summaryrefslogtreecommitdiff
path: root/include/llvm/Transforms/Scalar.h
blob: a7542fb94bef5a7029cfc95cc930beebbf594542 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//===-- Scalar.h - Scalar Transformations -----------------------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This header file defines prototypes for accessor functions that expose passes
// in the Scalar transformations library.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_SCALAR_H
#define LLVM_TRANSFORMS_SCALAR_H

namespace llvm {

class ModulePass;
class FunctionPass;
class GetElementPtrInst;
class PassInfo;
class TerminatorInst;

//===----------------------------------------------------------------------===//
//
// RaisePointerReferences - Try to eliminate as many pointer arithmetic
// expressions as possible, by converting expressions to use getelementptr and
// friends.
//
FunctionPass *createRaisePointerReferencesPass();

//===----------------------------------------------------------------------===//
//
// Constant Propagation Pass - A worklist driven constant propagation pass
//
FunctionPass *createConstantPropagationPass();


//===----------------------------------------------------------------------===//
//
// Sparse Conditional Constant Propagation Pass
//
FunctionPass *createSCCPPass();


//===----------------------------------------------------------------------===//
//
// DeadInstElimination - This pass quickly removes trivially dead instructions
// without modifying the CFG of the function.  It is a BasicBlockPass, so it
// runs efficiently when queued next to other BasicBlockPass's.
//
FunctionPass *createDeadInstEliminationPass();


//===----------------------------------------------------------------------===//
//
// DeadCodeElimination - This pass is more powerful than DeadInstElimination,
// because it is worklist driven that can potentially revisit instructions when
// their other instructions become dead, to eliminate chains of dead
// computations.
//
FunctionPass *createDeadCodeEliminationPass();

//===----------------------------------------------------------------------===//
//
// DeadStoreElimination - This pass deletes stores that are post-dominated by
// must-aliased stores and are not loaded used between the stores.
//
FunctionPass *createDeadStoreEliminationPass();

//===----------------------------------------------------------------------===//
//
// AggressiveDCE - This pass uses the SSA based Aggressive DCE algorithm.  This
// algorithm assumes instructions are dead until proven otherwise, which makes
// it more successful are removing non-obviously dead instructions.
//
FunctionPass *createAggressiveDCEPass();


//===----------------------------------------------------------------------===//
//
// Scalar Replacement of Aggregates - Break up alloca's of aggregates into
// multiple allocas if possible.
//
FunctionPass *createScalarReplAggregatesPass();


//===----------------------------------------------------------------------===//
//
// GCSE - This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function.  It does this by
// examining the SSA value graph of the function, instead of doing slow
// bit-vector computations.
//
FunctionPass *createGCSEPass();


//===----------------------------------------------------------------------===//
//
// InductionVariableSimplify - Transform induction variables in a program to all
// use a single canonical induction variable per loop.
//
FunctionPass *createIndVarSimplifyPass();


//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
//   instructions.  This pass does not modify the CFG, and has a tendency to
//   make instructions dead, so a subsequent DCE pass is useful.
//
// This pass combines things like:
//    %Y = add int 1, %X
//    %Z = add int 1, %Y
// into:
//    %Z = add int 2, %X
//
FunctionPass *createInstructionCombiningPass();


//===----------------------------------------------------------------------===//
//
// LICM - This pass is a loop invariant code motion and memory promotion pass.
//
FunctionPass *createLICMPass();

//===----------------------------------------------------------------------===//
//
// LoopStrengthReduce - This pass is strength reduces GEP instructions that use
// a loop's canonical induction variable as one of their indices.  The
// MaxTargetAMSize is the largest element size that the target architecture
// can handle in its addressing modes.  Power of two multipliers less than or
// equal to this value are not reduced.
//
FunctionPass *createLoopStrengthReducePass(unsigned MaxTargetAMSize = 1);

//===----------------------------------------------------------------------===//
//
// LoopUnswitch - This pass is a simple loop unswitching pass.
//
FunctionPass *createLoopUnswitchPass();


//===----------------------------------------------------------------------===//
//
// LoopUnroll - This pass is a simple loop unrolling pass.
//
FunctionPass *createLoopUnrollPass();

//===----------------------------------------------------------------------===//
//
// This pass is used to promote memory references to be register references.  A
// simple example of the transformation performed by this pass is:
//
//        FROM CODE                           TO CODE
//   %X = alloca int, uint 1                 ret int 42
//   store int 42, int *%X
//   %Y = load int* %X
//   ret int %Y
//
FunctionPass *createPromoteMemoryToRegisterPass();


//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example:  4 + (x + 5)  ->  x + (4 + 5)
//
FunctionPass *createReassociatePass();

//===----------------------------------------------------------------------===//
//
// This pass eliminates correlated conditions, such as these:
//  if (X == 0)
//    if (X > 2) ;   // Known false
//    else
//      Y = X * Z;   // = 0
//
FunctionPass *createCorrelatedExpressionEliminationPass();

//===----------------------------------------------------------------------===//
//
// TailDuplication - Eliminate unconditional branches through controlled code
// duplication, creating simpler CFG structures.
//
FunctionPass *createTailDuplicationPass();


//===----------------------------------------------------------------------===//
//
// CFG Simplification - Merge basic blocks, eliminate unreachable blocks,
// simplify terminator instructions, etc...
//
FunctionPass *createCFGSimplificationPass();


//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block.  This pass may be "required" by passes that
// cannot deal with critical edges.  For this usage, a pass must call:
//
//   AU.addRequiredID(BreakCriticalEdgesID);
//
// This pass obviously invalidates the CFG, but can update forward dominator
// (set, immediate dominators, tree, and frontier) information.
//
FunctionPass *createBreakCriticalEdgesPass();
extern const PassInfo *BreakCriticalEdgesID;

//===----------------------------------------------------------------------===//
//
// LoopSimplify pass - Insert Pre-header blocks into the CFG for every function
// in the module.  This pass updates dominator information, loop information,
// and does not add critical edges to the CFG.
//
//   AU.addRequiredID(LoopSimplifyID);
//
FunctionPass *createLoopSimplifyPass();
extern const PassInfo *LoopSimplifyID;

//===----------------------------------------------------------------------===//
// 
// This pass eliminates call instructions to the current function which occur
// immediately before return instructions.
//
FunctionPass *createTailCallEliminationPass();


//===----------------------------------------------------------------------===//
// This pass convert malloc and free instructions to %malloc & %free function
// calls.
//
FunctionPass *createLowerAllocationsPass(bool LowerMallocArgToInteger = false);

//===----------------------------------------------------------------------===//
// This pass converts SwitchInst instructions into a sequence of chained binary
// branch instructions.
//
FunctionPass *createLowerSwitchPass();

//===----------------------------------------------------------------------===//
// This pass converts SelectInst instructions into conditional branch and PHI
// instructions.  If the OnlyFP flag is set to true, then only floating point
// select instructions are lowered.
//
FunctionPass *createLowerSelectPass(bool OnlyFP = false);

//===----------------------------------------------------------------------===//
// This pass converts PackedType operations into low-level scalar operations.
//
FunctionPass *createLowerPackedPass();

//===----------------------------------------------------------------------===//
// This pass converts invoke and unwind instructions to use sjlj exception
// handling mechanisms.  Note that after this pass runs the CFG is not entirely
// accurate (exceptional control flow edges are not correct anymore) so only
// very simple things should be done after the lowerinvoke pass has run (like
// generation of native code).  This should *NOT* be used as a general purpose
// "my LLVM-to-LLVM pass doesn't support the invoke instruction yet" lowering
// pass.
//
FunctionPass *createLowerInvokePass();
extern const PassInfo *LowerInvokePassID;

  
//===----------------------------------------------------------------------===//
/// createLowerGCPass - This function returns an instance of the "lowergc"
/// pass, which lowers garbage collection intrinsics to normal LLVM code.
///
FunctionPass *createLowerGCPass();

//===----------------------------------------------------------------------===//
// Returns a pass which converts all instances of ConstantExpression
// into regular LLVM instructions.
FunctionPass* createLowerConstantExpressionsPass();

//===----------------------------------------------------------------------===//
// This pass reorders basic blocks in order to increase the number of fall-
// through conditional branches.
FunctionPass *createBlockPlacementPass();

//===----------------------------------------------------------------------===//
// This pass does partial redundancy elimination.
FunctionPass *createPREPass();

} // End llvm namespace

#endif