summaryrefslogtreecommitdiff
path: root/lib/Analysis/BasicAliasAnalysis.cpp
blob: 8b34d25af4bbb009e0241d26dcfe04d204eace4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===//
//
// This file defines the default implementation of the Alias Analysis interface
// that simply implements a few identities (two different globals cannot alias,
// etc), but otherwise does no analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Pass.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/ConstantHandling.h"
#include "llvm/GlobalValue.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"

// Make sure that anything that uses AliasAnalysis pulls in this file...
void BasicAAStub() {}


namespace {
  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AliasAnalysis::getAnalysisUsage(AU);
    }
    
    virtual void initializePass();

    // alias - This is the only method here that does anything interesting...
    //
    AliasResult alias(const Value *V1, unsigned V1Size,
                      const Value *V2, unsigned V2Size);
  private:
    // CheckGEPInstructions - Check two GEP instructions of compatible types and
    // equal number of arguments.  This checks to see if the index expressions
    // preclude the pointers from aliasing...
    AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
                                     GetElementPtrInst *GEP2, unsigned G2Size);
  };
 
  // Register this pass...
  RegisterOpt<BasicAliasAnalysis>
  X("basicaa", "Basic Alias Analysis (default AA impl)");

  // Declare that we implement the AliasAnalysis interface
  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
}  // End of anonymous namespace

void BasicAliasAnalysis::initializePass() {
  InitializeAliasAnalysis(this);
}



// hasUniqueAddress - Return true if the 
static inline bool hasUniqueAddress(const Value *V) {
  return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V);
}

static const Value *getUnderlyingObject(const Value *V) {
  if (!isa<PointerType>(V->getType())) return 0;

  // If we are at some type of object... return it.
  if (hasUniqueAddress(V)) return V;
  
  // Traverse through different addressing mechanisms...
  if (const Instruction *I = dyn_cast<Instruction>(V)) {
    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
      return getUnderlyingObject(I->getOperand(0));
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() == Instruction::Cast ||
        CE->getOpcode() == Instruction::GetElementPtr)
      return getUnderlyingObject(CE->getOperand(0));
  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
    return CPR->getValue();
  }
  return 0;
}


// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
// as array references.  Note that this function is heavily tail recursive.
// Hopefully we have a smart C++ compiler.  :)
//
AliasAnalysis::AliasResult
BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
                          const Value *V2, unsigned V2Size) {
  // Strip off constant pointer refs if they exist
  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
    V1 = CPR->getValue();
  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
    V2 = CPR->getValue();

  // Are we checking for alias of the same value?
  if (V1 == V2) return MustAlias;

  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
    return NoAlias;  // Scalars cannot alias each other

  // Strip off cast instructions...
  if (const Instruction *I = dyn_cast<CastInst>(V1))
    return alias(I->getOperand(0), V1Size, V2, V2Size);
  if (const Instruction *I = dyn_cast<CastInst>(V2))
    return alias(V1, V1Size, I->getOperand(0), V2Size);

  // Figure out what objects these things are pointing to if we can...
  const Value *O1 = getUnderlyingObject(V1);
  const Value *O2 = getUnderlyingObject(V2);

  // Pointing at a discernable object?
  if (O1 && O2) {
    // If they are two different objects, we know that we have no alias...
    if (O1 != O2) return NoAlias;

    // If they are the same object, they we can look at the indexes.  If they
    // index off of the object is the same for both pointers, they must alias.
    // If they are provably different, they must not alias.  Otherwise, we can't
    // tell anything.
  } else if (O1 && isa<ConstantPointerNull>(V2)) {
    return NoAlias;                    // Unique values don't alias null
  } else if (O2 && isa<ConstantPointerNull>(V1)) {
    return NoAlias;                    // Unique values don't alias null
  }

  // If we have two gep instructions with identical indices, return an alias
  // result equal to the alias result of the original pointer...
  //
  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
    if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
      if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
          GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
        AliasResult GAlias =
          CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
                               (GetElementPtrInst*)GEP2, V2Size);
        if (GAlias != MayAlias)
          return GAlias;
      }

  // Check to see if these two pointers are related by a getelementptr
  // instruction.  If one pointer is a GEP with a non-zero index of the other
  // pointer, we know they cannot alias.
  //
  if (isa<GetElementPtrInst>(V2)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
  }

  if (V1Size != ~0U && V2Size != ~0U)
    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) {
      AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size);
      if (R == MustAlias) {
        // If there is at least one non-zero constant index, we know they cannot
        // alias.
        bool ConstantFound = false;
        for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
          if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
            if (!C->isNullValue()) {
              ConstantFound = true;
              break;
          }
        if (ConstantFound) {
          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
            return NoAlias;
          
          // Otherwise we have to check to see that the distance is more than
          // the size of the argument... build an index vector that is equal to
          // the arguments provided, except substitute 0's for any variable
          // indexes we find...
          
          std::vector<Value*> Indices;
          Indices.reserve(GEP->getNumOperands()-1);
          for (unsigned i = 1; i != GEP->getNumOperands(); ++i)
            if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
              Indices.push_back((Value*)C);
            else
              Indices.push_back(Constant::getNullValue(Type::LongTy));
          const Type *Ty = GEP->getOperand(0)->getType();
          int Offset = getTargetData().getIndexedOffset(Ty, Indices);
          if (Offset >= (int)V2Size || Offset <= -(int)V1Size)
            return NoAlias;
        }
      }
    }
  
  return MayAlias;
}

static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
                                           const std::vector<Value*> &Indices,
                                           const ConstantInt *Idx) {
  if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
    if (IdxS->getValue() < 0)   // Underflow on the array subscript?
      return Constant::getNullValue(Type::LongTy);
    else {                       // Check for overflow
      const ArrayType *ATy =
        cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
      if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
        return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
    }
  }
  return (Value*)Idx;  // Everything is acceptable.
}

// CheckGEPInstructions - Check two GEP instructions of compatible types and
// equal number of arguments.  This checks to see if the index expressions
// preclude the pointers from aliasing...
//
AliasAnalysis::AliasResult
BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S, 
                                         GetElementPtrInst *GEP2, unsigned G2S){
  // Do the base pointers alias?
  AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
                                GEP2->getOperand(0), G2S);
  if (BaseAlias != MustAlias)   // No or May alias: We cannot add anything...
    return BaseAlias;
  
  // Find the (possibly empty) initial sequence of equal values...
  unsigned NumGEPOperands = GEP1->getNumOperands();
  unsigned UnequalOper = 1;
  while (UnequalOper != NumGEPOperands &&
         GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
    ++UnequalOper;
    
  // If all operands equal each other, then the derived pointers must
  // alias each other...
  if (UnequalOper == NumGEPOperands) return MustAlias;
    
  // So now we know that the indexes derived from the base pointers,
  // which are known to alias, are different.  We can still determine a
  // no-alias result if there are differing constant pairs in the index
  // chain.  For example:
  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
  //
  unsigned SizeMax = std::max(G1S, G2S);
  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...

  // Scan for the first operand that is constant and unequal in the
  // two getelemenptrs...
  unsigned FirstConstantOper = UnequalOper;
  for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
    const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
    const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
    if (G1Oper != G2Oper &&   // Found non-equal constant indexes...
        isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
      // Make sure they are comparable...  and make sure the GEP with
      // the smaller leading constant is GEP1.
      ConstantBool *Compare =
        *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
        *cast<Constant>(GEP2->getOperand(FirstConstantOper));
      if (Compare) {  // If they are comparable...
        if (Compare->getValue())
          std::swap(GEP1, GEP2);  // Make GEP1 < GEP2
        break;
      }
    }
  }
  
  // No constant operands, we cannot tell anything...
  if (FirstConstantOper == NumGEPOperands) return MayAlias;

  // If there are non-equal constants arguments, then we can figure
  // out a minimum known delta between the two index expressions... at
  // this point we know that the first constant index of GEP1 is less
  // than the first constant index of GEP2.
  //
  std::vector<Value*> Indices1;
  Indices1.reserve(NumGEPOperands-1);
  for (unsigned i = 1; i != FirstConstantOper; ++i)
    if (GEP1->getOperand(i)->getType() == Type::UByteTy)
      Indices1.push_back(GEP1->getOperand(i));
    else
      Indices1.push_back(Constant::getNullValue(Type::LongTy));
  std::vector<Value*> Indices2;
  Indices2.reserve(NumGEPOperands-1);
  Indices2 = Indices1;           // Copy the zeros prefix...
  
  // Add the two known constant operands...
  Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
  Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
  
  const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
  
  // Loop over the rest of the operands...
  for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
    const Value *Op1 = GEP1->getOperand(i);
    const Value *Op2 = GEP2->getOperand(i);
    if (Op1 == Op2) {   // If they are equal, use a zero index...
      if (!isa<Constant>(Op1)) {
        Indices1.push_back(Constant::getNullValue(Op1->getType()));
        Indices2.push_back(Indices1.back());
      } else {
        Indices1.push_back((Value*)Op1);
        Indices2.push_back((Value*)Op2);
      }
    } else {
      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
        // If this is an array index, make sure the array element is in range...
        if (i != 1)   // The pointer index can be "out of range"
          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);

        Indices1.push_back((Value*)Op1);
      } else {
        // GEP1 is known to produce a value less than GEP2.  To be
        // conservatively correct, we must assume the largest possible constant
        // is used in this position.  This cannot be the initial index to the
        // GEP instructions (because we know we have at least one element before
        // this one with the different constant arguments), so we know that the
        // current index must be into either a struct or array.  Because we know
        // it's not constant, this cannot be a structure index.  Because of
        // this, we can calculate the maximum value possible.
        //
        const ArrayType *ElTy =
          cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
        Indices1.push_back(ConstantSInt::get(Type::LongTy,
                                             ElTy->getNumElements()-1));
      }
      
      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
        // If this is an array index, make sure the array element is in range...
        if (i != 1)   // The pointer index can be "out of range"
          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);

        Indices2.push_back((Value*)Op2);
      }
      else // Conservatively assume the minimum value for this index
        Indices2.push_back(Constant::getNullValue(Op2->getType()));
    }
  }
  
  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
  assert(Offset1 < Offset2 &&"There is at least one different constant here!");

  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
    //std::cerr << "Determined that these two GEP's don't alias [" 
    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
    return NoAlias;
  }
  return MayAlias;
}