summaryrefslogtreecommitdiff
path: root/lib/Analysis/InductionVariable.cpp
blob: 3119d31ded625585c8589116a5fa8ed562de331e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//===- InductionVariable.cpp - Induction variable classification ----------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements identification and classification of induction 
// variables.  Induction variables must contain a PHI node that exists in a 
// loop header.  Because of this, they are identified an managed by this PHI 
// node.
//
// Induction variables are classified into a type.  Knowing that an induction
// variable is of a specific type can constrain the values of the start and
// step.  For example, a SimpleLinear induction variable must have a start and
// step values that are constants.
//
// Induction variables can be created with or without loop information.  If no
// loop information is available, induction variables cannot be recognized to be
// more than SimpleLinear variables.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/BasicBlock.h"
#include "llvm/iPHINode.h"
#include "llvm/iOperators.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "Support/Debug.h"

static bool isLoopInvariant(const Value *V, const Loop *L) {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    return !L->contains(I->getParent());
  // non-instructions all dominate instructions/blocks
  return true;
}

enum InductionVariable::iType
InductionVariable::Classify(const Value *Start, const Value *Step,
                            const Loop *L) {
  // Check for canonical and simple linear expressions now...
  if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
    if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
      if (CStart->isNullValue() && CStep->equalsInt(1))
        return Canonical;
      else
        return SimpleLinear;
    }

  // Without loop information, we cannot do any better, so bail now...
  if (L == 0) return Unknown;

  if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
    return Linear;
  return Unknown;
}

// Create an induction variable for the specified value.  If it is a PHI, and
// if it's recognizable, classify it and fill in instance variables.
//
InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
  InductionType = Unknown;     // Assume the worst
  Phi = P;
  
  // If the PHI node has more than two predecessors, we don't know how to
  // handle it.
  //
  if (Phi->getNumIncomingValues() != 2) return;

  // FIXME: Handle FP induction variables.
  if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
    return;

  // If we have loop information, make sure that this PHI node is in the header
  // of a loop...
  //
  const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
  if (L && L->getHeader() != Phi->getParent())
    return;

  Value *V1 = Phi->getIncomingValue(0);
  Value *V2 = Phi->getIncomingValue(1);

  if (L == 0) {  // No loop information?  Base everything on expression analysis
    ExprType E1 = ClassifyExpression(V1);
    ExprType E2 = ClassifyExpression(V2);

    if (E1.ExprTy > E2.ExprTy)        // Make E1 be the simpler expression
      std::swap(E1, E2);
    
    // E1 must be a constant incoming value, and E2 must be a linear expression
    // with respect to the PHI node.
    //
    if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
        E2.Var != Phi)
      return;

    // Okay, we have found an induction variable. Save the start and step values
    const Type *ETy = Phi->getType();
    if (isa<PointerType>(ETy)) ETy = Type::ULongTy;

    Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
    Step  = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
  } else {
    // Okay, at this point, we know that we have loop information...

    // Make sure that V1 is the incoming value, and V2 is from the backedge of
    // the loop.
    if (L->contains(Phi->getIncomingBlock(0)))     // Wrong order.  Swap now.
      std::swap(V1, V2);
    
    Start = V1;     // We know that Start has to be loop invariant...
    Step = 0;

    if (V2 == Phi) {  // referencing the PHI directly?  Must have zero step
      Step = Constant::getNullValue(Phi->getType());
    } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
      // TODO: This could be much better...
      if (I->getOpcode() == Instruction::Add) {
        if (I->getOperand(0) == Phi)
          Step = I->getOperand(1);
        else if (I->getOperand(1) == Phi)
          Step = I->getOperand(0);
      }
    }

    if (Step == 0) {                  // Unrecognized step value...
      ExprType StepE = ClassifyExpression(V2);
      if (StepE.ExprTy != ExprType::Linear ||
          StepE.Var != Phi) return;

      const Type *ETy = Phi->getType();
      if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
      Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
    } else {   // We were able to get a step value, simplify with expr analysis
      ExprType StepE = ClassifyExpression(Step);
      if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
        // No offset from variable?  Grab the variable
        Step = StepE.Var;
      } else if (StepE.ExprTy == ExprType::Constant) {
        if (StepE.Offset)
          Step = (Value*)StepE.Offset;
        else
          Step = Constant::getNullValue(Step->getType());
        const Type *ETy = Phi->getType();
        if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
        Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
      }
    }
  }

  // Classify the induction variable type now...
  InductionType = InductionVariable::Classify(Start, Step, L);
}


Value *InductionVariable::getExecutionCount(LoopInfo *LoopInfo) {
  if (InductionType != Canonical) return 0;

  DEBUG(std::cerr << "entering getExecutionCount\n");

  // Don't recompute if already available
  if (End) {
    DEBUG(std::cerr << "returning cached End value.\n");
    return End;
  }

  const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
  if (!L) {
    DEBUG(std::cerr << "null loop. oops\n");
    return 0;
  }

  // >1 backedge => cannot predict number of iterations
  if (Phi->getNumIncomingValues() != 2) {
    DEBUG(std::cerr << ">2 incoming values. oops\n");
    return 0;
  }

  // Find final node: predecessor of the loop header that's also an exit
  BasicBlock *terminator = 0;
  for (pred_iterator PI = pred_begin(L->getHeader()),
         PE = pred_end(L->getHeader()); PI != PE; ++PI)
    if (L->isLoopExit(*PI)) {
      terminator = *PI;
      break;
    }

  // Break in the loop => cannot predict number of iterations
  // break: any block which is an exit node whose successor is not in loop,
  // and this block is not marked as the terminator
  //
  const std::vector<BasicBlock*> &blocks = L->getBlocks();
  for (std::vector<BasicBlock*>::const_iterator I = blocks.begin(),
         e = blocks.end(); I != e; ++I)
    if (L->isLoopExit(*I) && *I != terminator)
      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
        if (!L->contains(*SI)) {
          DEBUG(std::cerr << "break found in loop");
          return 0;
        }

  BranchInst *B = dyn_cast<BranchInst>(terminator->getTerminator());
  if (!B) {
    DEBUG(std::cerr << "Terminator is not a cond branch!");
    return 0; 
  }
  SetCondInst *SCI = dyn_cast<SetCondInst>(B->getCondition());
  if (!SCI) {
    DEBUG(std::cerr << "Not a cond branch on setcc!\n");
    return 0;
  }

  DEBUG(std::cerr << "sci:" << *SCI);
  Value *condVal0 = SCI->getOperand(0);
  Value *condVal1 = SCI->getOperand(1);

  // The induction variable is the one coming from the backedge
  Value *indVar = Phi->getIncomingValue(L->contains(Phi->getIncomingBlock(1)));


  // Check to see if indVar is one of the parameters in SCI and if the other is
  // loop-invariant, it is the UB
  if (indVar == condVal0) {
    if (isLoopInvariant(condVal1, L))
      End = condVal1;
    else {
      DEBUG(std::cerr << "not loop invariant 1\n");
      return 0;
    }
  } else if (indVar == condVal1) {
    if (isLoopInvariant(condVal0, L))
      End = condVal0;
    else {
      DEBUG(std::cerr << "not loop invariant 0\n");
      return 0;
    }
  } else {
    DEBUG(std::cerr << "Loop condition doesn't directly uses indvar\n");
    return 0;
  }

  switch (SCI->getOpcode()) {
  case Instruction::SetLT:
  case Instruction::SetNE: return End; // already done
  case Instruction::SetLE:
    // if compared to a constant int N, then predict N+1 iterations
    if (ConstantSInt *ubSigned = dyn_cast<ConstantSInt>(End)) {
      DEBUG(std::cerr << "signed int constant\n");
      return ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1);
    } else if (ConstantUInt *ubUnsigned = dyn_cast<ConstantUInt>(End)) {
      DEBUG(std::cerr << "unsigned int constant\n");
      return ConstantUInt::get(ubUnsigned->getType(),
                               ubUnsigned->getValue()+1);
    } else {
      DEBUG(std::cerr << "symbolic bound\n");
      // new expression N+1, insert right before the SCI.  FIXME: If End is loop
      // invariant, then so is this expression.  We should insert it in the loop
      // preheader if it exists.
      return BinaryOperator::create(Instruction::Add, End, 
                                    ConstantInt::get(End->getType(), 1),
                                    "tripcount", SCI);
    }

  default:
    return 0; // cannot predict
  }
}


void InductionVariable::print(std::ostream &o) const {
  switch (InductionType) {
  case InductionVariable::Canonical:    o << "Canonical ";    break;
  case InductionVariable::SimpleLinear: o << "SimpleLinear "; break;
  case InductionVariable::Linear:       o << "Linear ";       break;
  case InductionVariable::Unknown:      o << "Unrecognized "; break;
  }
  o << "Induction Variable: ";
  if (Phi) {
    WriteAsOperand(o, Phi);
    o << ":\n" << Phi;
  } else {
    o << "\n";
  }
  if (InductionType == InductionVariable::Unknown) return;

  o << "  Start = "; WriteAsOperand(o, Start);
  o << "  Step = " ; WriteAsOperand(o, Step);
  if (End) { 
    o << "  End = " ; WriteAsOperand(o, End);
  }
  o << "\n";
}