summaryrefslogtreecommitdiff
path: root/include/llvm/Target/TargetInstrInfo.h
blob: 82c14be99e67c2d8f59dd3cdd3809ea2402fc1eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
//===-- llvm/Target/InstrInfo.h - Target Instruction Information --*-C++-*-==//
//
// This file describes the target machine instructions to the code generator.
//
//===---------------------------------------------------------------------===//

#ifndef LLVM_TARGET_MACHINEINSTRINFO_H
#define LLVM_TARGET_MACHINEINSTRINFO_H

#include "Support/NonCopyable.h"
#include "Support/DataTypes.h"
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"

class MachineInstrDescriptor;
class MachineInstr;
class TargetMachine;
class Value;
class Instruction;
class Function;
class MachineCodeForInstruction;

//---------------------------------------------------------------------------
// Data types used to define information about a single machine instruction
//---------------------------------------------------------------------------

typedef int MachineOpCode;
typedef unsigned InstrSchedClass;

const MachineOpCode INVALID_MACHINE_OPCODE = -1;


// Global variable holding an array of descriptors for machine instructions.
// The actual object needs to be created separately for each target machine.
// This variable is initialized and reset by class MachineInstrInfo.
// 
// FIXME: This should be a property of the target so that more than one target
// at a time can be active...
//
extern const MachineInstrDescriptor *TargetInstrDescriptors;


//---------------------------------------------------------------------------
// struct MachineInstrDescriptor:
//	Predefined information about each machine instruction.
//	Designed to initialized statically.
// 
// class MachineInstructionInfo
//	Interface to description of machine instructions
// 
//---------------------------------------------------------------------------


const unsigned	M_NOP_FLAG		= 1 << 0;
const unsigned	M_BRANCH_FLAG		= 1 << 1;
const unsigned	M_CALL_FLAG		= 1 << 2;
const unsigned	M_RET_FLAG		= 1 << 3;
const unsigned	M_ARITH_FLAG		= 1 << 4;
const unsigned	M_CC_FLAG		= 1 << 6;
const unsigned	M_LOGICAL_FLAG		= 1 << 6;
const unsigned	M_INT_FLAG		= 1 << 7;
const unsigned	M_FLOAT_FLAG		= 1 << 8;
const unsigned	M_CONDL_FLAG		= 1 << 9;
const unsigned	M_LOAD_FLAG		= 1 << 10;
const unsigned	M_PREFETCH_FLAG		= 1 << 11;
const unsigned	M_STORE_FLAG		= 1 << 12;
const unsigned	M_DUMMY_PHI_FLAG	= 1 << 13;
const unsigned  M_PSEUDO_FLAG           = 1 << 14;


struct MachineInstrDescriptor {
  const char *    opCodeString;  // Assembly language mnemonic for the opcode.
  int             numOperands;   // Number of args; -1 if variable #args
  int             resultPos;     // Position of the result; -1 if no result
  unsigned        maxImmedConst; // Largest +ve constant in IMMMED field or 0.
  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
				 //   smallest -ve value is -(maxImmedConst+1).
  unsigned        numDelaySlots; // Number of delay slots after instruction
  unsigned        latency;	 // Latency in machine cycles
  InstrSchedClass schedClass;	 // enum  identifying instr sched class
  unsigned        iclass;	 // flags identifying machine instr class
};


class MachineInstrInfo : public NonCopyableV {
public:
  const TargetMachine& target;

protected:
  const MachineInstrDescriptor* desc;	// raw array to allow static init'n
  unsigned descSize;		// number of entries in the desc array
  unsigned numRealOpCodes;		// number of non-dummy op codes
  
public:
  MachineInstrInfo(const TargetMachine& tgt,
                   const MachineInstrDescriptor *desc, unsigned descSize,
		   unsigned numRealOpCodes);
  virtual ~MachineInstrInfo();
  
  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
  unsigned getNumTotalOpCodes() const { return descSize; }
  
  const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const {
    assert(opCode >= 0 && opCode < (int)descSize);
    return desc[opCode];
  }
  
  int getNumOperands(MachineOpCode opCode) const {
    return getDescriptor(opCode).numOperands;
  }
  
  int getResultPos(MachineOpCode opCode) const {
    return getDescriptor(opCode).resultPos;
  }
  
  unsigned getNumDelaySlots(MachineOpCode opCode) const {
    return getDescriptor(opCode).numDelaySlots;
  }
  
  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
    return getDescriptor(opCode).schedClass;
  }
  
  //
  // Query instruction class flags according to the machine-independent
  // flags listed above.
  // 
  unsigned getIClass(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass;
  }
  bool isNop(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_NOP_FLAG;
  }
  bool isBranch(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_BRANCH_FLAG;
  }
  bool isCall(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_CALL_FLAG;
  }
  bool isReturn(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_RET_FLAG;
  }
  bool isControlFlow(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_BRANCH_FLAG
        || getDescriptor(opCode).iclass & M_CALL_FLAG
        || getDescriptor(opCode).iclass & M_RET_FLAG;
  }
  bool isArith(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_ARITH_FLAG;
  }
  bool isCCInstr(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_CC_FLAG;
  }
  bool isLogical(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOGICAL_FLAG;
  }
  bool isIntInstr(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_INT_FLAG;
  }
  bool isFloatInstr(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_FLOAT_FLAG;
  }
  bool isConditional(MachineOpCode opCode) const { 
    return getDescriptor(opCode).iclass & M_CONDL_FLAG;
  }
  bool isLoad(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOAD_FLAG;
  }
  bool isPrefetch(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
  }
  bool isLoadOrPrefetch(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOAD_FLAG
        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
  }
  bool isStore(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_STORE_FLAG;
  }
  bool isMemoryAccess(MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_LOAD_FLAG
        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG
        || getDescriptor(opCode).iclass & M_STORE_FLAG;
  }
  bool isDummyPhiInstr(const MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG;
  }
  bool isPseudoInstr(const MachineOpCode opCode) const {
    return getDescriptor(opCode).iclass & M_PSEUDO_FLAG;
  }

  // Check if an instruction can be issued before its operands are ready,
  // or if a subsequent instruction that uses its result can be issued
  // before the results are ready.
  // Default to true since most instructions on many architectures allow this.
  // 
  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
    return true;
  }
  
  virtual bool hasResultInterlock(MachineOpCode opCode) const {
    return true;
  }
  
  // 
  // Latencies for individual instructions and instruction pairs
  // 
  virtual int minLatency(MachineOpCode opCode) const {
    return getDescriptor(opCode).latency;
  }
  
  virtual int maxLatency(MachineOpCode opCode) const {
    return getDescriptor(opCode).latency;
  }

  //
  // Which operand holds an immediate constant?  Returns -1 if none
  // 
  virtual int getImmedConstantPos(MachineOpCode opCode) const {
    return -1; // immediate position is machine specific, so say -1 == "none"
  }
  
  // Check if the specified constant fits in the immediate field
  // of this machine instruction
  // 
  virtual bool constantFitsInImmedField(MachineOpCode opCode,
					int64_t intValue) const;
  
  // Return the largest +ve constant that can be held in the IMMMED field
  // of this machine instruction.
  // isSignExtended is set to true if the value is sign-extended before use
  // (this is true for all immediate fields in SPARC instructions).
  // Return 0 if the instruction has no IMMED field.
  // 
  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
				    bool &isSignExtended) const {
    isSignExtended = getDescriptor(opCode).immedIsSignExtended;
    return getDescriptor(opCode).maxImmedConst;
  }

  //-------------------------------------------------------------------------
  // Queries about representation of LLVM quantities (e.g., constants)
  //-------------------------------------------------------------------------

  // Test if this type of constant must be loaded from memory into
  // a register, i.e., cannot be set bitwise in register and cannot
  // use immediate fields of instructions.  Note that this only makes
  // sense for primitive types.
  virtual bool ConstantTypeMustBeLoaded(const Constant* CV) const {
    assert(CV->getType()->isPrimitiveType() || isa<PointerType>(CV->getType()));
    return !(CV->getType()->isIntegral() || isa<PointerType>(CV->getType()));
  }

  // Test if this constant may not fit in the immediate field of the
  // machine instructions (probably) generated for this instruction.
  // 
  virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
                                             const Instruction* I) const {
    return true;                        // safe but very conservative
  }

  //-------------------------------------------------------------------------
  // Code generation support for creating individual machine instructions
  //-------------------------------------------------------------------------

  // Get certain common op codes for the current target.  this and all the
  // Create* methods below should be moved to a machine code generation class
  // 
  virtual MachineOpCode getNOPOpCode() const = 0;

  // Create an instruction sequence to put the constant `val' into
  // the virtual register `dest'.  `val' may be a Constant or a
  // GlobalValue, viz., the constant address of a global variable or function.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Symbolic constants or constants that must be accessed from memory
  // are added to the constant pool via MachineFunction::get(F).
  // 
  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
                                      Function* F,
                                      Value* val,
                                      Instruction* dest,
                                      std::vector<MachineInstr*>& mvec,
                                      MachineCodeForInstruction& mcfi) const=0;
  
  // Create an instruction sequence to copy an integer value `val'
  // to a floating point value `dest' by copying to memory and back.
  // val must be an integral type.  dest must be a Float or Double.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToCopyIntToFloat(const TargetMachine& target,
                                       Function* F,
                                       Value* val,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi)const=0;

  // Similarly, create an instruction sequence to copy an FP value
  // `val' to an integer value `dest' by copying to memory and back.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToCopyFloatToInt(const TargetMachine& target,
                                       Function* F,
                                       Value* val,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi)const=0;
  
  // Create instruction(s) to copy src to dest, for arbitrary types
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
                                       Function* F,
                                       Value* src,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi)const=0;

  // Create instruction sequence to produce a sign-extended register value
  // from an arbitrary sized value (sized in bits, not bytes).
  // The generated instructions are appended to `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
                                       Function* F,
                                       Value* srcVal,
                                       Value* destVal,
                                       unsigned numLowBits,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const=0;

  // Create instruction sequence to produce a zero-extended register value
  // from an arbitrary sized value (sized in bits, not bytes).
  // The generated instructions are appended to `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
                                       Function* F,
                                       Value* srcVal,
                                       Value* destVal,
                                       unsigned srcSizeInBits,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const=0;
};

#endif