summaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure/DataStructure.cpp
blob: 800c82ad9823e927f8d9790feed8e58907f05477 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//

#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "Support/STLExtras.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
#include "llvm/Analysis/DataStructure.h"

AnalysisID LocalDataStructures::ID(AnalysisID::create<LocalDataStructures>());

//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//

DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) {
  // If this node has any fields, allocate them now, but leave them null.
  switch (T->getPrimitiveID()) {
  case Type::PointerTyID: Links.resize(1); break;
  case Type::ArrayTyID:   Links.resize(1); break;
  case Type::StructTyID:
    Links.resize(cast<StructType>(T)->getNumContainedTypes());
    break;
  default: break;
  }
}

// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
  : Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) {
}

void DSNode::removeReferrer(DSNodeHandle *H) {
  // Search backwards, because we depopulate the list from the back for
  // efficiency (because it's a vector).
  std::vector<DSNodeHandle*>::reverse_iterator I =
    std::find(Referrers.rbegin(), Referrers.rend(), H);
  assert(I != Referrers.rend() && "Referrer not pointing to node!");
  Referrers.erase(I.base()-1);
}

// addGlobal - Add an entry for a global value to the Globals list.  This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
  // Keep the list sorted.
  std::vector<GlobalValue*>::iterator I =
    std::lower_bound(Globals.begin(), Globals.end(), GV);

  if (I == Globals.end() || *I != GV) {
    assert(GV->getType()->getElementType() == Ty);
    Globals.insert(I, GV);
    NodeType |= GlobalNode;
  }
}


// addEdgeTo - Add an edge from the current node to the specified node.  This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned LinkNo, DSNode *N) {
  assert(LinkNo < Links.size() && "LinkNo out of range!");
  if (N == 0 || Links[LinkNo] == N) return;  // Nothing to do
  if (Links[LinkNo] == 0) {                  // No merging to perform
    Links[LinkNo] = N;
    return;
  }

  // Merge the two nodes...
  Links[LinkNo]->mergeWith(N);
}


// mergeWith - Merge this node into the specified node, moving all links to and
// from the argument node into the current node.  The specified node may be a
// null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(DSNode *N) {
  if (N == 0 || N == this) return;  // Noop
  assert(N->Ty == Ty && N->Links.size() == Links.size() &&
         "Cannot merge nodes of two different types!");

  // Remove all edges pointing at N, causing them to point to 'this' instead.
  while (!N->Referrers.empty())
    *N->Referrers.back() = this;

  // Make all of the outgoing links of N now be outgoing links of this.  This
  // can cause recursive merging!
  //
  for (unsigned i = 0, e = Links.size(); i != e; ++i) {
    addEdgeTo(i, N->Links[i]);
    N->Links[i] = 0;  // Reduce unneccesary edges in graph. N is dead
  }

  // Merge the node types
  NodeType |= N->NodeType;
  N->NodeType = 0;   // N is now a dead node.

  // Merge the globals list...
  if (!N->Globals.empty()) {
    // Save the current globals off to the side...
    std::vector<GlobalValue*> OldGlobals(Globals);

    // Resize the globals vector to be big enough to hold both of them...
    Globals.resize(Globals.size()+N->Globals.size());

    // Merge the two sorted globals lists together...
    std::merge(OldGlobals.begin(), OldGlobals.end(),
               N->Globals.begin(), N->Globals.end(), Globals.begin());

    // Erase duplicate entries from the globals list...
    Globals.erase(std::unique(Globals.begin(), Globals.end()), Globals.end());

    // Delete the globals from the old node...
    N->Globals.clear();
  }
}

//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//

DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
  RetNode = cloneInto(G, ValueMap, false);
}

DSGraph::~DSGraph() {
  FunctionCalls.clear();
  ValueMap.clear();
  RetNode = 0;

#ifndef NDEBUG
  // Drop all intra-node references, so that assertions don't fail...
  std::for_each(Nodes.begin(), Nodes.end(),
                std::mem_fun(&DSNode::dropAllReferences));
#endif

  // Delete all of the nodes themselves...
  std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}

// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }

// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph.  The translated ValueMap for the old function is
// filled into the OldValMap member.  If StripLocals is set to true, Scalar and
// Alloca markers are removed from the graph, as the graph is being cloned into
// a calling function's graph.
//
DSNode *DSGraph::cloneInto(const DSGraph &G, 
                           std::map<Value*, DSNodeHandle> &OldValMap,
                           bool StripLocals) {
  std::map<const DSNode*, DSNode*> NodeMap;
  NodeMap[0] = 0;  // Null pointer maps to null

  unsigned FN = Nodes.size();  // FirstNode...

  // Duplicate all of the nodes, populating the node map...
  Nodes.reserve(FN+G.Nodes.size());
  for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
    DSNode *Old = G.Nodes[i], *New = new DSNode(*Old);
    Nodes.push_back(New);
    NodeMap[Old] = New;
  }

  // Rewrite the links in the nodes to point into the current graph now.
  for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
    for (unsigned j = 0, e = Nodes[i]->getNumLinks(); j != e; ++j)
      Nodes[i]->setLink(j, NodeMap[Nodes[i]->getLink(j)]);

  // If we are inlining this graph into the called function graph, remove local
  // markers.
  if (StripLocals)
    for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
      Nodes[i]->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);

  // Copy the value map...
  for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
         E = G.ValueMap.end(); I != E; ++I)
    OldValMap[I->first] = NodeMap[I->second];

  // Copy the function calls list...
  unsigned FC = FunctionCalls.size();  // FirstCall
  FunctionCalls.reserve(FC+G.FunctionCalls.size());
  for (unsigned i = 0, e = G.FunctionCalls.size(); i != e; ++i) {
    FunctionCalls.push_back(std::vector<DSNodeHandle>());
    FunctionCalls[FC+i].reserve(G.FunctionCalls[i].size());
    for (unsigned j = 0, e = G.FunctionCalls[i].size(); j != e; ++j)
      FunctionCalls[FC+i].push_back(NodeMap[G.FunctionCalls[i][j]]);
  }

  // Return the returned node pointer...
  return NodeMap[G.RetNode];
}


// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed.  Because a node makes all
// of the nodes it can reach imcomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
  // Stop recursion if no node, or if node already marked...
  if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;

  // Actually mark the node
  N->NodeType |= DSNode::Incomplete;

  // Recusively process children...
  for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
    markIncompleteNode(N->getLink(i));
}


// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet.  This marks
// nodes that are reachable through three sources of "unknownness":
//
//  Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes() {
  // Mark any incoming arguments as incomplete...
  for (Function::aiterator I = Func.abegin(), E = Func.aend(); I != E; ++I)
    if (isa<PointerType>(I->getType()))
      markIncompleteNode(ValueMap[I]->getLink(0));

  // Mark stuff passed into functions calls as being incomplete...
  for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
    std::vector<DSNodeHandle> &Args = FunctionCalls[i];
    if (Args[0])                // If the call returns a pointer...
      // Then the return value is certainly incomplete!
      markIncompleteNode(Args[0]);

    // The call does not make the function argument incomplete...
 
    // All arguments to the function call are incomplete though!
    for (unsigned i = 2, e = Args.size(); i != e; ++i)
      markIncompleteNode(Args[i]);
  }

  // Mark all of the nodes pointed to by global nodes as incomplete...
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    if (Nodes[i]->NodeType & DSNode::GlobalNode) {
      DSNode *N = Nodes[i];
      for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
        markIncompleteNode(N->getLink(i));
    }
}

// isNodeDead - This method checks to see if a node is dead, and if it isn't, it
// checks to see if there are simple transformations that it can do to make it
// dead.
//
bool DSGraph::isNodeDead(DSNode *N) {
  // Is it a trivially dead shadow node...
  if (N->getReferrers().empty() && N->NodeType == 0)
    return true;

  // Is it a function node or some other trivially unused global?
  if ((N->NodeType & ~DSNode::GlobalNode) == 0 && 
      N->getNumLinks() == 0 &&
      N->getReferrers().size() == N->getGlobals().size()) {

    // Remove the globals from the valuemap, so that the referrer count will go
    // down to zero.
    while (!N->getGlobals().empty()) {
      GlobalValue *GV = N->getGlobals().back();
      N->getGlobals().pop_back();      
      ValueMap.erase(GV);
    }
    assert(N->getReferrers().empty() && "Referrers should all be gone now!");
    return true;
  }

  return false;
}


// removeDeadNodes - After the graph has been constructed, this method removes
// all unreachable nodes that are created because they got merged with other
// nodes in the graph.  These nodes will all be trivially unreachable, so we
// don't have to perform any non-trivial analysis here.
//
void DSGraph::removeDeadNodes() {
  for (unsigned i = 0; i != Nodes.size(); ++i)
    if (isNodeDead(Nodes[i])) {               // This node is dead!
      delete Nodes[i];                        // Free memory...
      Nodes.erase(Nodes.begin()+i--);         // Remove from node list...
    }

  // Remove identical function calls
  unsigned NumFns = FunctionCalls.size();
  std::sort(FunctionCalls.begin(), FunctionCalls.end());
  FunctionCalls.erase(std::unique(FunctionCalls.begin(), FunctionCalls.end()),
                      FunctionCalls.end());

  DEBUG(if (NumFns != FunctionCalls.size())
        std::cerr << "Merged " << (NumFns-FunctionCalls.size())
        << " call nodes in " << Func.getName() << "\n";);
}


// maskNodeTypes - Apply a mask to all of the node types in the graph.  This
// is useful for clearing out markers like Scalar or Incomplete.
//
void DSGraph::maskNodeTypes(unsigned char Mask) {
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    Nodes[i]->NodeType &= Mask;
}


//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//

// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void LocalDataStructures::releaseMemory() {
  for (std::map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
         E = DSInfo.end(); I != E; ++I)
    delete I->second;

  // Empty map so next time memory is released, data structures are not
  // re-deleted.
  DSInfo.clear();
}

bool LocalDataStructures::run(Module &M) {
  // Calculate all of the graphs...
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    if (!I->isExternal())
      DSInfo.insert(std::make_pair(&*I, new DSGraph(*I)));

  return false;
}