summaryrefslogtreecommitdiff
path: root/include/llvm/Transforms/Scalar.h
blob: 58dcd428acc0798b271b1dff1507b73beb0991bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//===-- Scalar.h - Scalar Transformations ------------------------*- C++ -*-==//
//
// This header file defines prototypes for accessor functions that expose passes
// in the Scalar transformations library.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_SCALAR_H
#define LLVM_TRANSFORMS_SCALAR_H

class Pass;
class FunctionPass;
class GetElementPtrInst;
class PassInfo;
class TerminatorInst;

//===----------------------------------------------------------------------===//
//
// Constant Propagation Pass - A worklist driven constant propagation pass
//
Pass *createConstantPropagationPass();


//===----------------------------------------------------------------------===//
//
// Sparse Conditional Constant Propagation Pass
//
Pass *createSCCPPass();


//===----------------------------------------------------------------------===//
//
// DeadInstElimination - This pass quickly removes trivially dead instructions
// without modifying the CFG of the function.  It is a BasicBlockPass, so it
// runs efficiently when queued next to other BasicBlockPass's.
//
Pass *createDeadInstEliminationPass();


//===----------------------------------------------------------------------===//
//
// DeadCodeElimination - This pass is more powerful than DeadInstElimination,
// because it is worklist driven that can potentially revisit instructions when
// their other instructions become dead, to eliminate chains of dead
// computations.
//
Pass *createDeadCodeEliminationPass();


//===----------------------------------------------------------------------===//
//
// AggressiveDCE - This pass uses the SSA based Aggressive DCE algorithm.  This
// algorithm assumes instructions are dead until proven otherwise, which makes
// it more successful are removing non-obviously dead instructions.
//
Pass *createAggressiveDCEPass();


//===----------------------------------------------------------------------===//
//
// Scalar Replacement of Aggregates - Break up alloca's of aggregates into
// multiple allocas if possible.
//
Pass *createScalarReplAggregatesPass();

//===----------------------------------------------------------------------===//
// 
// DecomposeMultiDimRefs - Convert multi-dimensional references consisting of
// any combination of 2 or more array and structure indices into a sequence of
// instructions (using getelementpr and cast) so that each instruction has at
// most one index (except structure references, which need an extra leading
// index of [0]).

// This pass decomposes all multi-dimensional references in a function.
FunctionPass *createDecomposeMultiDimRefsPass();

// This function decomposes a single instance of such a reference.
// Return value: true if the instruction was replaced; false otherwise.
// 
bool DecomposeArrayRef(GetElementPtrInst* GEP);

//===----------------------------------------------------------------------===//
//
// GCSE - This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function.  It does this by
// examining the SSA value graph of the function, instead of doing slow
// bit-vector computations.
//
Pass *createGCSEPass();


//===----------------------------------------------------------------------===//
//
// InductionVariableSimplify - Transform induction variables in a program to all
// use a single cannonical induction variable per loop.
//
Pass *createIndVarSimplifyPass();


//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
//   instructions.  This pass does not modify the CFG, and has a tendancy to
//   make instructions dead, so a subsequent DCE pass is useful.
//
// This pass combines things like:
//    %Y = add int 1, %X
//    %Z = add int 1, %Y
// into:
//    %Z = add int 2, %X
//
Pass *createInstructionCombiningPass();


//===----------------------------------------------------------------------===//
//
// LICM - This pass is a simple natural loop based loop invariant code motion
// pass.
//
Pass *createLICMPass();


//===----------------------------------------------------------------------===//
//
// PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks
// that are preceeded by a conditional branch, where the branch gives
// information about the operands of the condition.  For example, this C code:
//   if (x == 0) { ... = x + 4;
// becomes:
//   if (x == 0) {
//     x2 = phi(x);    // Node that can hold data flow information about X
//     ... = x2 + 4;
//
// Since the direction of the condition branch gives information about X itself
// (whether or not it is zero), some passes (like value numbering or ABCD) can
// use the inserted Phi/Pi nodes as a place to attach information, in this case
// saying that X has a value of 0 in this scope.  The power of this analysis
// information is that "in the scope" translates to "for all uses of x2".
//
// This special form of Phi node is refered to as a Pi node, following the
// terminology defined in the "Array Bounds Checks on Demand" paper.
//
Pass *createPiNodeInsertionPass();


//===----------------------------------------------------------------------===//
//
// This pass is used to promote memory references to be register references.  A
// simple example of the transformation performed by this pass is:
//
//        FROM CODE                           TO CODE
//   %X = alloca int, uint 1                 ret int 42
//   store int 42, int *%X
//   %Y = load int* %X
//   ret int %Y
//
Pass *createPromoteMemoryToRegister();


//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example:  4 + (x + 5)  ->  x + (4 + 5)
//
Pass *createReassociatePass();

//===----------------------------------------------------------------------===//
//
// This pass eliminates correlated conditions, such as these:
//  if (X == 0)
//    if (X > 2) ;   // Known false
//    else
//      Y = X * Z;   // = 0
//
Pass *createCorrelatedExpressionEliminationPass();

//===----------------------------------------------------------------------===//
//
// TailDuplication - Eliminate unconditional branches through controlled code
// duplication, creating simpler CFG structures.
//
Pass *createTailDuplicationPass();


//===----------------------------------------------------------------------===//
//
// CFG Simplification - Merge basic blocks, eliminate unreachable blocks,
// simplify terminator instructions, etc...
//
Pass *createCFGSimplificationPass();


//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block.  This pass may be "required" by passes that
// cannot deal with critical edges.  For this usage, a pass must call:
//
//   AU.addRequiredID(BreakCriticalEdgesID);
//
// This pass obviously invalidates the CFG, but can update forward dominator
// (set, immediate dominators, and tree) information.
//
Pass *createBreakCriticalEdgesPass();
extern const PassInfo *BreakCriticalEdgesID;

// The BreakCriticalEdges pass also exposes some low-level functionality that
// may be used by other passes.

/// isCriticalEdge - Return true if the specified edge is a critical edge.
/// Critical edges are edges from a block with multiple successors to a block
/// with multiple predecessors.
///
bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum);

/// SplitCriticalEdge - Insert a new node node to split the critical edge.  This
/// will update DominatorSet, ImmediateDominator and DominatorTree information
/// if a pass is specified, thus calling this pass will not invalidate these
/// analyses.
///
void SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P = 0);

//===----------------------------------------------------------------------===//
//
// LoopPreheaders pass - Insert Pre-header blocks into the CFG for every
// function in the module.  This pass updates dominator information, loop
// information, and does not add critical edges to the CFG.
//
//   AU.addRequiredID(LoopPreheadersID);
//
Pass *createLoopPreheaderInsertionPass();
extern const PassInfo *LoopPreheadersID;


//===----------------------------------------------------------------------===//
// These two passes convert malloc and free instructions to and from %malloc &
// %free function calls.
//
FunctionPass *createLowerAllocationsPass();
Pass *createRaiseAllocationsPass();

//===----------------------------------------------------------------------===//
// This pass converts SwitchInst instructions into a sequence of chained binary
// branch instructions.
//
FunctionPass *createLowerSwitchPass();

//===----------------------------------------------------------------------===//
//
// These functions removes symbols from functions and modules.
//
Pass *createSymbolStrippingPass();
Pass *createFullSymbolStrippingPass();

#endif