summaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure/DataStructureAA.cpp
blob: 65b9b129f32730cf81491d732aa6c25f49dfaf22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//===- DataStructureAA.cpp - Data Structure Based Alias Analysis ----------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This pass uses the top-down data structure graphs to implement a simple
// context sensitive alias analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
using namespace llvm;

namespace {
  class DSAA : public ModulePass, public AliasAnalysis {
    TDDataStructures *TD;
    BUDataStructures *BU;

    // These members are used to cache mod/ref information to make us return
    // results faster, particularly for aa-eval.  On the first request of
    // mod/ref information for a particular call site, we compute and store the
    // calculated nodemap for the call site.  Any time DSA info is updated we
    // free this information, and when we move onto a new call site, this
    // information is also freed.
    CallSite MapCS;
    std::multimap<DSNode*, const DSNode*> CallerCalleeMap;
  public:
    DSAA() : TD(0) {}
    ~DSAA() {
      InvalidateCache();
    }

    void InvalidateCache() {
      MapCS = CallSite();
      CallerCalleeMap.clear();
    }

    //------------------------------------------------
    // Implement the Pass API
    //

    // run - Build up the result graph, representing the pointer graph for the
    // program.
    //
    bool runOnModule(Module &M) {
      InitializeAliasAnalysis(this);
      TD = &getAnalysis<TDDataStructures>();
      BU = &getAnalysis<BUDataStructures>();
      return false;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AliasAnalysis::getAnalysisUsage(AU);
      AU.setPreservesAll();                         // Does not transform code
      AU.addRequiredTransitive<TDDataStructures>(); // Uses TD Datastructures
      AU.addRequiredTransitive<BUDataStructures>(); // Uses BU Datastructures
    }

    //------------------------------------------------
    // Implement the AliasAnalysis API
    //  

    AliasResult alias(const Value *V1, unsigned V1Size,
                      const Value *V2, unsigned V2Size);

    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
      return AliasAnalysis::getModRefInfo(CS1,CS2);
    }

    virtual void deleteValue(Value *V) {
      InvalidateCache();
      BU->deleteValue(V);
      TD->deleteValue(V);
    }

    virtual void copyValue(Value *From, Value *To) {
      if (From == To) return;
      InvalidateCache();
      BU->copyValue(From, To);
      TD->copyValue(From, To);
    }

  private:
    DSGraph *getGraphForValue(const Value *V);
  };

  // Register the pass...
  RegisterOpt<DSAA> X("ds-aa", "Data Structure Graph Based Alias Analysis");

  // Register as an implementation of AliasAnalysis
  RegisterAnalysisGroup<AliasAnalysis, DSAA> Y;
}

ModulePass *llvm::createDSAAPass() { return new DSAA(); }

// getGraphForValue - Return the DSGraph to use for queries about the specified
// value...
//
DSGraph *DSAA::getGraphForValue(const Value *V) {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    return &TD->getDSGraph(*I->getParent()->getParent());
  else if (const Argument *A = dyn_cast<Argument>(V))
    return &TD->getDSGraph(*A->getParent());
  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    return &TD->getDSGraph(*BB->getParent());
  return 0;
}

AliasAnalysis::AliasResult DSAA::alias(const Value *V1, unsigned V1Size,
                                       const Value *V2, unsigned V2Size) {
  if (V1 == V2) return MustAlias;

  DSGraph *G1 = getGraphForValue(V1);
  DSGraph *G2 = getGraphForValue(V2);
  assert((!G1 || !G2 || G1 == G2) && "Alias query for 2 different functions?");
  
  // Get the graph to use...
  DSGraph &G = *(G1 ? G1 : (G2 ? G2 : &TD->getGlobalsGraph()));

  const DSGraph::ScalarMapTy &GSM = G.getScalarMap();
  DSGraph::ScalarMapTy::const_iterator I = GSM.find((Value*)V1);
  if (I == GSM.end()) return NoAlias;
    
  DSGraph::ScalarMapTy::const_iterator J = GSM.find((Value*)V2);
  if (J == GSM.end()) return NoAlias;

  DSNode  *N1 = I->second.getNode(),  *N2 = J->second.getNode();
  unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
  if (N1 == 0 || N2 == 0)
    // Can't tell whether anything aliases null.
    return AliasAnalysis::alias(V1, V1Size, V2, V2Size);

  // We can only make a judgment if one of the nodes is complete.
  if (N1->isComplete() || N2->isComplete()) {
    if (N1 != N2)
      return NoAlias;   // Completely different nodes.

    // See if they point to different offsets...  if so, we may be able to
    // determine that they do not alias...
    if (O1 != O2) {
      if (O2 < O1) {    // Ensure that O1 <= O2
        std::swap(V1, V2);
        std::swap(O1, O2);
        std::swap(V1Size, V2Size);
      }

      if (O1+V1Size <= O2)
        return NoAlias;
    }
  }

  // FIXME: we could improve on this by checking the globals graph for aliased
  // global queries...
  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}

/// getModRefInfo - does a callsite modify or reference a value?
///
AliasAnalysis::ModRefResult
DSAA::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
  DSNode *N = 0;
  // First step, check our cache.
  if (CS.getInstruction() == MapCS.getInstruction()) {
    {
      const Function *Caller = CS.getInstruction()->getParent()->getParent();
      DSGraph &CallerTDGraph = TD->getDSGraph(*Caller);

      // Figure out which node in the TD graph this pointer corresponds to.
      DSScalarMap &CallerSM = CallerTDGraph.getScalarMap();
      DSScalarMap::iterator NI = CallerSM.find(P);
      if (NI == CallerSM.end()) {
        InvalidateCache();
        return DSAA::getModRefInfo(CS, P, Size);
      }
      N = NI->second.getNode();
    }

  HaveMappingInfo:
    assert(N && "Null pointer in scalar map??");
   
    typedef std::multimap<DSNode*, const DSNode*>::iterator NodeMapIt;
    std::pair<NodeMapIt, NodeMapIt> Range = CallerCalleeMap.equal_range(N);
    
    // Loop over all of the nodes in the callee that correspond to "N", keeping
    // track of aggregate mod/ref info.
    bool NeverReads = true, NeverWrites = true;
    for (; Range.first != Range.second; ++Range.first) {
      if (Range.first->second->isModified())
        NeverWrites = false;
      if (Range.first->second->isRead())
        NeverReads = false;
      if (NeverReads == false && NeverWrites == false)
        return AliasAnalysis::getModRefInfo(CS, P, Size);
    }
    
    ModRefResult Result = ModRef;
    if (NeverWrites)      // We proved it was not modified.
      Result = ModRefResult(Result & ~Mod);
    if (NeverReads)       // We proved it was not read.
      Result = ModRefResult(Result & ~Ref);
    
    return ModRefResult(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
  }

  // Any cached info we have is for the wrong function.
  InvalidateCache();

  Function *F = CS.getCalledFunction();

  if (!F) return AliasAnalysis::getModRefInfo(CS, P, Size);

  if (F->isExternal()) {
    // If we are calling an external function, and if this global doesn't escape
    // the portion of the program we have analyzed, we can draw conclusions
    // based on whether the global escapes the program.
    Function *Caller = CS.getInstruction()->getParent()->getParent();
    DSGraph *G = &TD->getDSGraph(*Caller);
    DSScalarMap::iterator NI = G->getScalarMap().find(P);
    if (NI == G->getScalarMap().end()) {
      // If it wasn't in the local function graph, check the global graph.  This
      // can occur for globals who are locally reference but hoisted out to the
      // globals graph despite that.
      G = G->getGlobalsGraph();
      NI = G->getScalarMap().find(P);
      if (NI == G->getScalarMap().end())
        return AliasAnalysis::getModRefInfo(CS, P, Size);
    }

    // If we found a node and it's complete, it cannot be passed out to the
    // called function.
    if (NI->second.getNode()->isComplete())
      return NoModRef;
    return AliasAnalysis::getModRefInfo(CS, P, Size);
  }

  // Get the graphs for the callee and caller.  Note that we want the BU graph
  // for the callee because we don't want all caller's effects incorporated!
  const Function *Caller = CS.getInstruction()->getParent()->getParent();
  DSGraph &CallerTDGraph = TD->getDSGraph(*Caller);
  DSGraph &CalleeBUGraph = BU->getDSGraph(*F);

  // Figure out which node in the TD graph this pointer corresponds to.
  DSScalarMap &CallerSM = CallerTDGraph.getScalarMap();
  DSScalarMap::iterator NI = CallerSM.find(P);
  if (NI == CallerSM.end()) {
    ModRefResult Result = ModRef;
    if (isa<ConstantPointerNull>(P) || isa<UndefValue>(P))
      return NoModRef;                 // null is never modified :)
    else {
      assert(isa<GlobalVariable>(P) &&
    cast<GlobalVariable>(P)->getType()->getElementType()->isFirstClassType() &&
             "This isn't a global that DSA inconsiderately dropped "
             "from the graph?");

      DSGraph &GG = *CallerTDGraph.getGlobalsGraph();
      DSScalarMap::iterator NI = GG.getScalarMap().find(P);
      if (NI != GG.getScalarMap().end() && !NI->second.isNull()) {
        // Otherwise, if the node is only M or R, return this.  This can be
        // useful for globals that should be marked const but are not.
        DSNode *N = NI->second.getNode();
        if (!N->isModified())
          Result = (ModRefResult)(Result & ~Mod);
        if (!N->isRead())
          Result = (ModRefResult)(Result & ~Ref);
      }
    }

    if (Result == NoModRef) return Result;
    return ModRefResult(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
  }

  // Compute the mapping from nodes in the callee graph to the nodes in the
  // caller graph for this call site.
  DSGraph::NodeMapTy CalleeCallerMap;
  DSCallSite DSCS = CallerTDGraph.getDSCallSiteForCallSite(CS);
  CallerTDGraph.computeCalleeCallerMapping(DSCS, *F, CalleeBUGraph,
                                           CalleeCallerMap);

  // Remember the mapping and the call site for future queries.
  MapCS = CS;

  // Invert the mapping into CalleeCallerInvMap.
  for (DSGraph::NodeMapTy::iterator I = CalleeCallerMap.begin(),
         E = CalleeCallerMap.end(); I != E; ++I)
    CallerCalleeMap.insert(std::make_pair(I->second.getNode(), I->first));

  N = NI->second.getNode();
  goto HaveMappingInfo;
}