summaryrefslogtreecommitdiff
path: root/lib/Analysis/BasicAliasAnalysis.cpp
blob: ec58a423521fafd4a7f9a8037879783074bf094e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the default implementation of the Alias Analysis interface
// that simply implements a few identities (two different globals cannot alias,
// etc), but otherwise does no analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
using namespace llvm;

//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//

/// isKnownNonNull - Return true if we know that the specified value is never
/// null.
static bool isKnownNonNull(const Value *V) {
  // Alloca never returns null, malloc might.
  if (isa<AllocaInst>(V)) return true;
  
  // A byval argument is never null.
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasByValAttr();

  // Global values are not null unless extern weak.
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
    return !GV->hasExternalWeakLinkage();
  return false;
}

/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
/// object that never escapes from the function.
static bool isNonEscapingLocalObject(const Value *V) {
  // If this is a local allocation, check to see if it escapes.
  if (isa<AllocaInst>(V) || isNoAliasCall(V))
    // Set StoreCaptures to True so that we can assume in our callers that the
    // pointer is not the result of a load instruction. Currently
    // PointerMayBeCaptured doesn't have any special analysis for the
    // StoreCaptures=false case; if it did, our callers could be refined to be
    // more precise.
    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);

  // If this is an argument that corresponds to a byval or noalias argument,
  // then it has not escaped before entering the function.  Check if it escapes
  // inside the function.
  if (const Argument *A = dyn_cast<Argument>(V))
    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
      // Don't bother analyzing arguments already known not to escape.
      if (A->hasNoCaptureAttr())
        return true;
      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
    }
  return false;
}

/// isEscapeSource - Return true if the pointer is one which would have
/// been considered an escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
    return true;

  // The load case works because isNonEscapingLocalObject considers all
  // stores to be escapes (it passes true for the StoreCaptures argument
  // to PointerMayBeCaptured).
  if (isa<LoadInst>(V))
    return true;

  return false;
}

/// isObjectSmallerThan - Return true if we can prove that the object specified
/// by V is smaller than Size.
static bool isObjectSmallerThan(const Value *V, unsigned Size,
                                const TargetData &TD) {
  const Type *AccessTy;
  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    AccessTy = GV->getType()->getElementType();
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    if (!AI->isArrayAllocation())
      AccessTy = AI->getType()->getElementType();
    else
      return false;
  } else if (const CallInst* CI = extractMallocCall(V)) {
    if (!isArrayMalloc(V, &TD))
      // The size is the argument to the malloc call.
      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
        return (C->getZExtValue() < Size);
    return false;
  } else if (const Argument *A = dyn_cast<Argument>(V)) {
    if (A->hasByValAttr())
      AccessTy = cast<PointerType>(A->getType())->getElementType();
    else
      return false;
  } else {
    return false;
  }
  
  if (AccessTy->isSized())
    return TD.getTypeAllocSize(AccessTy) < Size;
  return false;
}

//===----------------------------------------------------------------------===//
// NoAA Pass
//===----------------------------------------------------------------------===//

namespace {
  /// NoAA - This class implements the -no-aa pass, which always returns "I
  /// don't know" for alias queries.  NoAA is unlike other alias analysis
  /// implementations, in that it does not chain to a previous analysis.  As
  /// such it doesn't follow many of the rules that other alias analyses must.
  ///
  struct NoAA : public ImmutablePass, public AliasAnalysis {
    static char ID; // Class identification, replacement for typeinfo
    NoAA() : ImmutablePass(&ID) {}
    explicit NoAA(void *PID) : ImmutablePass(PID) { }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    }

    virtual void initializePass() {
      TD = getAnalysisIfAvailable<TargetData>();
    }

    virtual AliasResult alias(const Value *V1, unsigned V1Size,
                              const Value *V2, unsigned V2Size) {
      return MayAlias;
    }

    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
      return UnknownModRefBehavior;
    }
    virtual ModRefBehavior getModRefBehavior(const Function *F) {
      return UnknownModRefBehavior;
    }

    virtual bool pointsToConstantMemory(const Value *P) { return false; }
    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
                                       const Value *P, unsigned Size) {
      return ModRef;
    }
    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
                                       ImmutableCallSite CS2) {
      return ModRef;
    }

    virtual void deleteValue(Value *V) {}
    virtual void copyValue(Value *From, Value *To) {}
    
    /// getAdjustedAnalysisPointer - This method is used when a pass implements
    /// an analysis interface through multiple inheritance.  If needed, it
    /// should override this to adjust the this pointer as needed for the
    /// specified pass info.
    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
      if (PI->isPassID(&AliasAnalysis::ID))
        return (AliasAnalysis*)this;
      return this;
    }
  };
}  // End of anonymous namespace

// Register this pass...
char NoAA::ID = 0;
INITIALIZE_AG_PASS(NoAA, AliasAnalysis, "no-aa",
                   "No Alias Analysis (always returns 'may' alias)",
                   true, true, false);

ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }

//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
static const Function *getParent(const Value *V) {
  if (const Instruction *inst = dyn_cast<Instruction>(V))
    return inst->getParent()->getParent();

  if (const Argument *arg = dyn_cast<Argument>(V))
    return arg->getParent();

  return NULL;
}

static bool notDifferentParent(const Value *O1, const Value *O2) {

  const Function *F1 = getParent(O1);
  const Function *F2 = getParent(O2);

  return !F1 || !F2 || F1 == F2;
}
#endif

namespace {
  /// BasicAliasAnalysis - This is the default alias analysis implementation.
  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
  /// derives from the NoAA class.
  struct BasicAliasAnalysis : public NoAA {
    static char ID; // Class identification, replacement for typeinfo
    BasicAliasAnalysis() : NoAA(&ID) {}

    virtual AliasResult alias(const Value *V1, unsigned V1Size,
                              const Value *V2, unsigned V2Size) {
      assert(Visited.empty() && "Visited must be cleared after use!");
      assert(notDifferentParent(V1, V2) &&
             "BasicAliasAnalysis doesn't support interprocedural queries.");
      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
      Visited.clear();
      return Alias;
    }

    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
                                       const Value *P, unsigned Size);

    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
                                       ImmutableCallSite CS2) {
      // The AliasAnalysis base class has some smarts, lets use them.
      return AliasAnalysis::getModRefInfo(CS1, CS2);
    }

    /// pointsToConstantMemory - Chase pointers until we find a (constant
    /// global) or not.
    virtual bool pointsToConstantMemory(const Value *P);

    /// getModRefBehavior - Return the behavior when calling the given
    /// call site.
    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);

    /// getModRefBehavior - Return the behavior when calling the given function.
    /// For use when the call site is not known.
    virtual ModRefBehavior getModRefBehavior(const Function *F);

    /// getAdjustedAnalysisPointer - This method is used when a pass implements
    /// an analysis interface through multiple inheritance.  If needed, it
    /// should override this to adjust the this pointer as needed for the
    /// specified pass info.
    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
      if (PI->isPassID(&AliasAnalysis::ID))
        return (AliasAnalysis*)this;
      return this;
    }
    
  private:
    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
    SmallPtrSet<const Value*, 16> Visited;

    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
    // instruction against another.
    AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
                         const Value *V2, unsigned V2Size,
                         const Value *UnderlyingV1, const Value *UnderlyingV2);

    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
    // instruction against another.
    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
                         const Value *V2, unsigned V2Size);

    /// aliasSelect - Disambiguate a Select instruction against another value.
    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
                            const Value *V2, unsigned V2Size);

    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
                           const Value *V2, unsigned V2Size);
  };
}  // End of anonymous namespace

// Register this pass...
char BasicAliasAnalysis::ID = 0;
INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
                   "Basic Alias Analysis (default AA impl)",
                   false, true, true);

ImmutablePass *llvm::createBasicAliasAnalysisPass() {
  return new BasicAliasAnalysis();
}


/// pointsToConstantMemory - Chase pointers until we find a (constant
/// global) or not.
bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
  if (const GlobalVariable *GV = 
        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
    // global to be marked constant in some modules and non-constant in others.
    // GV may even be a declaration, not a definition.
    return GV->isConstant();

  return NoAA::pointsToConstantMemory(P);
}

/// getModRefBehavior - Return the behavior when calling the given call site.
AliasAnalysis::ModRefBehavior
BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
  if (CS.doesNotAccessMemory())
    // Can't do better than this.
    return DoesNotAccessMemory;

  ModRefBehavior Min = UnknownModRefBehavior;

  // If the callsite knows it only reads memory, don't return worse
  // than that.
  if (CS.onlyReadsMemory())
    Min = OnlyReadsMemory;

  // The AliasAnalysis base class has some smarts, lets use them.
  return std::min(AliasAnalysis::getModRefBehavior(CS), Min);
}

/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
AliasAnalysis::ModRefBehavior
BasicAliasAnalysis::getModRefBehavior(const Function *F) {
  if (F->doesNotAccessMemory())
    // Can't do better than this.
    return DoesNotAccessMemory;
  if (F->onlyReadsMemory())
    return OnlyReadsMemory;
  if (unsigned id = F->getIntrinsicID())
    return getIntrinsicModRefBehavior(id);

  return NoAA::getModRefBehavior(F);
}

/// getModRefInfo - Check to see if the specified callsite can clobber the
/// specified memory object.  Since we only look at local properties of this
/// function, we really can't say much about this query.  We do, however, use
/// simple "address taken" analysis on local objects.
AliasAnalysis::ModRefResult
BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
                                  const Value *P, unsigned Size) {
  assert(notDifferentParent(CS.getInstruction(), P) &&
         "AliasAnalysis query involving multiple functions!");

  const Value *Object = P->getUnderlyingObject();
  
  // If this is a tail call and P points to a stack location, we know that
  // the tail call cannot access or modify the local stack.
  // We cannot exclude byval arguments here; these belong to the caller of
  // the current function not to the current function, and a tail callee
  // may reference them.
  if (isa<AllocaInst>(Object))
    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
      if (CI->isTailCall())
        return NoModRef;
  
  // If the pointer is to a locally allocated object that does not escape,
  // then the call can not mod/ref the pointer unless the call takes the pointer
  // as an argument, and itself doesn't capture it.
  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
      isNonEscapingLocalObject(Object)) {
    bool PassedAsArg = false;
    unsigned ArgNo = 0;
    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
         CI != CE; ++CI, ++ArgNo) {
      // Only look at the no-capture pointer arguments.
      if (!(*CI)->getType()->isPointerTy() ||
          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
        continue;
      
      // If  this is a no-capture pointer argument, see if we can tell that it
      // is impossible to alias the pointer we're checking.  If not, we have to
      // assume that the call could touch the pointer, even though it doesn't
      // escape.
      if (!isNoAlias(cast<Value>(CI), UnknownSize, P, UnknownSize)) {
        PassedAsArg = true;
        break;
      }
    }
    
    if (!PassedAsArg)
      return NoModRef;
  }

  // Finally, handle specific knowledge of intrinsics.
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
  if (II != 0)
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::memcpy:
    case Intrinsic::memmove: {
      unsigned Len = UnknownSize;
      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
        Len = LenCI->getZExtValue();
      Value *Dest = II->getArgOperand(0);
      Value *Src = II->getArgOperand(1);
      if (isNoAlias(Dest, Len, P, Size)) {
        if (isNoAlias(Src, Len, P, Size))
          return NoModRef;
        return Ref;
      }
      break;
    }
    case Intrinsic::memset:
      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
      // will handle it for the variable length case.
      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
        unsigned Len = LenCI->getZExtValue();
        Value *Dest = II->getArgOperand(0);
        if (isNoAlias(Dest, Len, P, Size))
          return NoModRef;
      }
      break;
    case Intrinsic::atomic_cmp_swap:
    case Intrinsic::atomic_swap:
    case Intrinsic::atomic_load_add:
    case Intrinsic::atomic_load_sub:
    case Intrinsic::atomic_load_and:
    case Intrinsic::atomic_load_nand:
    case Intrinsic::atomic_load_or:
    case Intrinsic::atomic_load_xor:
    case Intrinsic::atomic_load_max:
    case Intrinsic::atomic_load_min:
    case Intrinsic::atomic_load_umax:
    case Intrinsic::atomic_load_umin:
      if (TD) {
        Value *Op1 = II->getArgOperand(0);
        unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
        if (isNoAlias(Op1, Op1Size, P, Size))
          return NoModRef;
      }
      break;
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
    case Intrinsic::invariant_start: {
      unsigned PtrSize =
        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
      if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size))
        return NoModRef;
      break;
    }
    case Intrinsic::invariant_end: {
      unsigned PtrSize =
        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
      if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size))
        return NoModRef;
      break;
    }
    }

  // The AliasAnalysis base class has some smarts, lets use them.
  return AliasAnalysis::getModRefInfo(CS, P, Size);
}


/// GetIndexDifference - Dest and Src are the variable indices from two
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
/// difference between the two pointers. 
static void GetIndexDifference(
                      SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
                const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
  if (Src.empty()) return;

  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
    const Value *V = Src[i].first;
    int64_t Scale = Src[i].second;
    
    // Find V in Dest.  This is N^2, but pointer indices almost never have more
    // than a few variable indexes.
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
      if (Dest[j].first != V) continue;
      
      // If we found it, subtract off Scale V's from the entry in Dest.  If it
      // goes to zero, remove the entry.
      if (Dest[j].second != Scale)
        Dest[j].second -= Scale;
      else
        Dest.erase(Dest.begin()+j);
      Scale = 0;
      break;
    }
    
    // If we didn't consume this entry, add it to the end of the Dest list.
    if (Scale)
      Dest.push_back(std::make_pair(V, -Scale));
  }
}

/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
/// against another pointer.  We know that V1 is a GEP, but we don't know
/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
/// UnderlyingV2 is the same for V2.
///
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
                             const Value *V2, unsigned V2Size,
                             const Value *UnderlyingV1,
                             const Value *UnderlyingV2) {
  // If this GEP has been visited before, we're on a use-def cycle.
  // Such cycles are only valid when PHI nodes are involved or in unreachable
  // code. The visitPHI function catches cycles containing PHIs, but there
  // could still be a cycle without PHIs in unreachable code.
  if (!Visited.insert(GEP1))
    return MayAlias;

  int64_t GEP1BaseOffset;
  SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;

  // If we have two gep instructions with must-alias'ing base pointers, figure
  // out if the indexes to the GEP tell us anything about the derived pointer.
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
    // Do the base pointers alias?
    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize,
                                       UnderlyingV2, UnknownSize);
    
    // If we get a No or May, then return it immediately, no amount of analysis
    // will improve this situation.
    if (BaseAlias != MustAlias) return BaseAlias;
    
    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
    // exactly, see if the computed offset from the common pointer tells us
    // about the relation of the resulting pointer.
    const Value *GEP1BasePtr =
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
    
    int64_t GEP2BaseOffset;
    SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
    const Value *GEP2BasePtr =
      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
    
    // If DecomposeGEPExpression isn't able to look all the way through the
    // addressing operation, we must not have TD and this is too complex for us
    // to handle without it.
    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
      assert(TD == 0 &&
             "DecomposeGEPExpression and getUnderlyingObject disagree!");
      return MayAlias;
    }
    
    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
    // symbolic difference.
    GEP1BaseOffset -= GEP2BaseOffset;
    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
    
  } else {
    // Check to see if these two pointers are related by the getelementptr
    // instruction.  If one pointer is a GEP with a non-zero index of the other
    // pointer, we know they cannot alias.

    // If both accesses are unknown size, we can't do anything useful here.
    if (V1Size == UnknownSize && V2Size == UnknownSize)
      return MayAlias;

    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, V2, V2Size);
    if (R != MustAlias)
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
      // If V2 is known not to alias GEP base pointer, then the two values
      // cannot alias per GEP semantics: "A pointer value formed from a
      // getelementptr instruction is associated with the addresses associated
      // with the first operand of the getelementptr".
      return R;

    const Value *GEP1BasePtr =
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
    
    // If DecomposeGEPExpression isn't able to look all the way through the
    // addressing operation, we must not have TD and this is too complex for us
    // to handle without it.
    if (GEP1BasePtr != UnderlyingV1) {
      assert(TD == 0 &&
             "DecomposeGEPExpression and getUnderlyingObject disagree!");
      return MayAlias;
    }
  }
  
  // In the two GEP Case, if there is no difference in the offsets of the
  // computed pointers, the resultant pointers are a must alias.  This
  // hapens when we have two lexically identical GEP's (for example).
  //
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
  // must aliases the GEP, the end result is a must alias also.
  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
    return MustAlias;

  // If we have a known constant offset, see if this offset is larger than the
  // access size being queried.  If so, and if no variable indices can remove
  // pieces of this constant, then we know we have a no-alias.  For example,
  //   &A[100] != &A.
  
  // In order to handle cases like &A[100][i] where i is an out of range
  // subscript, we have to ignore all constant offset pieces that are a multiple
  // of a scaled index.  Do this by removing constant offsets that are a
  // multiple of any of our variable indices.  This allows us to transform
  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
  // provides an offset of 4 bytes (assuming a <= 4 byte access).
  for (unsigned i = 0, e = GEP1VariableIndices.size();
       i != e && GEP1BaseOffset;++i)
    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
  
  // If our known offset is bigger than the access size, we know we don't have
  // an alias.
  if (GEP1BaseOffset) {
    if (GEP1BaseOffset >= (int64_t)V2Size ||
        GEP1BaseOffset <= -(int64_t)V1Size)
      return NoAlias;
  }
  
  return MayAlias;
}

/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
/// instruction against another.
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
                                const Value *V2, unsigned V2Size) {
  // If this select has been visited before, we're on a use-def cycle.
  // Such cycles are only valid when PHI nodes are involved or in unreachable
  // code. The visitPHI function catches cycles containing PHIs, but there
  // could still be a cycle without PHIs in unreachable code.
  if (!Visited.insert(SI))
    return MayAlias;

  // If the values are Selects with the same condition, we can do a more precise
  // check: just check for aliases between the values on corresponding arms.
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
    if (SI->getCondition() == SI2->getCondition()) {
      AliasResult Alias =
        aliasCheck(SI->getTrueValue(), SISize,
                   SI2->getTrueValue(), V2Size);
      if (Alias == MayAlias)
        return MayAlias;
      AliasResult ThisAlias =
        aliasCheck(SI->getFalseValue(), SISize,
                   SI2->getFalseValue(), V2Size);
      if (ThisAlias != Alias)
        return MayAlias;
      return Alias;
    }

  // If both arms of the Select node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  AliasResult Alias =
    aliasCheck(V2, V2Size, SI->getTrueValue(), SISize);
  if (Alias == MayAlias)
    return MayAlias;

  // If V2 is visited, the recursive case will have been caught in the
  // above aliasCheck call, so these subsequent calls to aliasCheck
  // don't need to assume that V2 is being visited recursively.
  Visited.erase(V2);

  AliasResult ThisAlias =
    aliasCheck(V2, V2Size, SI->getFalseValue(), SISize);
  if (ThisAlias != Alias)
    return MayAlias;
  return Alias;
}

// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
// against another.
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
                             const Value *V2, unsigned V2Size) {
  // The PHI node has already been visited, avoid recursion any further.
  if (!Visited.insert(PN))
    return MayAlias;

  // If the values are PHIs in the same block, we can do a more precise
  // as well as efficient check: just check for aliases between the values
  // on corresponding edges.
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
    if (PN2->getParent() == PN->getParent()) {
      AliasResult Alias =
        aliasCheck(PN->getIncomingValue(0), PNSize,
                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
                   V2Size);
      if (Alias == MayAlias)
        return MayAlias;
      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
        AliasResult ThisAlias =
          aliasCheck(PN->getIncomingValue(i), PNSize,
                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
                     V2Size);
        if (ThisAlias != Alias)
          return MayAlias;
      }
      return Alias;
    }

  SmallPtrSet<Value*, 4> UniqueSrc;
  SmallVector<Value*, 4> V1Srcs;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *PV1 = PN->getIncomingValue(i);
    if (isa<PHINode>(PV1))
      // If any of the source itself is a PHI, return MayAlias conservatively
      // to avoid compile time explosion. The worst possible case is if both
      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
      // and 'n' are the number of PHI sources.
      return MayAlias;
    if (UniqueSrc.insert(PV1))
      V1Srcs.push_back(PV1);
  }

  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
  // Early exit if the check of the first PHI source against V2 is MayAlias.
  // Other results are not possible.
  if (Alias == MayAlias)
    return MayAlias;

  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
    Value *V = V1Srcs[i];

    // If V2 is visited, the recursive case will have been caught in the
    // above aliasCheck call, so these subsequent calls to aliasCheck
    // don't need to assume that V2 is being visited recursively.
    Visited.erase(V2);

    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
    if (ThisAlias != Alias || ThisAlias == MayAlias)
      return MayAlias;
  }

  return Alias;
}

// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
// such as array references.
//
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
                               const Value *V2, unsigned V2Size) {
  // If either of the memory references is empty, it doesn't matter what the
  // pointer values are.
  if (V1Size == 0 || V2Size == 0)
    return NoAlias;

  // Strip off any casts if they exist.
  V1 = V1->stripPointerCasts();
  V2 = V2->stripPointerCasts();

  // Are we checking for alias of the same value?
  if (V1 == V2) return MustAlias;

  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
    return NoAlias;  // Scalars cannot alias each other

  // Figure out what objects these things are pointing to if we can.
  const Value *O1 = V1->getUnderlyingObject();
  const Value *O2 = V2->getUnderlyingObject();

  // Null values in the default address space don't point to any object, so they
  // don't alias any other pointer.
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;

  if (O1 != O2) {
    // If V1/V2 point to two different objects we know that we have no alias.
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
      return NoAlias;

    // Constant pointers can't alias with non-const isIdentifiedObject objects.
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
      return NoAlias;

    // Arguments can't alias with local allocations or noalias calls
    // in the same function.
    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
      return NoAlias;

    // Most objects can't alias null.
    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
      return NoAlias;
  
    // If one pointer is the result of a call/invoke or load and the other is a
    // non-escaping local object within the same function, then we know the
    // object couldn't escape to a point where the call could return it.
    //
    // Note that if the pointers are in different functions, there are a
    // variety of complications. A call with a nocapture argument may still
    // temporary store the nocapture argument's value in a temporary memory
    // location if that memory location doesn't escape. Or it may pass a
    // nocapture value to other functions as long as they don't capture it.
    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
      return NoAlias;
    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
      return NoAlias;
  }

  // If the size of one access is larger than the entire object on the other
  // side, then we know such behavior is undefined and can assume no alias.
  if (TD)
    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
      return NoAlias;
  
  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
  // GEP can't simplify, we don't even look at the PHI cases.
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(O1, O2);
  }
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
    return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);

  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
  }
  if (const PHINode *PN = dyn_cast<PHINode>(V1))
    return aliasPHI(PN, V1Size, V2, V2Size);

  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
  }
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
    return aliasSelect(S1, V1Size, V2, V2Size);

  return NoAA::alias(V1, V1Size, V2, V2Size);
}

// Make sure that anything that uses AliasAnalysis pulls in this file.
DEFINING_FILE_FOR(BasicAliasAnalysis)