summaryrefslogtreecommitdiff
path: root/include/llvm/Target/TargetLowering.h
blob: 34bc3ad7ee86b78a265045922412b1e00dfad579 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes how to lower LLVM code to machine code.  This has two
// main components:
//
//  1. Which ValueTypes are natively supported by the target.
//  2. Which operations are supported for supported ValueTypes.
//  3. Cost thresholds for alternative implementations of certain operations.
//
// In addition it has a few other components, like information about FP
// immediates.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETLOWERING_H
#define LLVM_TARGET_TARGETLOWERING_H

#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include <map>
#include <vector>

namespace llvm {
  class Value;
  class Function;
  class TargetMachine;
  class TargetData;
  class TargetRegisterClass;
  class SDNode;
  class SDOperand;
  class SelectionDAG;
  class MachineBasicBlock;
  class MachineInstr;
  class PackedType;

//===----------------------------------------------------------------------===//
/// TargetLowering - This class defines information used to lower LLVM code to
/// legal SelectionDAG operators that the target instruction selector can accept
/// natively.
///
/// This class also defines callbacks that targets must implement to lower
/// target-specific constructs to SelectionDAG operators.
///
class TargetLowering {
public:
  /// LegalizeAction - This enum indicates whether operations are valid for a
  /// target, and if not, what action should be used to make them valid.
  enum LegalizeAction {
    Legal,      // The target natively supports this operation.
    Promote,    // This operation should be executed in a larger type.
    Expand,     // Try to expand this to other ops, otherwise use a libcall.
    Custom      // Use the LowerOperation hook to implement custom lowering.
  };

  enum OutOfRangeShiftAmount {
    Undefined,  // Oversized shift amounts are undefined (default).
    Mask,       // Shift amounts are auto masked (anded) to value size.
    Extend      // Oversized shift pulls in zeros or sign bits.
  };

  enum SetCCResultValue {
    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
  };

  enum SchedPreference {
    SchedulingForLatency,          // Scheduling for shortest total latency.
    SchedulingForRegPressure       // Scheduling for lowest register pressure.
  };

  TargetLowering(TargetMachine &TM);
  virtual ~TargetLowering();

  TargetMachine &getTargetMachine() const { return TM; }
  const TargetData *getTargetData() const { return TD; }

  bool isLittleEndian() const { return IsLittleEndian; }
  MVT::ValueType getPointerTy() const { return PointerTy; }
  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }

  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
  /// codegen.
  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
  
  /// isSelectExpensive - Return true if the select operation is expensive for
  /// this target.
  bool isSelectExpensive() const { return SelectIsExpensive; }
  
  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
  /// a sequence of several shifts, adds, and multiplies for this target.
  bool isIntDivCheap() const { return IntDivIsCheap; }

  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
  /// srl/add/sra.
  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
  
  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
  ///
  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }

  /// getSetCCResultContents - For targets without boolean registers, this flag
  /// returns information about the contents of the high-bits in the setcc
  /// result register.
  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}

  /// getSchedulingPreference - Return target scheduling preference.
  SchedPreference getSchedulingPreference() const {
    return SchedPreferenceInfo;
  }

  /// getRegClassFor - Return the register class that should be used for the
  /// specified value type.  This may only be called on legal types.
  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
    TargetRegisterClass *RC = RegClassForVT[VT];
    assert(RC && "This value type is not natively supported!");
    return RC;
  }
  
  /// isTypeLegal - Return true if the target has native support for the
  /// specified value type.  This means that it has a register that directly
  /// holds it without promotions or expansions.
  bool isTypeLegal(MVT::ValueType VT) const {
    return RegClassForVT[VT] != 0;
  }

  class ValueTypeActionImpl {
    /// ValueTypeActions - This is a bitvector that contains two bits for each
    /// value type, where the two bits correspond to the LegalizeAction enum.
    /// This can be queried with "getTypeAction(VT)".
    uint32_t ValueTypeActions[2];
  public:
    ValueTypeActionImpl() {
      ValueTypeActions[0] = ValueTypeActions[1] = 0;
    }
    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
      ValueTypeActions[0] = RHS.ValueTypeActions[0];
      ValueTypeActions[1] = RHS.ValueTypeActions[1];
    }
    
    LegalizeAction getTypeAction(MVT::ValueType VT) const {
      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
    }
    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
      assert(unsigned(VT >> 4) < 
             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
    }
  };
  
  const ValueTypeActionImpl &getValueTypeActions() const {
    return ValueTypeActions;
  }
  
  /// getTypeAction - Return how we should legalize values of this type, either
  /// it is already legal (return 'Legal') or we need to promote it to a larger
  /// type (return 'Promote'), or we need to expand it into multiple registers
  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
  LegalizeAction getTypeAction(MVT::ValueType VT) const {
    return ValueTypeActions.getTypeAction(VT);
  }

  /// getTypeToTransformTo - For types supported by the target, this is an
  /// identity function.  For types that must be promoted to larger types, this
  /// returns the larger type to promote to.  For integer types that are larger
  /// than the largest integer register, this contains one step in the expansion
  /// to get to the smaller register. For illegal floating point types, this
  /// returns the integer type to transform to.
  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
    return TransformToType[VT];
  }
  
  /// getTypeToExpandTo - For types supported by the target, this is an
  /// identity function.  For types that must be expanded (i.e. integer types
  /// that are larger than the largest integer register or illegal floating
  /// point types), this returns the largest legal type it will be expanded to.
  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
    while (true) {
      switch (getTypeAction(VT)) {
      case Legal:
        return VT;
      case Expand:
        VT = TransformToType[VT];
        break;
      default:
        assert(false && "Type is not legal nor is it to be expanded!");
        return VT;
      }
    }
    return VT;
  }

  /// getPackedTypeBreakdown - Packed types are broken down into some number of
  /// legal first class types.  For example, <8 x float> maps to 2 MVT::v4f32
  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
  /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86.
  ///
  /// This method returns the number of registers needed, and the VT for each
  /// register.  It also returns the VT of the PackedType elements before they
  /// are promoted/expanded.
  ///
  unsigned getPackedTypeBreakdown(const PackedType *PTy, 
                                  MVT::ValueType &PTyElementVT,
                                  MVT::ValueType &PTyLegalElementVT) const;
  
  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
  legal_fpimm_iterator legal_fpimm_begin() const {
    return LegalFPImmediates.begin();
  }
  legal_fpimm_iterator legal_fpimm_end() const {
    return LegalFPImmediates.end();
  }
  
  /// isShuffleMaskLegal - Targets can use this to indicate that they only
  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
  /// are assumed to be legal.
  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
    return true;
  }

  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
  /// used by Targets can use this to indicate if there is a suitable
  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
  /// pool entry.
  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
                                      MVT::ValueType EVT,
                                      SelectionDAG &DAG) const {
    return false;
  }

  /// getOperationAction - Return how this operation should be treated: either
  /// it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
  }
  
  /// isOperationLegal - Return true if the specified operation is legal on this
  /// target.
  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
    return getOperationAction(Op, VT) == Legal ||
           getOperationAction(Op, VT) == Custom;
  }
  
  /// getLoadXAction - Return how this load with extension should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
  }
  
  /// isLoadXLegal - Return true if the specified load with extension is legal
  /// on this target.
  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
    return getLoadXAction(LType, VT) == Legal ||
           getLoadXAction(LType, VT) == Custom;
  }
  
  /// getStoreXAction - Return how this store with truncation should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
  }
  
  /// isStoreXLegal - Return true if the specified store with truncation is
  /// legal on this target.
  bool isStoreXLegal(MVT::ValueType VT) const {
    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
  }

  /// getIndexedLoadAction - Return how the indexed load should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction
  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
  }

  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
  /// on this target.
  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
    return getIndexedLoadAction(IdxMode, VT) == Legal ||
           getIndexedLoadAction(IdxMode, VT) == Custom;
  }
  
  /// getIndexedStoreAction - Return how the indexed store should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction
  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
  }  
  
  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
  /// on this target.
  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
    return getIndexedStoreAction(IdxMode, VT) == Legal ||
           getIndexedStoreAction(IdxMode, VT) == Custom;
  }
  
  /// getTypeToPromoteTo - If the action for this operation is to promote, this
  /// method returns the ValueType to promote to.
  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
    assert(getOperationAction(Op, VT) == Promote &&
           "This operation isn't promoted!");

    // See if this has an explicit type specified.
    std::map<std::pair<unsigned, MVT::ValueType>, 
             MVT::ValueType>::const_iterator PTTI =
      PromoteToType.find(std::make_pair(Op, VT));
    if (PTTI != PromoteToType.end()) return PTTI->second;
    
    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
           "Cannot autopromote this type, add it with AddPromotedToType.");
    
    MVT::ValueType NVT = VT;
    do {
      NVT = (MVT::ValueType)(NVT+1);
      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
             "Didn't find type to promote to!");
    } while (!isTypeLegal(NVT) ||
              getOperationAction(Op, NVT) == Promote);
    return NVT;
  }

  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
  /// This is fixed by the LLVM operations except for the pointer size.
  MVT::ValueType getValueType(const Type *Ty) const;

  /// getNumElements - Return the number of registers that this ValueType will
  /// eventually require.  This is one for any types promoted to live in larger
  /// registers, but may be more than one for types (like i64) that are split
  /// into pieces.
  unsigned getNumElements(MVT::ValueType VT) const {
    return NumElementsForVT[VT];
  }
  
  /// hasTargetDAGCombine - If true, the target has custom DAG combine
  /// transformations that it can perform for the specified node.
  bool hasTargetDAGCombine(ISD::NodeType NT) const {
    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
  }

  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memset. The value is set by the target at the
  /// performance threshold for such a replacement.
  /// @brief Get maximum # of store operations permitted for llvm.memset
  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }

  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memcpy. The value is set by the target at the
  /// performance threshold for such a replacement.
  /// @brief Get maximum # of store operations permitted for llvm.memcpy
  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }

  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memmove. The value is set by the target at the
  /// performance threshold for such a replacement.
  /// @brief Get maximum # of store operations permitted for llvm.memmove
  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }

  /// This function returns true if the target allows unaligned memory accesses.
  /// This is used, for example, in situations where an array copy/move/set is 
  /// converted to a sequence of store operations. It's use helps to ensure that
  /// such replacements don't generate code that causes an alignment error 
  /// (trap) on the target machine. 
  /// @brief Determine if the target supports unaligned memory accesses.
  bool allowsUnalignedMemoryAccesses() const {
    return allowUnalignedMemoryAccesses;
  }
  
  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
  /// to implement llvm.setjmp.
  bool usesUnderscoreSetJmp() const {
    return UseUnderscoreSetJmp;
  }

  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
  /// to implement llvm.longjmp.
  bool usesUnderscoreLongJmp() const {
    return UseUnderscoreLongJmp;
  }

  /// getStackPointerRegisterToSaveRestore - If a physical register, this
  /// specifies the register that llvm.savestack/llvm.restorestack should save
  /// and restore.
  unsigned getStackPointerRegisterToSaveRestore() const {
    return StackPointerRegisterToSaveRestore;
  }

  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
  /// set, the default is 200)
  unsigned getJumpBufSize() const {
    return JumpBufSize;
  }

  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
  /// (if never set, the default is 0)
  unsigned getJumpBufAlignment() const {
    return JumpBufAlignment;
  }

  /// getPreIndexedAddressParts - returns true by value, base pointer and
  /// offset pointer and addressing mode by reference if the node's address
  /// can be legally represented as pre-indexed load / store address.
  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
                                         SDOperand &Offset,
                                         ISD::MemIndexedMode &AM,
                                         SelectionDAG &DAG) {
    return false;
  }
  
  /// getPostIndexedAddressParts - returns true by value, base pointer and
  /// offset pointer and addressing mode by reference if this node can be
  /// combined with a load / store to form a post-indexed load / store.
  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
                                          SDOperand &Base, SDOperand &Offset,
                                          ISD::MemIndexedMode &AM,
                                          SelectionDAG &DAG) {
    return false;
  }
  
  //===--------------------------------------------------------------------===//
  // TargetLowering Optimization Methods
  //
  
  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
  /// SDOperands for returning information from TargetLowering to its clients
  /// that want to combine 
  struct TargetLoweringOpt {
    SelectionDAG &DAG;
    SDOperand Old;
    SDOperand New;

    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
    
    bool CombineTo(SDOperand O, SDOperand N) { 
      Old = O; 
      New = N; 
      return true;
    }
    
    /// ShrinkDemandedConstant - Check to see if the specified operand of the 
    /// specified instruction is a constant integer.  If so, check to see if there
    /// are any bits set in the constant that are not demanded.  If so, shrink the
    /// constant and return true.
    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
  };
                                                
  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
  /// use this predicate to simplify operations downstream.  Op and Mask are
  /// known to be the same type.
  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
    const;
  
  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
  /// known to be either zero or one and return them in the KnownZero/KnownOne
  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
  /// processing.  Targets can implement the computeMaskedBitsForTargetNode 
  /// method, to allow target nodes to be understood.
  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
                         uint64_t &KnownOne, unsigned Depth = 0) const;
    
  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
  /// use this information to simplify Op, create a new simplified DAG node and
  /// return true, returning the original and new nodes in Old and New. 
  /// Otherwise, analyze the expression and return a mask of KnownOne and 
  /// KnownZero bits for the expression (used to simplify the caller).  
  /// The KnownZero/One bits may only be accurate for those bits in the 
  /// DemandedMask.
  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, 
                            uint64_t &KnownZero, uint64_t &KnownOne,
                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
  
  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
  /// Mask are known to be either zero or one and return them in the 
  /// KnownZero/KnownOne bitsets.
  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
                                              uint64_t Mask,
                                              uint64_t &KnownZero, 
                                              uint64_t &KnownOne,
                                              unsigned Depth = 0) const;

  /// ComputeNumSignBits - Return the number of times the sign bit of the
  /// register is replicated into the other bits.  We know that at least 1 bit
  /// is always equal to the sign bit (itself), but other cases can give us
  /// information.  For example, immediately after an "SRA X, 2", we know that
  /// the top 3 bits are all equal to each other, so we return 3.
  unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const;
  
  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
  /// targets that want to expose additional information about sign bits to the
  /// DAG Combiner.
  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
                                                   unsigned Depth = 0) const;
  
  struct DAGCombinerInfo {
    void *DC;  // The DAG Combiner object.
    bool BeforeLegalize;
  public:
    SelectionDAG &DAG;
    
    DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
      : DC(dc), BeforeLegalize(bl), DAG(dag) {}
    
    bool isBeforeLegalize() const { return BeforeLegalize; }
    
    void AddToWorklist(SDNode *N);
    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
    SDOperand CombineTo(SDNode *N, SDOperand Res);
    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
  };

  /// PerformDAGCombine - This method will be invoked for all target nodes and
  /// for any target-independent nodes that the target has registered with
  /// invoke it for.
  ///
  /// The semantics are as follows:
  /// Return Value:
  ///   SDOperand.Val == 0   - No change was made
  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
  ///   otherwise            - N should be replaced by the returned Operand.
  ///
  /// In addition, methods provided by DAGCombinerInfo may be used to perform
  /// more complex transformations.
  ///
  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
  
  //===--------------------------------------------------------------------===//
  // TargetLowering Configuration Methods - These methods should be invoked by
  // the derived class constructor to configure this object for the target.
  //

protected:
  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
  /// GOT for PC-relative code.
  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }

  /// setShiftAmountType - Describe the type that should be used for shift
  /// amounts.  This type defaults to the pointer type.
  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }

  /// setSetCCResultType - Describe the type that shoudl be used as the result
  /// of a setcc operation.  This defaults to the pointer type.
  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }

  /// setSetCCResultContents - Specify how the target extends the result of a
  /// setcc operation in a register.
  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }

  /// setSchedulingPreference - Specify the target scheduling preference.
  void setSchedulingPreference(SchedPreference Pref) {
    SchedPreferenceInfo = Pref;
  }

  /// setShiftAmountFlavor - Describe how the target handles out of range shift
  /// amounts.
  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
    ShiftAmtHandling = OORSA;
  }

  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
  /// use _setjmp to implement llvm.setjmp or the non _ version.
  /// Defaults to false.
  void setUseUnderscoreSetJmp(bool Val) {
    UseUnderscoreSetJmp = Val;
  }

  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
  /// use _longjmp to implement llvm.longjmp or the non _ version.
  /// Defaults to false.
  void setUseUnderscoreLongJmp(bool Val) {
    UseUnderscoreLongJmp = Val;
  }

  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
  /// specifies the register that llvm.savestack/llvm.restorestack should save
  /// and restore.
  void setStackPointerRegisterToSaveRestore(unsigned R) {
    StackPointerRegisterToSaveRestore = R;
  }
  
  /// SelectIsExpensive - Tells the code generator not to expand operations
  /// into sequences that use the select operations if possible.
  void setSelectIsExpensive() { SelectIsExpensive = true; }

  /// setIntDivIsCheap - Tells the code generator that integer divide is
  /// expensive, and if possible, should be replaced by an alternate sequence
  /// of instructions not containing an integer divide.
  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
  
  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
  /// srl/add/sra for a signed divide by power of two, and let the target handle
  /// it.
  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
  
  /// addRegisterClass - Add the specified register class as an available
  /// regclass for the specified value type.  This indicates the selector can
  /// handle values of that class natively.
  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
    AvailableRegClasses.push_back(std::make_pair(VT, RC));
    RegClassForVT[VT] = RC;
  }

  /// computeRegisterProperties - Once all of the register classes are added,
  /// this allows us to compute derived properties we expose.
  void computeRegisterProperties();

  /// setOperationAction - Indicate that the specified operation does not work
  /// with the specified type and indicate what to do about it.
  void setOperationAction(unsigned Op, MVT::ValueType VT,
                          LegalizeAction Action) {
    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
           "Table isn't big enough!");
    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
    OpActions[Op] |= (uint64_t)Action << VT*2;
  }
  
  /// setLoadXAction - Indicate that the specified load with extension does not
  /// work with the with specified type and indicate what to do about it.
  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
                      LegalizeAction Action) {
    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
           "Table isn't big enough!");
    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
  }
  
  /// setStoreXAction - Indicate that the specified store with truncation does
  /// not work with the with specified type and indicate what to do about it.
  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
    assert(VT < 32 && "Table isn't big enough!");
    StoreXActions &= ~(uint64_t(3UL) << VT*2);
    StoreXActions |= (uint64_t)Action << VT*2;
  }

  /// setIndexedLoadAction - Indicate that the specified indexed load does or
  /// does not work with the with specified type and indicate what to do abort
  /// it. NOTE: All indexed mode loads are initialized to Expand in
  /// TargetLowering.cpp
  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
                            LegalizeAction Action) {
    assert(VT < 32 && IdxMode <
           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
           "Table isn't big enough!");
    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
  }
  
  /// setIndexedStoreAction - Indicate that the specified indexed store does or
  /// does not work with the with specified type and indicate what to do about
  /// it. NOTE: All indexed mode stores are initialized to Expand in
  /// TargetLowering.cpp
  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
                             LegalizeAction Action) {
    assert(VT < 32 && IdxMode <
           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
           "Table isn't big enough!");
    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
  }
  
  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
  /// promotion code defaults to trying a larger integer/fp until it can find
  /// one that works.  If that default is insufficient, this method can be used
  /// by the target to override the default.
  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT, 
                         MVT::ValueType DestVT) {
    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
  }

  /// addLegalFPImmediate - Indicate that this target can instruction select
  /// the specified FP immediate natively.
  void addLegalFPImmediate(double Imm) {
    LegalFPImmediates.push_back(Imm);
  }

  /// setTargetDAGCombine - Targets should invoke this method for each target
  /// independent node that they want to provide a custom DAG combiner for by
  /// implementing the PerformDAGCombine virtual method.
  void setTargetDAGCombine(ISD::NodeType NT) {
    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
  }
  
  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
  /// bytes); default is 200
  void setJumpBufSize(unsigned Size) {
    JumpBufSize = Size;
  }

  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
  /// alignment (in bytes); default is 0
  void setJumpBufAlignment(unsigned Align) {
    JumpBufAlignment = Align;
  }
  
public:

  //===--------------------------------------------------------------------===//
  // Lowering methods - These methods must be implemented by targets so that
  // the SelectionDAGLowering code knows how to lower these.
  //

  /// LowerArguments - This hook must be implemented to indicate how we should
  /// lower the arguments for the specified function, into the specified DAG.
  virtual std::vector<SDOperand>
  LowerArguments(Function &F, SelectionDAG &DAG);

  /// LowerCallTo - This hook lowers an abstract call to a function into an
  /// actual call.  This returns a pair of operands.  The first element is the
  /// return value for the function (if RetTy is not VoidTy).  The second
  /// element is the outgoing token chain.
  struct ArgListEntry {
    SDOperand Node;
    const Type* Ty;
    bool isSigned;
  };
  typedef std::vector<ArgListEntry> ArgListTy;
  virtual std::pair<SDOperand, SDOperand>
  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned, 
              bool isVarArg, unsigned CallingConv, bool isTailCall, 
              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);

  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
  /// llvm.frameaddress (depending on the value of the first argument).  The
  /// return values are the result pointer and the resultant token chain.  If
  /// not implemented, both of these intrinsics will return null.
  virtual std::pair<SDOperand, SDOperand>
  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
                          SelectionDAG &DAG);

  /// LowerOperation - This callback is invoked for operations that are 
  /// unsupported by the target, which are registered to use 'custom' lowering,
  /// and whose defined values are all legal.
  /// If the target has no operations that require custom lowering, it need not
  /// implement this.  The default implementation of this aborts.
  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);

  /// CustomPromoteOperation - This callback is invoked for operations that are
  /// unsupported by the target, are registered to use 'custom' lowering, and
  /// whose type needs to be promoted.
  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
  
  /// getTargetNodeName() - This method returns the name of a target specific
  /// DAG node.
  virtual const char *getTargetNodeName(unsigned Opcode) const;

  //===--------------------------------------------------------------------===//
  // Inline Asm Support hooks
  //
  
  enum ConstraintType {
    C_Register,            // Constraint represents a single register.
    C_RegisterClass,       // Constraint represents one or more registers.
    C_Memory,              // Memory constraint.
    C_Other,               // Something else.
    C_Unknown              // Unsupported constraint.
  };
  
  /// getConstraintType - Given a constraint letter, return the type of
  /// constraint it is for this target.
  virtual ConstraintType getConstraintType(char ConstraintLetter) const;
  
  
  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
  /// return a list of registers that can be used to satisfy the constraint.
  /// This should only be used for C_RegisterClass constraints.
  virtual std::vector<unsigned> 
  getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                    MVT::ValueType VT) const;

  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
  /// {edx}), return the register number and the register class for the
  /// register.
  ///
  /// Given a register class constraint, like 'r', if this corresponds directly
  /// to an LLVM register class, return a register of 0 and the register class
  /// pointer.
  ///
  /// This should only be used for C_Register constraints.  On error,
  /// this returns a register number of 0 and a null register class pointer..
  virtual std::pair<unsigned, const TargetRegisterClass*> 
    getRegForInlineAsmConstraint(const std::string &Constraint,
                                 MVT::ValueType VT) const;
  
  
  /// isOperandValidForConstraint - Return the specified operand (possibly
  /// modified) if the specified SDOperand is valid for the specified target
  /// constraint letter, otherwise return null.
  virtual SDOperand 
    isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
                                SelectionDAG &DAG);
  
  //===--------------------------------------------------------------------===//
  // Scheduler hooks
  //
  
  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
  // instructions are special in various ways, which require special support to
  // insert.  The specified MachineInstr is created but not inserted into any
  // basic blocks, and the scheduler passes ownership of it to this method.
  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
                                                     MachineBasicBlock *MBB);

  //===--------------------------------------------------------------------===//
  // Loop Strength Reduction hooks
  //
  
  /// isLegalAddressImmediate - Return true if the integer value or GlobalValue
  /// can be used as the offset of the target addressing mode.
  virtual bool isLegalAddressImmediate(int64_t V) const;
  virtual bool isLegalAddressImmediate(GlobalValue *GV) const;

  typedef std::vector<unsigned>::const_iterator legal_am_scale_iterator;
  legal_am_scale_iterator legal_am_scale_begin() const {
    return LegalAddressScales.begin();
  }
  legal_am_scale_iterator legal_am_scale_end() const {
    return LegalAddressScales.end();
  }

  //===--------------------------------------------------------------------===//
  // Div utility functions
  //
  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG, 
		      std::vector<SDNode*>* Created) const;
  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG, 
		      std::vector<SDNode*>* Created) const;


  //===--------------------------------------------------------------------===//
  // Runtime Library hooks
  //

  /// setLibcallName - Rename the default libcall routine name for the specified
  /// libcall.
  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
    LibcallRoutineNames[Call] = Name;
  }

  /// getLibcallName - Get the libcall routine name for the specified libcall.
  ///
  const char *getLibcallName(RTLIB::Libcall Call) const {
    return LibcallRoutineNames[Call];
  }

protected:
  /// addLegalAddressScale - Add a integer (> 1) value which can be used as
  /// scale in the target addressing mode. Note: the ordering matters so the
  /// least efficient ones should be entered first.
  void addLegalAddressScale(unsigned Scale) {
    LegalAddressScales.push_back(Scale);
  }

private:
  std::vector<unsigned> LegalAddressScales;
  
  TargetMachine &TM;
  const TargetData *TD;

  /// IsLittleEndian - True if this is a little endian target.
  ///
  bool IsLittleEndian;

  /// PointerTy - The type to use for pointers, usually i32 or i64.
  ///
  MVT::ValueType PointerTy;

  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
  ///
  bool UsesGlobalOffsetTable;
  
  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
  /// PointerTy is.
  MVT::ValueType ShiftAmountTy;

  OutOfRangeShiftAmount ShiftAmtHandling;

  /// SelectIsExpensive - Tells the code generator not to expand operations
  /// into sequences that use the select operations if possible.
  bool SelectIsExpensive;

  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
  /// a real cost model is in place.  If we ever optimize for size, this will be
  /// set to true unconditionally.
  bool IntDivIsCheap;
  
  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
  /// srl/add/sra for a signed divide by power of two, and let the target handle
  /// it.
  bool Pow2DivIsCheap;
  
  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
  /// PointerTy.
  MVT::ValueType SetCCResultTy;

  /// SetCCResultContents - Information about the contents of the high-bits in
  /// the result of a setcc comparison operation.
  SetCCResultValue SetCCResultContents;

  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
  /// total cycles or lowest register usage.
  SchedPreference SchedPreferenceInfo;
  
  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
  /// llvm.setjmp.  Defaults to false.
  bool UseUnderscoreSetJmp;

  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
  /// llvm.longjmp.  Defaults to false.
  bool UseUnderscoreLongJmp;

  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
  unsigned JumpBufSize;
  
  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
  /// buffers
  unsigned JumpBufAlignment;
  
  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
  /// specifies the register that llvm.savestack/llvm.restorestack should save
  /// and restore.
  unsigned StackPointerRegisterToSaveRestore;

  /// RegClassForVT - This indicates the default register class to use for
  /// each ValueType the target supports natively.
  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];

  /// TransformToType - For any value types we are promoting or expanding, this
  /// contains the value type that we are changing to.  For Expanded types, this
  /// contains one step of the expand (e.g. i64 -> i32), even if there are
  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
  /// by the system, this holds the same type (e.g. i32 -> i32).
  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];

  /// OpActions - For each operation and each value type, keep a LegalizeAction
  /// that indicates how instruction selection should deal with the operation.
  /// Most operations are Legal (aka, supported natively by the target), but
  /// operations that are not should be described.  Note that operations on
  /// non-legal value types are not described here.
  uint64_t OpActions[156];
  
  /// LoadXActions - For each load of load extension type and each value type,
  /// keep a LegalizeAction that indicates how instruction selection should deal
  /// with the load.
  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
  
  /// StoreXActions - For each store with truncation of each value type, keep a
  /// LegalizeAction that indicates how instruction selection should deal with
  /// the store.
  uint64_t StoreXActions;

  /// IndexedModeActions - For each indexed mode and each value type, keep a
  /// pair of LegalizeAction that indicates how instruction selection should
  /// deal with the load / store.
  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
  
  ValueTypeActionImpl ValueTypeActions;

  std::vector<double> LegalFPImmediates;

  std::vector<std::pair<MVT::ValueType,
                        TargetRegisterClass*> > AvailableRegClasses;

  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
  /// which sets a bit in this array.
  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
  
  /// PromoteToType - For operations that must be promoted to a specific type,
  /// this holds the destination type.  This map should be sparse, so don't hold
  /// it as an array.
  ///
  /// Targets add entries to this map with AddPromotedToType(..), clients access
  /// this with getTypeToPromoteTo(..).
  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;

  /// LibcallRoutineNames - Stores the name each libcall.
  ///
  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];

protected:
  /// When lowering %llvm.memset this field specifies the maximum number of
  /// store operations that may be substituted for the call to memset. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memset will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
  /// store.  This only applies to setting a constant array of a constant size.
  /// @brief Specify maximum number of store instructions per memset call.
  unsigned maxStoresPerMemset;

  /// When lowering %llvm.memcpy this field specifies the maximum number of
  /// store operations that may be substituted for a call to memcpy. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memcpy will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
  /// and one 1-byte store. This only applies to copying a constant array of
  /// constant size.
  /// @brief Specify maximum bytes of store instructions per memcpy call.
  unsigned maxStoresPerMemcpy;

  /// When lowering %llvm.memmove this field specifies the maximum number of
  /// store instructions that may be substituted for a call to memmove. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memmove will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
  /// with 8-bit alignment would result in nine 1-byte stores.  This only
  /// applies to copying a constant array of constant size.
  /// @brief Specify maximum bytes of store instructions per memmove call.
  unsigned maxStoresPerMemmove;

  /// This field specifies whether the target machine permits unaligned memory
  /// accesses.  This is used, for example, to determine the size of store 
  /// operations when copying small arrays and other similar tasks.
  /// @brief Indicate whether the target permits unaligned memory accesses.
  bool allowUnalignedMemoryAccesses;
};
} // end llvm namespace

#endif