summaryrefslogtreecommitdiff
path: root/lib/Analysis/BlockFrequencyInfoImpl.cpp
blob: e7424aebd7f41a4e2d8795b07289669bcf410dd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "block-freq"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>

using namespace llvm;

//===----------------------------------------------------------------------===//
//
// PositiveFloat implementation.
//
//===----------------------------------------------------------------------===//
#ifndef _MSC_VER
const int32_t PositiveFloatBase::MaxExponent;
const int32_t PositiveFloatBase::MinExponent;
#endif

static void appendDigit(std::string &Str, unsigned D) {
  assert(D < 10);
  Str += '0' + D % 10;
}

static void appendNumber(std::string &Str, uint64_t N) {
  while (N) {
    appendDigit(Str, N % 10);
    N /= 10;
  }
}

static bool doesRoundUp(char Digit) {
  switch (Digit) {
  case '5':
  case '6':
  case '7':
  case '8':
  case '9':
    return true;
  default:
    return false;
  }
}

static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
  assert(E >= PositiveFloatBase::MinExponent);
  assert(E <= PositiveFloatBase::MaxExponent);

  // Find a new E, but don't let it increase past MaxExponent.
  int LeadingZeros = PositiveFloatBase::countLeadingZeros64(D);
  int NewE = std::min(PositiveFloatBase::MaxExponent, E + 63 - LeadingZeros);
  int Shift = 63 - (NewE - E);
  assert(Shift <= LeadingZeros);
  assert(Shift == LeadingZeros || NewE == PositiveFloatBase::MaxExponent);
  D <<= Shift;
  E = NewE;

  // Check for a denormal.
  unsigned AdjustedE = E + 16383;
  if (!(D >> 63)) {
    assert(E == PositiveFloatBase::MaxExponent);
    AdjustedE = 0;
  }

  // Build the float and print it.
  uint64_t RawBits[2] = {D, AdjustedE};
  APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
  SmallVector<char, 24> Chars;
  Float.toString(Chars, Precision, 0);
  return std::string(Chars.begin(), Chars.end());
}

static std::string stripTrailingZeros(const std::string &Float) {
  size_t NonZero = Float.find_last_not_of('0');
  assert(NonZero != std::string::npos && "no . in floating point string");

  if (Float[NonZero] == '.')
    ++NonZero;

  return Float.substr(0, NonZero + 1);
}

std::string PositiveFloatBase::toString(uint64_t D, int16_t E, int Width,
                                        unsigned Precision) {
  if (!D)
    return "0.0";

  // Canonicalize exponent and digits.
  uint64_t Above0 = 0;
  uint64_t Below0 = 0;
  uint64_t Extra = 0;
  int ExtraShift = 0;
  if (E == 0) {
    Above0 = D;
  } else if (E > 0) {
    if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
      D <<= Shift;
      E -= Shift;

      if (!E)
        Above0 = D;
    }
  } else if (E > -64) {
    Above0 = D >> -E;
    Below0 = D << (64 + E);
  } else if (E > -120) {
    Below0 = D >> (-E - 64);
    Extra = D << (128 + E);
    ExtraShift = -64 - E;
  }

  // Fall back on APFloat for very small and very large numbers.
  if (!Above0 && !Below0)
    return toStringAPFloat(D, E, Precision);

  // Append the digits before the decimal.
  std::string Str;
  size_t DigitsOut = 0;
  if (Above0) {
    appendNumber(Str, Above0);
    DigitsOut = Str.size();
  } else
    appendDigit(Str, 0);
  std::reverse(Str.begin(), Str.end());

  // Return early if there's nothing after the decimal.
  if (!Below0)
    return Str + ".0";

  // Append the decimal and beyond.
  Str += '.';
  uint64_t Error = UINT64_C(1) << (64 - Width);

  // We need to shift Below0 to the right to make space for calculating
  // digits.  Save the precision we're losing in Extra.
  Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
  Below0 >>= 4;
  size_t SinceDot = 0;
  size_t AfterDot = Str.size();
  do {
    if (ExtraShift) {
      --ExtraShift;
      Error *= 5;
    } else
      Error *= 10;

    Below0 *= 10;
    Extra *= 10;
    Below0 += (Extra >> 60);
    Extra = Extra & (UINT64_MAX >> 4);
    appendDigit(Str, Below0 >> 60);
    Below0 = Below0 & (UINT64_MAX >> 4);
    if (DigitsOut || Str.back() != '0')
      ++DigitsOut;
    ++SinceDot;
  } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
           (!Precision || DigitsOut <= Precision || SinceDot < 2));

  // Return early for maximum precision.
  if (!Precision || DigitsOut <= Precision)
    return stripTrailingZeros(Str);

  // Find where to truncate.
  size_t Truncate =
      std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);

  // Check if there's anything to truncate.
  if (Truncate >= Str.size())
    return stripTrailingZeros(Str);

  bool Carry = doesRoundUp(Str[Truncate]);
  if (!Carry)
    return stripTrailingZeros(Str.substr(0, Truncate));

  // Round with the first truncated digit.
  for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
       I != E; ++I) {
    if (*I == '.')
      continue;
    if (*I == '9') {
      *I = '0';
      continue;
    }

    ++*I;
    Carry = false;
    break;
  }

  // Add "1" in front if we still need to carry.
  return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
}

raw_ostream &PositiveFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
                                      int Width, unsigned Precision) {
  return OS << toString(D, E, Width, Precision);
}

void PositiveFloatBase::dump(uint64_t D, int16_t E, int Width) {
  print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
                                << "]";
}

static std::pair<uint64_t, int16_t>
getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
  if (ShouldRound)
    if (!++N)
      // Rounding caused an overflow.
      return std::make_pair(UINT64_C(1), Shift + 64);
  return std::make_pair(N, Shift);
}

std::pair<uint64_t, int16_t> PositiveFloatBase::divide64(uint64_t Dividend,
                                                         uint64_t Divisor) {
  // Input should be sanitized.
  assert(Divisor);
  assert(Dividend);

  // Minimize size of divisor.
  int16_t Shift = 0;
  if (int Zeros = countTrailingZeros(Divisor)) {
    Shift -= Zeros;
    Divisor >>= Zeros;
  }

  // Check for powers of two.
  if (Divisor == 1)
    return std::make_pair(Dividend, Shift);

  // Maximize size of dividend.
  if (int Zeros = countLeadingZeros64(Dividend)) {
    Shift -= Zeros;
    Dividend <<= Zeros;
  }

  // Start with the result of a divide.
  uint64_t Quotient = Dividend / Divisor;
  Dividend %= Divisor;

  // Continue building the quotient with long division.
  //
  // TODO: continue with largers digits.
  while (!(Quotient >> 63) && Dividend) {
    // Shift Dividend, and check for overflow.
    bool IsOverflow = Dividend >> 63;
    Dividend <<= 1;
    --Shift;

    // Divide.
    bool DoesDivide = IsOverflow || Divisor <= Dividend;
    Quotient = (Quotient << 1) | uint64_t(DoesDivide);
    Dividend -= DoesDivide ? Divisor : 0;
  }

  // Round.
  if (Dividend >= getHalf(Divisor))
    if (!++Quotient)
      // Rounding caused an overflow in Quotient.
      return std::make_pair(UINT64_C(1), Shift + 64);

  return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
}

std::pair<uint64_t, int16_t> PositiveFloatBase::multiply64(uint64_t L,
                                                           uint64_t R) {
  // Separate into two 32-bit digits (U.L).
  uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;

  // Compute cross products.
  uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;

  // Sum into two 64-bit digits.
  uint64_t Upper = P1, Lower = P4;
  auto addWithCarry = [&](uint64_t N) {
    uint64_t NewLower = Lower + (N << 32);
    Upper += (N >> 32) + (NewLower < Lower);
    Lower = NewLower;
  };
  addWithCarry(P2);
  addWithCarry(P3);

  // Check whether the upper digit is empty.
  if (!Upper)
    return std::make_pair(Lower, 0);

  // Shift as little as possible to maximize precision.
  unsigned LeadingZeros = countLeadingZeros64(Upper);
  int16_t Shift = 64 - LeadingZeros;
  if (LeadingZeros)
    Upper = Upper << LeadingZeros | Lower >> Shift;
  bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
  return getRoundedFloat(Upper, ShouldRound, Shift);
}

//===----------------------------------------------------------------------===//
//
// BlockMass implementation.
//
//===----------------------------------------------------------------------===//
BlockMass &BlockMass::operator*=(const BranchProbability &P) {
  uint32_t N = P.getNumerator(), D = P.getDenominator();
  assert(D && "divide by 0");
  assert(N <= D && "fraction greater than 1");

  // Fast path for multiplying by 1.0.
  if (!Mass || N == D)
    return *this;

  // Get as much precision as we can.
  int Shift = countLeadingZeros(Mass);
  uint64_t ShiftedQuotient = (Mass << Shift) / D;
  uint64_t Product = ShiftedQuotient * N >> Shift;

  // Now check for what's lost.
  uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
  uint64_t Lost = Mass - Product - Left;

  // TODO: prove this assertion.
  assert(Lost <= UINT32_MAX);

  // Take the product plus a portion of the spoils.
  Mass = Product + Lost * N / D;
  return *this;
}

PositiveFloat<uint64_t> BlockMass::toFloat() const {
  if (isFull())
    return PositiveFloat<uint64_t>(1, 0);
  return PositiveFloat<uint64_t>(getMass() + 1, -64);
}

void BlockMass::dump() const { print(dbgs()); }

static char getHexDigit(int N) {
  assert(N < 16);
  if (N < 10)
    return '0' + N;
  return 'a' + N - 10;
}
raw_ostream &BlockMass::print(raw_ostream &OS) const {
  for (int Digits = 0; Digits < 16; ++Digits)
    OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
  return OS;
}

//===----------------------------------------------------------------------===//
//
// BlockFrequencyInfoImpl implementation.
//
//===----------------------------------------------------------------------===//
namespace {

typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
typedef BlockFrequencyInfoImplBase::Distribution Distribution;
typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
typedef BlockFrequencyInfoImplBase::Float Float;
typedef BlockFrequencyInfoImplBase::PackagedLoopData PackagedLoopData;
typedef BlockFrequencyInfoImplBase::Weight Weight;
typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;

/// \brief Dithering mass distributer.
///
/// This class splits up a single mass into portions by weight, dithering to
/// spread out error.  No mass is lost.  The dithering precision depends on the
/// precision of the product of \a BlockMass and \a BranchProbability.
///
/// The distribution algorithm follows.
///
///  1. Initialize by saving the sum of the weights in \a RemWeight and the
///     mass to distribute in \a RemMass.
///
///  2. For each portion:
///
///      1. Construct a branch probability, P, as the portion's weight divided
///         by the current value of \a RemWeight.
///      2. Calculate the portion's mass as \a RemMass times P.
///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
///         the current portion's weight and mass.
///
/// Mass is distributed in two ways: full distribution and forward
/// distribution.  The latter ignores backedges, and uses the parallel fields
/// \a RemForwardWeight and \a RemForwardMass.
struct DitheringDistributer {
  uint32_t RemWeight;
  uint32_t RemForwardWeight;

  BlockMass RemMass;
  BlockMass RemForwardMass;

  DitheringDistributer(Distribution &Dist, const BlockMass &Mass);

  BlockMass takeLocalMass(uint32_t Weight) {
    (void)takeMass(Weight);
    return takeForwardMass(Weight);
  }
  BlockMass takeExitMass(uint32_t Weight) {
    (void)takeForwardMass(Weight);
    return takeMass(Weight);
  }
  BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); }

private:
  BlockMass takeForwardMass(uint32_t Weight);
  BlockMass takeMass(uint32_t Weight);
};
}

DitheringDistributer::DitheringDistributer(Distribution &Dist,
                                           const BlockMass &Mass) {
  Dist.normalize();
  RemWeight = Dist.Total;
  RemForwardWeight = Dist.ForwardTotal;
  RemMass = Mass;
  RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass();
}

BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) {
  // Compute the amount of mass to take.
  assert(Weight && "invalid weight");
  assert(Weight <= RemForwardWeight);
  BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight);

  // Decrement totals (dither).
  RemForwardWeight -= Weight;
  RemForwardMass -= Mass;
  return Mass;
}
BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
  assert(Weight && "invalid weight");
  assert(Weight <= RemWeight);
  BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);

  // Decrement totals (dither).
  RemWeight -= Weight;
  RemMass -= Mass;
  return Mass;
}

void Distribution::add(const BlockNode &Node, uint64_t Amount,
                       Weight::DistType Type) {
  assert(Amount && "invalid weight of 0");
  uint64_t NewTotal = Total + Amount;

  // Check for overflow.  It should be impossible to overflow twice.
  bool IsOverflow = NewTotal < Total;
  assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
  DidOverflow |= IsOverflow;

  // Update the total.
  Total = NewTotal;

  // Save the weight.
  Weight W;
  W.TargetNode = Node;
  W.Amount = Amount;
  W.Type = Type;
  Weights.push_back(W);

  if (Type == Weight::Backedge)
    return;

  // Update forward total.  Don't worry about overflow here, since then Total
  // will exceed 32-bits and they'll both be recomputed in normalize().
  ForwardTotal += Amount;
}

static void combineWeight(Weight &W, const Weight &OtherW) {
  assert(OtherW.TargetNode.isValid());
  if (!W.Amount) {
    W = OtherW;
    return;
  }
  assert(W.Type == OtherW.Type);
  assert(W.TargetNode == OtherW.TargetNode);
  assert(W.Amount < W.Amount + OtherW.Amount);
  W.Amount += OtherW.Amount;
}
static void combineWeightsBySorting(WeightList &Weights) {
  // Sort so edges to the same node are adjacent.
  std::sort(Weights.begin(), Weights.end(),
            [](const Weight &L,
               const Weight &R) { return L.TargetNode < R.TargetNode; });

  // Combine adjacent edges.
  WeightList::iterator O = Weights.begin();
  for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
       ++O, (I = L)) {
    *O = *I;

    // Find the adjacent weights to the same node.
    for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
      combineWeight(*O, *L);
  }

  // Erase extra entries.
  Weights.erase(O, Weights.end());
  return;
}
static void combineWeightsByHashing(WeightList &Weights) {
  // Collect weights into a DenseMap.
  typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
  HashTable Combined(NextPowerOf2(2 * Weights.size()));
  for (const Weight &W : Weights)
    combineWeight(Combined[W.TargetNode.Index], W);

  // Check whether anything changed.
  if (Weights.size() == Combined.size())
    return;

  // Fill in the new weights.
  Weights.clear();
  Weights.reserve(Combined.size());
  for (const auto &I : Combined)
    Weights.push_back(I.second);
}
static void combineWeights(WeightList &Weights) {
  // Use a hash table for many successors to keep this linear.
  if (Weights.size() > 128) {
    combineWeightsByHashing(Weights);
    return;
  }

  combineWeightsBySorting(Weights);
}
static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
  assert(Shift >= 0);
  assert(Shift < 64);
  if (!Shift)
    return N;
  return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
}
void Distribution::normalize() {
  // Early exit for termination nodes.
  if (Weights.empty())
    return;

  // Only bother if there are multiple successors.
  if (Weights.size() > 1)
    combineWeights(Weights);

  // Early exit when combined into a single successor.
  if (Weights.size() == 1) {
    Total = 1;
    ForwardTotal = Weights.front().Type != Weight::Backedge;
    Weights.front().Amount = 1;
    return;
  }

  // Determine how much to shift right so that the total fits into 32-bits.
  //
  // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
  // for each weight can cause a 32-bit overflow.
  int Shift = 0;
  if (DidOverflow)
    Shift = 33;
  else if (Total > UINT32_MAX)
    Shift = 33 - countLeadingZeros(Total);

  // Early exit if nothing needs to be scaled.
  if (!Shift)
    return;

  // Recompute the total through accumulation (rather than shifting it) so that
  // it's accurate after shifting.  ForwardTotal is dirty here anyway.
  Total = 0;
  ForwardTotal = 0;

  // Sum the weights to each node and shift right if necessary.
  for (Weight &W : Weights) {
    // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
    // can round here without concern about overflow.
    assert(W.TargetNode.isValid());
    W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
    assert(W.Amount <= UINT32_MAX);

    // Update the total.
    Total += W.Amount;
    if (W.Type == Weight::Backedge)
      continue;

    // Update the forward total.
    ForwardTotal += W.Amount;
  }
  assert(Total <= UINT32_MAX);
}

void BlockFrequencyInfoImplBase::clear() {
  *this = BlockFrequencyInfoImplBase();
}

/// \brief Clear all memory not needed downstream.
///
/// Releases all memory not used downstream.  In particular, saves Freqs.
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
  std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
  BFI.clear();
  BFI.Freqs = std::move(SavedFreqs);
}

/// \brief Get a possibly packaged node.
///
/// Get the node currently representing Node, which could be a containing
/// loop.
///
/// This function should only be called when distributing mass.  As long as
/// there are no irreducilbe edges to Node, then it will have complexity O(1)
/// in this context.
///
/// In general, the complexity is O(L), where L is the number of loop headers
/// Node has been packaged into.  Since this method is called in the context
/// of distributing mass, L will be the number of loop headers an early exit
/// edge jumps out of.
static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI,
                                 const BlockNode &Node) {
  assert(Node.isValid());
  if (!BFI.Working[Node.Index].IsPackaged)
    return Node;
  if (!BFI.Working[Node.Index].ContainingLoop.isValid())
    return Node;
  return getPackagedNode(BFI, BFI.Working[Node.Index].ContainingLoop);
}

/// \brief Get the appropriate mass for a possible pseudo-node loop package.
///
/// Get appropriate mass for Node.  If Node is a loop-header (whose loop has
/// been packaged), returns the mass of its pseudo-node.  If it's a node inside
/// a packaged loop, it returns the loop's pseudo-node.
static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI,
                                 const BlockNode &Node) {
  assert(Node.isValid());
  assert(!BFI.Working[Node.Index].IsPackaged);
  if (!BFI.Working[Node.Index].IsAPackage)
    return BFI.Working[Node.Index].Mass;

  return BFI.getLoopPackage(Node).Mass;
}

void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
                                           const BlockNode &LoopHead,
                                           const BlockNode &Pred,
                                           const BlockNode &Succ,
                                           uint64_t Weight) {
  if (!Weight)
    Weight = 1;

#ifndef NDEBUG
  auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) {
    dbgs() << "  =>"
           << " [" << Type << "] weight = " << Weight;
    if (Succ != LoopHead)
      dbgs() << ", succ = " << getBlockName(Succ);
    if (Resolved != Succ)
      dbgs() << ", resolved = " << getBlockName(Resolved);
    dbgs() << "\n";
  };
  (void)debugSuccessor;
#endif

  if (Succ == LoopHead) {
    DEBUG(debugSuccessor("backedge", Succ));
    Dist.addBackedge(LoopHead, Weight);
    return;
  }
  BlockNode Resolved = getPackagedNode(*this, Succ);
  assert(Resolved != LoopHead);

  if (Working[Resolved.Index].ContainingLoop != LoopHead) {
    DEBUG(debugSuccessor("  exit  ", Resolved));
    Dist.addExit(Resolved, Weight);
    return;
  }

  if (!LoopHead.isValid() && Resolved < Pred) {
    // Irreducible backedge.  Skip this edge in the distribution.
    DEBUG(debugSuccessor("skipped ", Resolved));
    return;
  }

  DEBUG(debugSuccessor(" local  ", Resolved));
  Dist.addLocal(Resolved, Weight);
}

void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
    const BlockNode &LoopHead, const BlockNode &LocalLoopHead,
    Distribution &Dist) {
  PackagedLoopData &LoopPackage = getLoopPackage(LocalLoopHead);
  const PackagedLoopData::ExitMap &Exits = LoopPackage.Exits;

  // Copy the exit map into Dist.
  for (const auto &I : Exits)
    addToDist(Dist, LoopHead, LocalLoopHead, I.first, I.second.getMass());

  // We don't need this map any more.  Clear it to prevent quadratic memory
  // usage in deeply nested loops with irreducible control flow.
  LoopPackage.Exits.clear();
}

/// \brief Get the maximum allowed loop scale.
///
/// Gives the maximum number of estimated iterations allowed for a loop.
/// Downstream users have trouble with very large numbers (even within
/// 64-bits).  Perhaps they can be changed to use PositiveFloat.
///
/// TODO: change downstream users so that this can be increased or removed.
static Float getMaxLoopScale() { return Float(1, 12); }

/// \brief Compute the loop scale for a loop.
void BlockFrequencyInfoImplBase::computeLoopScale(const BlockNode &LoopHead) {
  // Compute loop scale.
  DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(LoopHead) << "\n");

  // LoopScale == 1 / ExitMass
  // ExitMass == HeadMass - BackedgeMass
  PackagedLoopData &LoopPackage = getLoopPackage(LoopHead);
  BlockMass ExitMass = BlockMass::getFull() - LoopPackage.BackedgeMass;

  // Block scale stores the inverse of the scale.
  LoopPackage.Scale = ExitMass.toFloat().inverse();

  DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
               << " - " << LoopPackage.BackedgeMass << ")\n"
               << " - scale = " << LoopPackage.Scale << "\n");

  if (LoopPackage.Scale > getMaxLoopScale()) {
    LoopPackage.Scale = getMaxLoopScale();
    DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
  }
}

/// \brief Package up a loop.
void BlockFrequencyInfoImplBase::packageLoop(const BlockNode &LoopHead) {
  DEBUG(dbgs() << "packaging-loop: " << getBlockName(LoopHead) << "\n");
  Working[LoopHead.Index].IsAPackage = true;
  for (const BlockNode &M : getLoopPackage(LoopHead).Members) {
    DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
    Working[M.Index].IsPackaged = true;
  }
}

void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
                                                const BlockNode &LoopHead,
                                                Distribution &Dist) {
  BlockMass Mass = getPackageMass(*this, Source);
  DEBUG(dbgs() << "  => mass:  " << Mass
               << " (    general     |    forward     )\n");

  // Distribute mass to successors as laid out in Dist.
  DitheringDistributer D(Dist, Mass);

#ifndef NDEBUG
  auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
                         const char *Desc) {
    dbgs() << "  => assign " << M << " (" << D.RemMass << "|"
           << D.RemForwardMass << ")";
    if (Desc)
      dbgs() << " [" << Desc << "]";
    if (T.isValid())
      dbgs() << " to " << getBlockName(T);
    dbgs() << "\n";
  };
  (void)debugAssign;
#endif

  PackagedLoopData *LoopPackage = 0;
  if (LoopHead.isValid())
    LoopPackage = &getLoopPackage(LoopHead);
  for (const Weight &W : Dist.Weights) {
    // Check for a local edge (forward and non-exit).
    if (W.Type == Weight::Local) {
      BlockMass Local = D.takeLocalMass(W.Amount);
      getPackageMass(*this, W.TargetNode) += Local;
      DEBUG(debugAssign(W.TargetNode, Local, nullptr));
      continue;
    }

    // Backedges and exits only make sense if we're processing a loop.
    assert(LoopPackage && "backedge or exit outside of loop");

    // Check for a backedge.
    if (W.Type == Weight::Backedge) {
      BlockMass Back = D.takeBackedgeMass(W.Amount);
      LoopPackage->BackedgeMass += Back;
      DEBUG(debugAssign(BlockNode(), Back, "back"));
      continue;
    }

    // This must be an exit.
    assert(W.Type == Weight::Exit);
    BlockMass Exit = D.takeExitMass(W.Amount);
    LoopPackage->Exits.push_back(std::make_pair(W.TargetNode, Exit));
    DEBUG(debugAssign(W.TargetNode, Exit, "exit"));
  }
}

static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
                                     const Float &Min, const Float &Max) {
  // Scale the Factor to a size that creates integers.  Ideally, integers would
  // be scaled so that Max == UINT64_MAX so that they can be best
  // differentiated.  However, the register allocator currently deals poorly
  // with large numbers.  Instead, push Min up a little from 1 to give some
  // room to differentiate small, unequal numbers.
  //
  // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
  Float ScalingFactor = Min.inverse();
  if ((Max / Min).lg() < 60)
    ScalingFactor <<= 3;

  // Translate the floats to integers.
  DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
               << ", factor = " << ScalingFactor << "\n");
  for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
    Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
    BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
    DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
                 << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
                 << ", int = " << BFI.Freqs[Index].Integer << "\n");
  }
}

static void scaleBlockData(BlockFrequencyInfoImplBase &BFI,
                           const BlockNode &Node,
                           const PackagedLoopData &Loop) {
  Float F = Loop.Mass.toFloat() * Loop.Scale;

  Float &Current = BFI.Freqs[Node.Index].Floating;
  Float Updated = Current * F;

  DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => "
               << Updated << "\n");

  Current = Updated;
}

/// \brief Unwrap a loop package.
///
/// Visits all the members of a loop, adjusting their BlockData according to
/// the loop's pseudo-node.
static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI,
                              const BlockNode &Head) {
  assert(Head.isValid());

  PackagedLoopData &LoopPackage = BFI.getLoopPackage(Head);
  DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head)
               << ": mass = " << LoopPackage.Mass
               << ", scale = " << LoopPackage.Scale << "\n");
  scaleBlockData(BFI, Head, LoopPackage);

  // Propagate the head scale through the loop.  Since members are visited in
  // RPO, the head scale will be updated by the loop scale first, and then the
  // final head scale will be used for updated the rest of the members.
  for (const BlockNode &M : LoopPackage.Members) {
    const FrequencyData &HeadData = BFI.Freqs[Head.Index];
    FrequencyData &Freqs = BFI.Freqs[M.Index];
    Float NewFreq = Freqs.Floating * HeadData.Floating;
    DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating
                 << " => " << NewFreq << "\n");
    Freqs.Floating = NewFreq;
  }
}

void BlockFrequencyInfoImplBase::finalizeMetrics() {
  // Set initial frequencies from loop-local masses.
  for (size_t Index = 0; Index < Working.size(); ++Index)
    Freqs[Index].Floating = Working[Index].Mass.toFloat();

  // Unwrap loop packages in reverse post-order, tracking min and max
  // frequencies.
  auto Min = Float::getLargest();
  auto Max = Float::getZero();
  for (size_t Index = 0; Index < Working.size(); ++Index) {
    if (Working[Index].isLoopHeader())
      unwrapLoopPackage(*this, BlockNode(Index));

    // Update max scale.
    Min = std::min(Min, Freqs[Index].Floating);
    Max = std::max(Max, Freqs[Index].Floating);
  }

  // Convert to integers.
  convertFloatingToInteger(*this, Min, Max);

  // Clean up data structures.
  cleanup(*this);

  // Print out the final stats.
  DEBUG(dump());
}

BlockFrequency
BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
  if (!Node.isValid())
    return 0;
  return Freqs[Node.Index].Integer;
}
Float
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
  if (!Node.isValid())
    return Float::getZero();
  return Freqs[Node.Index].Floating;
}

std::string
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
  return std::string();
}

raw_ostream &
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
                                           const BlockNode &Node) const {
  return OS << getFloatingBlockFreq(Node);
}

raw_ostream &
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
                                           const BlockFrequency &Freq) const {
  Float Block(Freq.getFrequency(), 0);
  Float Entry(getEntryFreq(), 0);

  return OS << Block / Entry;
}