summaryrefslogtreecommitdiff
path: root/include/llvm/Target/TargetInstrInfo.h
blob: bc25fa722b7dedb212e08c912099cfd2d2216208 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file describes the target machine instructions to the code generator.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H

#include "llvm/CodeGen/MachineBasicBlock.h"
#include "Support/DataTypes.h"
#include <vector>
#include <cassert>

namespace llvm {

class MachineInstr;
class TargetMachine;
class Value;
class Type;
class Instruction;
class Constant;
class Function;
class MachineCodeForInstruction;

//---------------------------------------------------------------------------
// Data types used to define information about a single machine instruction
//---------------------------------------------------------------------------

typedef short MachineOpCode;
typedef unsigned InstrSchedClass;

//---------------------------------------------------------------------------
// struct TargetInstrDescriptor:
//	Predefined information about each machine instruction.
//	Designed to initialized statically.
//

const unsigned M_NOP_FLAG		= 1 << 0;
const unsigned M_BRANCH_FLAG		= 1 << 1;
const unsigned M_CALL_FLAG		= 1 << 2;
const unsigned M_RET_FLAG		= 1 << 3;
const unsigned M_BARRIER_FLAG           = 1 << 4;
const unsigned M_CC_FLAG		= 1 << 6;
const unsigned M_LOAD_FLAG		= 1 << 10;
const unsigned M_STORE_FLAG		= 1 << 12;
// 3-addr instructions which really work like 2-addr ones, eg. X86 add/sub
const unsigned M_2_ADDR_FLAG           = 1 << 15;

// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
// block?  Typically this is things like return and branch instructions.
// Various passes use this to insert code into the bottom of a basic block, but
// before control flow occurs.
const unsigned M_TERMINATOR_FLAG       = 1 << 16;

struct TargetInstrDescriptor {
  const char *    Name;          // Assembly language mnemonic for the opcode.
  int             numOperands;   // Number of args; -1 if variable #args
  int             resultPos;     // Position of the result; -1 if no result
  unsigned        maxImmedConst; // Largest +ve constant in IMMED field or 0.
  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
                                 //   smallest -ve value is -(maxImmedConst+1).
  unsigned        numDelaySlots; // Number of delay slots after instruction
  unsigned        latency;       // Latency in machine cycles
  InstrSchedClass schedClass;    // enum  identifying instr sched class
  unsigned        Flags;         // flags identifying machine instr class
  unsigned        TSFlags;       // Target Specific Flag values
  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
};


//---------------------------------------------------------------------------
/// 
/// TargetInstrInfo - Interface to description of machine instructions
/// 
class TargetInstrInfo {
  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
  unsigned NumOpcodes;                  // number of entries in the desc array
  unsigned numRealOpCodes;              // number of non-dummy op codes
  
  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
public:
  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
  virtual ~TargetInstrInfo();

  // Invariant: All instruction sets use opcode #0 as the PHI instruction
  enum { PHI = 0 };
  
  unsigned getNumOpcodes() const { return NumOpcodes; }
  
  /// get - Return the machine instruction descriptor that corresponds to the
  /// specified instruction opcode.
  ///
  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
    assert((unsigned)Opcode < NumOpcodes);
    return desc[Opcode];
  }

  const char *getName(MachineOpCode Opcode) const {
    return get(Opcode).Name;
  }
  
  int getNumOperands(MachineOpCode Opcode) const {
    return get(Opcode).numOperands;
  }


  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
    return get(Opcode).schedClass;
  }

  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
    return get(Opcode).ImplicitUses;
  }

  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
    return get(Opcode).ImplicitDefs;
  }


  //
  // Query instruction class flags according to the machine-independent
  // flags listed above.
  // 
  bool isReturn(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_RET_FLAG;
  }

  bool isTwoAddrInstr(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_2_ADDR_FLAG;
  }
  bool isTerminatorInstr(unsigned Opcode) const {
    return get(Opcode).Flags & M_TERMINATOR_FLAG;
  }

  /// Return true if the instruction is a register to register move
  /// and leave the source and dest operands in the passed parameters.
  virtual bool isMoveInstr(const MachineInstr& MI,
                           unsigned& sourceReg,
                           unsigned& destReg) const {
    return false;
  }

  /// Insert a goto (unconditional branch) sequence to TMBB, at the
  /// end of MBB
  virtual void insertGoto(MachineBasicBlock& MBB,
                          MachineBasicBlock& TMBB) const {
    assert(0 && "Target didn't implement insertGoto!");
  }

  /// Reverses the branch condition of the MachineInstr pointed by
  /// MI. The instruction is replaced and the new MI is returned.
  virtual MachineBasicBlock::iterator
  reverseBranchCondition(MachineBasicBlock::iterator MI) const {
    assert(0 && "Target didn't implement reverseBranchCondition!");
    abort();
    return MI;
  }

  //-------------------------------------------------------------------------
  // Code generation support for creating individual machine instructions
  //
  // WARNING: These methods are Sparc specific
  //
  // DO NOT USE ANY OF THESE METHODS THEY ARE DEPRECATED!
  //
  //-------------------------------------------------------------------------

  unsigned getNumDelaySlots(MachineOpCode Opcode) const {
    return get(Opcode).numDelaySlots;
  }
  bool isCCInstr(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_CC_FLAG;
  }
  bool isNop(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_NOP_FLAG;
  }
  bool isBranch(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_BRANCH_FLAG;
  }
  /// isBarrier - Returns true if the specified instruction stops control flow
  /// from executing the instruction immediately following it.  Examples include
  /// unconditional branches and return instructions.
  bool isBarrier(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_BARRIER_FLAG;
  }
  bool isCall(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_CALL_FLAG;
  }
  bool isLoad(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_LOAD_FLAG;
  }
  bool isStore(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_STORE_FLAG;
  }
  virtual bool hasResultInterlock(MachineOpCode Opcode) const {
    return true;
  }

  // 
  // Latencies for individual instructions and instruction pairs
  // 
  virtual int minLatency(MachineOpCode Opcode) const {
    return get(Opcode).latency;
  }
  
  virtual int maxLatency(MachineOpCode Opcode) const {
    return get(Opcode).latency;
  }

  //
  // Which operand holds an immediate constant?  Returns -1 if none
  // 
  virtual int getImmedConstantPos(MachineOpCode Opcode) const {
    return -1; // immediate position is machine specific, so say -1 == "none"
  }
  
  // Check if the specified constant fits in the immediate field
  // of this machine instruction
  // 
  virtual bool constantFitsInImmedField(MachineOpCode Opcode,
					int64_t intValue) const;
  
  // Return the largest positive constant that can be held in the IMMED field
  // of this machine instruction.
  // isSignExtended is set to true if the value is sign-extended before use
  // (this is true for all immediate fields in SPARC instructions).
  // Return 0 if the instruction has no IMMED field.
  // 
  virtual uint64_t maxImmedConstant(MachineOpCode Opcode,
				    bool &isSignExtended) const {
    isSignExtended = get(Opcode).immedIsSignExtended;
    return get(Opcode).maxImmedConst;
  }
};

} // End llvm namespace

#endif