summaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure/BottomUpClosure.cpp
blob: 9f2124a1bb57178a78f6459545a3f6fa4b46cf17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the BUDataStructures class, which represents the
// Bottom-Up Interprocedural closure of the data structure graph over the
// program.  This is useful for applications like pool allocation, but **not**
// applications like alias analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Module.h"
#include "Support/Statistic.h"
#include "Support/Debug.h"
#include "DSCallSiteIterator.h"
using namespace llvm;

namespace {
  Statistic<> MaxSCC("budatastructure", "Maximum SCC Size in Call Graph");
  Statistic<> NumBUInlines("budatastructures", "Number of graphs inlined");
  Statistic<> NumCallEdges("budatastructures", "Number of 'actual' call edges");
  
  RegisterAnalysis<BUDataStructures>
  X("budatastructure", "Bottom-up Data Structure Analysis");
}

using namespace DS;

// run - Calculate the bottom up data structure graphs for each function in the
// program.
//
bool BUDataStructures::run(Module &M) {
  LocalDataStructures &LocalDSA = getAnalysis<LocalDataStructures>();
  GlobalsGraph = new DSGraph(LocalDSA.getGlobalsGraph());
  GlobalsGraph->setPrintAuxCalls();

  Function *MainFunc = M.getMainFunction();
  if (MainFunc)
    calculateReachableGraphs(MainFunc);

  // Calculate the graphs for any functions that are unreachable from main...
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    if (!I->isExternal() && !DSInfo.count(I)) {
#ifndef NDEBUG
      if (MainFunc)
        std::cerr << "*** Function unreachable from main: "
                  << I->getName() << "\n";
#endif
      calculateReachableGraphs(I);    // Calculate all graphs...
    }

  NumCallEdges += ActualCallees.size();

  // At the end of the bottom-up pass, the globals graph becomes complete.
  // FIXME: This is not the right way to do this, but it is sorta better than
  // nothing!  In particular, externally visible globals and unresolvable call
  // nodes at the end of the BU phase should make things that they point to
  // incomplete in the globals graph.
  // 
  GlobalsGraph->removeTriviallyDeadNodes();
  GlobalsGraph->maskIncompleteMarkers();
  return false;
}

void BUDataStructures::calculateReachableGraphs(Function *F) {
  std::vector<Function*> Stack;
  hash_map<Function*, unsigned> ValMap;
  unsigned NextID = 1;
  calculateGraphs(F, Stack, NextID, ValMap);
}

DSGraph &BUDataStructures::getOrCreateGraph(Function *F) {
  // Has the graph already been created?
  DSGraph *&Graph = DSInfo[F];
  if (Graph) return *Graph;

  // Copy the local version into DSInfo...
  Graph = new DSGraph(getAnalysis<LocalDataStructures>().getDSGraph(*F));

  Graph->setGlobalsGraph(GlobalsGraph);
  Graph->setPrintAuxCalls();

  // Start with a copy of the original call sites...
  Graph->getAuxFunctionCalls() = Graph->getFunctionCalls();
  return *Graph;
}

unsigned BUDataStructures::calculateGraphs(Function *F,
                                           std::vector<Function*> &Stack,
                                           unsigned &NextID, 
                                     hash_map<Function*, unsigned> &ValMap) {
  assert(!ValMap.count(F) && "Shouldn't revisit functions!");
  unsigned Min = NextID++, MyID = Min;
  ValMap[F] = Min;
  Stack.push_back(F);

  // FIXME!  This test should be generalized to be any function that we have
  // already processed, in the case when there isn't a main or there are
  // unreachable functions!
  if (F->isExternal()) {   // sprintf, fprintf, sscanf, etc...
    // No callees!
    Stack.pop_back();
    ValMap[F] = ~0;
    return Min;
  }

  DSGraph &Graph = getOrCreateGraph(F);

  // The edges out of the current node are the call site targets...
  for (DSCallSiteIterator I = DSCallSiteIterator::begin_aux(Graph),
         E = DSCallSiteIterator::end_aux(Graph); I != E; ++I) {
    Function *Callee = *I;
    unsigned M;
    // Have we visited the destination function yet?
    hash_map<Function*, unsigned>::iterator It = ValMap.find(Callee);
    if (It == ValMap.end())  // No, visit it now.
      M = calculateGraphs(Callee, Stack, NextID, ValMap);
    else                    // Yes, get it's number.
      M = It->second;
    if (M < Min) Min = M;
  }

  assert(ValMap[F] == MyID && "SCC construction assumption wrong!");
  if (Min != MyID)
    return Min;         // This is part of a larger SCC!

  // If this is a new SCC, process it now.
  if (Stack.back() == F) {           // Special case the single "SCC" case here.
    DEBUG(std::cerr << "Visiting single node SCC #: " << MyID << " fn: "
                    << F->getName() << "\n");
    Stack.pop_back();
    DSGraph &G = getDSGraph(*F);
    DEBUG(std::cerr << "  [BU] Calculating graph for: " << F->getName()<< "\n");
    calculateGraph(G);
    DEBUG(std::cerr << "  [BU] Done inlining: " << F->getName() << " ["
                    << G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
                    << "]\n");

    if (MaxSCC < 1) MaxSCC = 1;

    // Should we revisit the graph?
    if (DSCallSiteIterator::begin_aux(G) != DSCallSiteIterator::end_aux(G)) {
      ValMap.erase(F);
      return calculateGraphs(F, Stack, NextID, ValMap);
    } else {
      ValMap[F] = ~0U;
    }
    return MyID;

  } else {
    // SCCFunctions - Keep track of the functions in the current SCC
    //
    hash_set<DSGraph*> SCCGraphs;

    Function *NF;
    std::vector<Function*>::iterator FirstInSCC = Stack.end();
    DSGraph *SCCGraph = 0;
    do {
      NF = *--FirstInSCC;
      ValMap[NF] = ~0U;

      // Figure out which graph is the largest one, in order to speed things up
      // a bit in situations where functions in the SCC have widely different
      // graph sizes.
      DSGraph &NFGraph = getDSGraph(*NF);
      SCCGraphs.insert(&NFGraph);
      // FIXME: If we used a better way of cloning graphs (ie, just splice all
      // of the nodes into the new graph), this would be completely unneeded!
      if (!SCCGraph || SCCGraph->getGraphSize() < NFGraph.getGraphSize())
        SCCGraph = &NFGraph;
    } while (NF != F);

    std::cerr << "Calculating graph for SCC #: " << MyID << " of size: "
              << SCCGraphs.size() << "\n";

    // Compute the Max SCC Size...
    if (MaxSCC < SCCGraphs.size())
      MaxSCC = SCCGraphs.size();

    // First thing first, collapse all of the DSGraphs into a single graph for
    // the entire SCC.  We computed the largest graph, so clone all of the other
    // (smaller) graphs into it.  Discard all of the old graphs.
    //
    for (hash_set<DSGraph*>::iterator I = SCCGraphs.begin(),
           E = SCCGraphs.end(); I != E; ++I) {
      DSGraph &G = **I;
      if (&G != SCCGraph) {
        {
          DSGraph::NodeMapTy NodeMap;
          SCCGraph->cloneInto(G, SCCGraph->getScalarMap(),
                              SCCGraph->getReturnNodes(), NodeMap);
        }
        // Update the DSInfo map and delete the old graph...
        for (DSGraph::ReturnNodesTy::iterator I = G.getReturnNodes().begin(),
               E = G.getReturnNodes().end(); I != E; ++I)
          DSInfo[I->first] = SCCGraph;
        delete &G;
      }
    }

    // Clean up the graph before we start inlining a bunch again...
    SCCGraph->removeDeadNodes(DSGraph::RemoveUnreachableGlobals);

    // Now that we have one big happy family, resolve all of the call sites in
    // the graph...
    calculateGraph(*SCCGraph);
    DEBUG(std::cerr << "  [BU] Done inlining SCC  [" << SCCGraph->getGraphSize()
                    << "+" << SCCGraph->getAuxFunctionCalls().size() << "]\n");

    std::cerr << "DONE with SCC #: " << MyID << "\n";

    // We never have to revisit "SCC" processed functions...
    
    // Drop the stuff we don't need from the end of the stack
    Stack.erase(FirstInSCC, Stack.end());
    return MyID;
  }

  return MyID;  // == Min
}


// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void BUDataStructures::releaseMemory() {
  for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
         E = DSInfo.end(); I != E; ++I) {
    I->second->getReturnNodes().erase(I->first);
    if (I->second->getReturnNodes().empty())
      delete I->second;
  }

  // Empty map so next time memory is released, data structures are not
  // re-deleted.
  DSInfo.clear();
  delete GlobalsGraph;
  GlobalsGraph = 0;
}

void BUDataStructures::calculateGraph(DSGraph &Graph) {
  // Move our call site list into TempFCs so that inline call sites go into the
  // new call site list and doesn't invalidate our iterators!
  std::vector<DSCallSite> TempFCs;
  std::vector<DSCallSite> &AuxCallsList = Graph.getAuxFunctionCalls();
  TempFCs.swap(AuxCallsList);

  DSGraph::ReturnNodesTy &ReturnNodes = Graph.getReturnNodes();

  // Loop over all of the resolvable call sites
  unsigned LastCallSiteIdx = ~0U;
  for (DSCallSiteIterator I = DSCallSiteIterator::begin(TempFCs),
         E = DSCallSiteIterator::end(TempFCs); I != E; ++I) {
    // If we skipped over any call sites, they must be unresolvable, copy them
    // to the real call site list.
    LastCallSiteIdx++;
    for (; LastCallSiteIdx < I.getCallSiteIdx(); ++LastCallSiteIdx)
      AuxCallsList.push_back(TempFCs[LastCallSiteIdx]);
    LastCallSiteIdx = I.getCallSiteIdx();
    
    // Resolve the current call...
    Function *Callee = *I;
    DSCallSite CS = I.getCallSite();

    if (Callee->isExternal()) {
      // Ignore this case, simple varargs functions we cannot stub out!
    } else if (ReturnNodes.count(Callee)) {
      // Self recursion... simply link up the formal arguments with the
      // actual arguments...
      DEBUG(std::cerr << "    Self Inlining: " << Callee->getName() << "\n");

      // Handle self recursion by resolving the arguments and return value
      Graph.mergeInGraph(CS, *Callee, Graph, 0);

    } else {
      ActualCallees.insert(std::make_pair(CS.getCallSite().getInstruction(),
                                          Callee));

      // Get the data structure graph for the called function.
      //
      DSGraph &GI = getDSGraph(*Callee);  // Graph to inline

      DEBUG(std::cerr << "    Inlining graph for " << Callee->getName()
            << "[" << GI.getGraphSize() << "+"
            << GI.getAuxFunctionCalls().size() << "] into '"
            << Graph.getFunctionNames() << "' [" << Graph.getGraphSize() << "+"
            << Graph.getAuxFunctionCalls().size() << "]\n");
      Graph.mergeInGraph(CS, *Callee, GI,
                         DSGraph::KeepModRefBits | 
                         DSGraph::StripAllocaBit | DSGraph::DontCloneCallNodes);
      ++NumBUInlines;

#if 0
      Graph.writeGraphToFile(std::cerr, "bu_" + F.getName() + "_after_" +
                             Callee->getName());
#endif
    }
  }

  // Make sure to catch any leftover unresolvable calls...
  for (++LastCallSiteIdx; LastCallSiteIdx < TempFCs.size(); ++LastCallSiteIdx)
    AuxCallsList.push_back(TempFCs[LastCallSiteIdx]);

  TempFCs.clear();

  // Recompute the Incomplete markers
  assert(Graph.getInlinedGlobals().empty());
  Graph.maskIncompleteMarkers();
  Graph.markIncompleteNodes(DSGraph::MarkFormalArgs);

  // Delete dead nodes.  Treat globals that are unreachable but that can
  // reach live nodes as live.
  Graph.removeDeadNodes(DSGraph::KeepUnreachableGlobals);

  // When this graph is finalized, clone the globals in the graph into the
  // globals graph to make sure it has everything, from all graphs.
  DSScalarMap &MainSM = Graph.getScalarMap();
  ReachabilityCloner RC(*GlobalsGraph, Graph, DSGraph::StripAllocaBit);

  // Clone everything reachable from globals in the "main" graph into the
  // globals graph.
  for (DSScalarMap::global_iterator I = MainSM.global_begin(),
         E = MainSM.global_end(); I != E; ++I) 
    RC.getClonedNH(MainSM[*I]);

  //Graph.writeGraphToFile(std::cerr, "bu_" + F.getName());
}