summaryrefslogtreecommitdiff
path: root/include/llvm/Value.h
blob: e8930e6aca44ddabd56e55ef7461f75b39a24721 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=//
//
// This file defines the very important Value class.  This is subclassed by a
// bunch of other important classes, like Instruction, Function, Type, etc...
//
// This file also defines the Use<> template for users of value.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_VALUE_H
#define LLVM_VALUE_H

#include <vector>
#include "llvm/Annotation.h"
#include "llvm/AbstractTypeUser.h"
#include "Support/Casting.h"
#include <ostream>

class User;
class Type;
class Constant;
class Argument;
class Instruction;
class BasicBlock;
class GlobalValue;
class Function;
class GlobalVariable;
class SymbolTable;

//===----------------------------------------------------------------------===//
//                                 Value Class
//===----------------------------------------------------------------------===//

class Value : public Annotable,         // Values are annotable
	      public AbstractTypeUser { // Values use potentially abstract types
public:
  enum ValueTy {
    TypeVal,                // This is an instance of Type
    ConstantVal,            // This is an instance of Constant
    ArgumentVal,            // This is an instance of Argument
    InstructionVal,         // This is an instance of Instruction
    BasicBlockVal,          // This is an instance of BasicBlock
    FunctionVal,            // This is an instance of Function
    GlobalVariableVal,      // This is an instance of GlobalVariable
  };

private:
  std::vector<User *> Uses;
  std::string Name;
  PATypeHandle<Type> Ty;
  ValueTy VTy;

  Value(const Value &);              // Do not implement
protected:
  inline void setType(const Type *ty) { Ty = ty; }
public:
  Value(const Type *Ty, ValueTy vty, const std::string &name = "");
  virtual ~Value();
  
  // Support for debugging 
  void dump() const;

  // Implement operator<< on Value...
  virtual void print(std::ostream &O) const = 0;
  
  // All values can potentially be typed
  inline const Type *getType() const { return Ty; }
  
  // All values can potentially be named...
  inline bool               hasName() const { return Name != ""; }
  inline const std::string &getName() const { return Name; }

  virtual void setName(const std::string &name, SymbolTable * = 0) {
    Name = name;
  }
  
  // Methods for determining the subtype of this Value.  The getValueType()
  // method returns the type of the value directly.  The cast*() methods are
  // equivalent to using dynamic_cast<>... if the cast is successful, this is
  // returned, otherwise you get a null pointer.
  //
  // The family of functions Val->cast<type>Asserting() is used in the same
  // way as the Val->cast<type>() instructions, but they assert the expected
  // type instead of checking it at runtime.
  //
  inline ValueTy getValueType() const { return VTy; }
  
  // replaceAllUsesWith - Go through the uses list for this definition and make
  // each use point to "D" instead of "this".  After this completes, 'this's 
  // use list should be empty.
  //
  void replaceAllUsesWith(Value *D);

  // refineAbstractType - This function is implemented because we use
  // potentially abstract types, and these types may be resolved to more
  // concrete types after we are constructed.
  //
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
  
  //----------------------------------------------------------------------
  // Methods for handling the vector of uses of this Value.
  //
  typedef std::vector<User*>::iterator       use_iterator;
  typedef std::vector<User*>::const_iterator use_const_iterator;

  inline unsigned           use_size()  const { return Uses.size();  }
  inline bool               use_empty() const { return Uses.empty(); }
  inline use_iterator       use_begin()       { return Uses.begin(); }
  inline use_const_iterator use_begin() const { return Uses.begin(); }
  inline use_iterator       use_end()         { return Uses.end();   }
  inline use_const_iterator use_end()   const { return Uses.end();   }
  inline User              *use_back()        { return Uses.back();  }
  inline const User        *use_back()  const { return Uses.back();  }

  inline void use_push_back(User *I)   { Uses.push_back(I); }
  User *use_remove(use_iterator &I);

  inline void addUse(User *I)      { Uses.push_back(I); }
  void killUse(User *I);
};

inline std::ostream &operator<<(std::ostream &OS, const Value *V) {
  if (V == 0)
    OS << "<null> value!\n";
  else
    V->print(OS);
  return OS;
}

inline std::ostream &operator<<(std::ostream &OS, const Value &V) {
  V.print(OS);
  return OS;
}


//===----------------------------------------------------------------------===//
//                                 UseTy Class
//===----------------------------------------------------------------------===//

// UseTy and it's friendly typedefs (Use) are here to make keeping the "use" 
// list of a definition node up-to-date really easy.
//
template<class ValueSubclass>
class UseTy {
  ValueSubclass *Val;
  User *U;
public:
  inline UseTy<ValueSubclass>(ValueSubclass *v, User *user) {
    Val = v; U = user;
    if (Val) Val->addUse(U);
  }

  inline ~UseTy<ValueSubclass>() { if (Val) Val->killUse(U); }

  inline operator ValueSubclass *() const { return Val; }

  inline UseTy<ValueSubclass>(const UseTy<ValueSubclass> &user) {
    Val = 0;
    U = user.U;
    operator=(user.Val);
  }
  inline ValueSubclass *operator=(ValueSubclass *V) { 
    if (Val) Val->killUse(U);
    Val = V;
    if (V) V->addUse(U);
    return V;
  }

  inline       ValueSubclass *operator->()       { return Val; }
  inline const ValueSubclass *operator->() const { return Val; }

  inline       ValueSubclass *get()       { return Val; }
  inline const ValueSubclass *get() const { return Val; }

  inline UseTy<ValueSubclass> &operator=(const UseTy<ValueSubclass> &user) {
    if (Val) Val->killUse(U);
    Val = user.Val;
    Val->addUse(U);
    return *this;
  }
};

typedef UseTy<Value> Use;    // Provide Use as a common UseTy type

template<typename From> struct simplify_type<UseTy<From> > {
  typedef typename simplify_type<From*>::SimpleType SimpleType;
  
  static SimpleType getSimplifiedValue(const UseTy<From> &Val) {
    return (SimpleType)Val.get();
  }
};
template<typename From> struct simplify_type<const UseTy<From> > {
  typedef typename simplify_type<From*>::SimpleType SimpleType;
  
  static SimpleType getSimplifiedValue(const UseTy<From> &Val) {
    return (SimpleType)Val.get();
  }
};

// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> inline bool isa_impl<Type, Value>(const Value &Val) { 
  return Val.getValueType() == Value::TypeVal;
}
template <> inline bool isa_impl<Constant, Value>(const Value &Val) { 
  return Val.getValueType() == Value::ConstantVal; 
}
template <> inline bool isa_impl<Argument, Value>(const Value &Val) { 
  return Val.getValueType() == Value::ArgumentVal;
}
template <> inline bool isa_impl<Instruction, Value>(const Value &Val) { 
  return Val.getValueType() == Value::InstructionVal;
}
template <> inline bool isa_impl<BasicBlock, Value>(const Value &Val) { 
  return Val.getValueType() == Value::BasicBlockVal;
}
template <> inline bool isa_impl<Function, Value>(const Value &Val) { 
  return Val.getValueType() == Value::FunctionVal;
}
template <> inline bool isa_impl<GlobalVariable, Value>(const Value &Val) { 
  return Val.getValueType() == Value::GlobalVariableVal;
}
template <> inline bool isa_impl<GlobalValue, Value>(const Value &Val) { 
  return isa<GlobalVariable>(Val) || isa<Function>(Val);
}

#endif