M_RET_FLAG		= 1 << 3;
const unsigned int	M_ARITH_FLAG		= 1 << 4;
const unsigned int	M_CC_FLAG		= 1 << 6;
const unsigned int	M_LOGICAL_FLAG		= 1 << 6;
const unsigned int	M_INT_FLAG		= 1 << 7;
const unsigned int	M_FLOAT_FLAG		= 1 << 8;
const unsigned int	M_CONDL_FLAG		= 1 << 9;
const unsigned int	M_LOAD_FLAG		= 1 << 10;
const unsigned int	M_PREFETCH_FLAG		= 1 << 11;
const unsigned int	M_STORE_FLAG		= 1 << 12;
const unsigned int	M_DUMMY_PHI_FLAG	= 1 << 13;
const unsigned int      M_PSEUDO_FLAG           = 1 << 14;


struct MachineInstrDescriptor {
  std::string     opCodeString;  // Assembly language mnemonic for the opcode.
  int	          numOperands;   // Number of args; -1 if variable #args
  int	          resultPos;     // Position of the result; -1 if no result
  unsigned int	  maxImmedConst; // Largest +ve constant in IMMMED field or 0.
  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
				 //   smallest -ve value is -(maxImmedConst+1).
  unsigned int    numDelaySlots; // Number of delay slots after instruction
  unsigned int    latency;	 // Latency in machine cycles
  InstrSchedClass schedClass;	 // enum  identifying instr sched class
  unsigned int	  iclass;	 // flags identifying machine instr class
};


class MachineInstrInfo : public NonCopyableV {
public:
  const TargetMachine& target;

protected:
  const MachineInstrDescriptor* desc;	// raw array to allow static init'n
  unsigned int descSize;		// number of entries in the desc array
  unsigned int numRealOpCodes;		// number of non-dummy op codes
  
public:
  MachineInstrInfo(const TargetMachine& tgt,
                   const MachineInstrDescriptor *desc, unsigned descSize,
		   unsigned numRealOpCodes);
  virtual ~MachineInstrInfo();
  
  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
  unsigned getNumTotalOpCodes() const { return descSize; }
  
  const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const {
    assert(opCode >= 0 && opCode < (int)descSize);
    return desc[opCode];
  }
  
  int getNumOperands(MachineOpCode opCode) const {
    return getDescriptor(opCode).numOperands;
  }
  
  int getResultPos(MachineOpCode opCode) const {
    return getDescriptor(opCode).resultPos;
  }
  
  unsigned getNumDelaySlots(MachineOpCode opCode) const {
    return getDescriptor(opCode).numDelaySlots;
  }
  
  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
    return getDescriptor(opCode).schedClass;
  }
  
  //
  // Query instruction class flags according to the machine-independent
  // flags listed above.
  // 
  unsigned int getIClass(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass;
  }
  bool isNop(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_NOP_FLAG;
  }
  bool isBranch(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_BRANCH_FLAG;
  }
  bool isCall(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_CALL_FLAG;
  }
  bool isReturn(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_RET_FLAG;
  }
  bool isControlFlow(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_BRANCH_FLAG
        || getDescriptor(opCode).iclass & M_CALL_FLAG
        || getDescriptor(opCode).iclass & M_RET_FLAG;
  }
  bool isArith(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_RET_FLAG;
  }
  bool isCCInstr(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_CC_FLAG;
  }
  bool isLogical(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOGICAL_FLAG;
  }
  bool isIntInstr(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_INT_FLAG;
  }
  bool isFloatInstr(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_FLOAT_FLAG;
  }
  bool isConditional(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_CONDL_FLAG;
  }
  bool isLoad(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOAD_FLAG;
  }
  bool isPrefetch(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
  }
  bool isLoadOrPrefetch(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOAD_FLAG
        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
  }
  bool isStore(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_STORE_FLAG;
  }
  bool isMemoryAccess(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOAD_FLAG
        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG
        || getDescriptor(opCode).iclass & M_STORE_FLAG;
  }
  bool isDummyPhiInstr(const MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG;
  }


  // delete this later *******
  bool isPhi(const MachineOpCode opCode) const 
  { return isDummyPhiInstr(opCode); }  
  
  bool isPseudoInstr(const MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_PSEUDO_FLAG;
  }


  // Check if an instruction can be issued before its operands are ready,
  // or if a subsequent instruction that uses its result can be issued
  // before the results are ready.
  // Default to true since most instructions on many architectures allow this.
  // 
  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
    return true;
  }
  
  virtual bool hasResultInterlock(MachineOpCode opCode) const {
    return true;
  }
  
  // 
  // Latencies for individual instructions and instruction pairs
  // 
  virtual int minLatency(MachineOpCode opCode) const {
    return getDescriptor(opCode).latency;
  }
  
  virtual int maxLatency(MachineOpCode opCode) const {
    return getDescriptor(opCode).latency;
  }

  //
  // Which operand holds an immediate constant?  Returns -1 if none
  // 
  virtual int getImmmedConstantPos(MachineOpCode opCode) const {
    return -1; // immediate position is machine specific, so say -1 == "none"
  }
  
  // Check if the specified constant fits in the immediate field
  // of this machine instruction
  // 
  virtual bool constantFitsInImmedField(MachineOpCode opCode,
					int64_t intValue) const;
  
  // Return the largest +ve constant that can be held in the IMMMED field
  // of this machine instruction.
  // isSignExtended is set to true if the value is sign-extended before use
  // (this is true for all immediate fields in SPARC instructions).
  // Return 0 if the instruction has no IMMED field.
  // 
  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
				    bool &isSignExtended) const {
    isSignExtended = getDescriptor(opCode).immedIsSignExtended;
    return getDescriptor(opCode).maxImmedConst;
  }

  //-------------------------------------------------------------------------
  // Code generation support for creating individual machine instructions
  //-------------------------------------------------------------------------
  
  // Create an instruction sequence to put the constant `val' into
  // the virtual register `dest'.  `val' may be a Constant or a
  // GlobalValue, viz., the constant address of a global variable or function.
  // The generated instructions are returned in `minstrVec'.
  // Any temp. registers (TmpInstruction) created are returned in `tempVec'.
  // 
  virtual void  CreateCodeToLoadConst(Value* val,
                                      Instruction* dest,
                                      std::vector<MachineInstr*>& minstrVec,
                                      std::vector<TmpInstruction*> &) const = 0;

  // Create an instruction sequence to copy an integer value `val'
  // to a floating point value `dest' by copying to memory and back.
  // val must be an integral type.  dest must be a Float or Double.
  // The generated instructions are returned in `minstrVec'.
  // Any temp. registers (TmpInstruction) created are returned in `tempVec'.
  // 
  virtual void  CreateCodeToCopyIntToFloat(Method* method,
                                           Value* val,
                                           Instruction* dest,
                                           std::vector<MachineInstr*>& minstVec,
                                           std::vector<TmpInstruction*>& tmpVec,
                                           TargetMachine& target) const = 0;

  // Similarly, create an instruction sequence to copy an FP value
  // `val' to an integer value `dest' by copying to memory and back.
  // See the previous function for information about return values.
  // 
  virtual void  CreateCodeToCopyFloatToInt(Method* method,
                                           Value* val,
                                           Instruction* dest,
                                           std::vector<MachineInstr*>& minstVec,
                                           std::vector<TmpInstruction*>& tmpVec,
                                           TargetMachine& target) const = 0;


  // create copy instruction(s)
  virtual void
  CreateCopyInstructionsByType(const TargetMachine& target,
			       Value* src,
			       Instruction* dest,
			       std::vector<MachineInstr*>& minstrVec) const = 0;
};

#endif