summaryrefslogtreecommitdiff
path: root/lib/Analysis/LazyCallGraph.cpp
blob: 229e2c93adea83b32cad4b56a1270a559cb0f6e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

static void findCallees(
    SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
    SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
    SmallPtrSetImpl<Function *> &CalleeSet) {
  while (!Worklist.empty()) {
    Constant *C = Worklist.pop_back_val();

    if (Function *F = dyn_cast<Function>(C)) {
      // Note that we consider *any* function with a definition to be a viable
      // edge. Even if the function's definition is subject to replacement by
      // some other module (say, a weak definition) there may still be
      // optimizations which essentially speculate based on the definition and
      // a way to check that the specific definition is in fact the one being
      // used. For example, this could be done by moving the weak definition to
      // a strong (internal) definition and making the weak definition be an
      // alias. Then a test of the address of the weak function against the new
      // strong definition's address would be an effective way to determine the
      // safety of optimizing a direct call edge.
      if (!F->isDeclaration() && CalleeSet.insert(F))
        Callees.push_back(F);
      continue;
    }

    for (Value *Op : C->operand_values())
      if (Visited.insert(cast<Constant>(Op)))
        Worklist.push_back(cast<Constant>(Op));
  }
}

LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
    : G(&G), F(F), DFSNumber(0), LowLink(0) {
  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Constant *, 16> Visited;
  // Find all the potential callees in this function. First walk the
  // instructions and add every operand which is a constant to the worklist.
  for (BasicBlock &BB : F)
    for (Instruction &I : BB)
      for (Value *Op : I.operand_values())
        if (Constant *C = dyn_cast<Constant>(Op))
          if (Visited.insert(C))
            Worklist.push_back(C);

  // We've collected all the constant (and thus potentially function or
  // function containing) operands to all of the instructions in the function.
  // Process them (recursively) collecting every function found.
  findCallees(Worklist, Visited, Callees, CalleeSet);
}

LazyCallGraph::LazyCallGraph(Module &M) {
  for (Function &F : M)
    if (!F.isDeclaration() && !F.hasLocalLinkage())
      if (EntryNodeSet.insert(&F))
        EntryNodes.push_back(&F);

  // Now add entry nodes for functions reachable via initializers to globals.
  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Constant *, 16> Visited;
  for (GlobalVariable &GV : M.globals())
    if (GV.hasInitializer())
      if (Visited.insert(GV.getInitializer()))
        Worklist.push_back(GV.getInitializer());

  findCallees(Worklist, Visited, EntryNodes, EntryNodeSet);

  for (auto &Entry : EntryNodes)
    if (Function *F = Entry.dyn_cast<Function *>())
      SCCEntryNodes.insert(F);
    else
      SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction());
}

LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
    : BPA(std::move(G.BPA)), EntryNodes(std::move(G.EntryNodes)),
      EntryNodeSet(std::move(G.EntryNodeSet)), SCCBPA(std::move(G.SCCBPA)),
      SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
      DFSStack(std::move(G.DFSStack)),
      SCCEntryNodes(std::move(G.SCCEntryNodes)) {
  updateGraphPtrs();
}

LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
  BPA = std::move(G.BPA);
  EntryNodes = std::move(G.EntryNodes);
  EntryNodeSet = std::move(G.EntryNodeSet);
  SCCBPA = std::move(G.SCCBPA);
  SCCMap = std::move(G.SCCMap);
  LeafSCCs = std::move(G.LeafSCCs);
  DFSStack = std::move(G.DFSStack);
  SCCEntryNodes = std::move(G.SCCEntryNodes);
  updateGraphPtrs();
  return *this;
}

LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
  return new (MappedN = BPA.Allocate()) Node(*this, F);
}

void LazyCallGraph::updateGraphPtrs() {
  // Process all nodes updating the graph pointers.
  SmallVector<Node *, 16> Worklist;
  for (auto &Entry : EntryNodes)
    if (Node *EntryN = Entry.dyn_cast<Node *>())
      Worklist.push_back(EntryN);

  while (!Worklist.empty()) {
    Node *N = Worklist.pop_back_val();
    N->G = this;
    for (auto &Callee : N->Callees)
      if (Node *CalleeN = Callee.dyn_cast<Node *>())
        Worklist.push_back(CalleeN);
  }
}

LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
  // When the stack is empty, there are no more SCCs to walk in this graph.
  if (DFSStack.empty()) {
    // If we've handled all candidate entry nodes to the SCC forest, we're done.
    if (SCCEntryNodes.empty())
      return nullptr;

    Node *N = get(*SCCEntryNodes.pop_back_val());
    DFSStack.push_back(std::make_pair(N, N->begin()));
  }

  Node *N = DFSStack.back().first;
  if (N->DFSNumber == 0) {
    // This node hasn't been visited before, assign it a DFS number and remove
    // it from the entry set.
    N->LowLink = N->DFSNumber = NextDFSNumber++;
    SCCEntryNodes.remove(&N->getFunction());
  }

  for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) {
    Node *ChildN = *I;
    if (ChildN->DFSNumber == 0) {
      // Mark that we should start at this child when next this node is the
      // top of the stack. We don't start at the next child to ensure this
      // child's lowlink is reflected.
      // FIXME: I don't actually think this is required, and we could start
      // at the next child.
      DFSStack.back().second = I;

      // Recurse onto this node via a tail call.
      DFSStack.push_back(std::make_pair(ChildN, ChildN->begin()));
      return LazyCallGraph::getNextSCCInPostOrder();
    }

    // Track the lowest link of the childen, if any are still in the stack.
    if (ChildN->LowLink < N->LowLink && !SCCMap.count(&ChildN->getFunction()))
      N->LowLink = ChildN->LowLink;
  }

  // The tail of the stack is the new SCC. Allocate the SCC and pop the stack
  // into it.
  SCC *NewSCC = new (SCCBPA.Allocate()) SCC();

  // Because we don't follow the strict Tarjan recursive formulation, walk
  // from the top of the stack down, propagating the lowest link and stopping
  // when the DFS number is the lowest link.
  int LowestLink = N->LowLink;
  do {
    Node *SCCN = DFSStack.pop_back_val().first;
    SCCMap.insert(std::make_pair(&SCCN->getFunction(), NewSCC));
    NewSCC->Nodes.push_back(SCCN);
    LowestLink = std::min(LowestLink, SCCN->LowLink);
    bool Inserted =
        NewSCC->NodeSet.insert(&SCCN->getFunction());
    (void)Inserted;
    assert(Inserted && "Cannot have duplicates in the DFSStack!");
  } while (!DFSStack.empty() && LowestLink <= DFSStack.back().first->DFSNumber);
  assert(LowestLink == NewSCC->Nodes.back()->DFSNumber &&
         "Cannot stop with a DFS number greater than the lowest link!");

  // A final pass over all edges in the SCC (this remains linear as we only
  // do this once when we build the SCC) to connect it to the parent sets of
  // its children.
  bool IsLeafSCC = true;
  for (Node *SCCN : NewSCC->Nodes)
    for (Node *SCCChildN : *SCCN) {
      if (NewSCC->NodeSet.count(&SCCChildN->getFunction()))
        continue;
      SCC *ChildSCC = SCCMap.lookup(&SCCChildN->getFunction());
      assert(ChildSCC &&
             "Must have all child SCCs processed when building a new SCC!");
      ChildSCC->ParentSCCs.insert(NewSCC);
      IsLeafSCC = false;
    }

  // For the SCCs where we fine no child SCCs, add them to the leaf list.
  if (IsLeafSCC)
    LeafSCCs.push_back(NewSCC);

  return NewSCC;
}

char LazyCallGraphAnalysis::PassID;

LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}

static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
                       SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
  // Recurse depth first through the nodes.
  for (LazyCallGraph::Node *ChildN : N)
    if (Printed.insert(ChildN))
      printNodes(OS, *ChildN, Printed);

  OS << "  Call edges in function: " << N.getFunction().getName() << "\n";
  for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
    OS << "    -> " << I->getFunction().getName() << "\n";

  OS << "\n";
}

static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
  ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
  OS << "  SCC with " << SCCSize << " functions:\n";

  for (LazyCallGraph::Node *N : SCC)
    OS << "    " << N->getFunction().getName() << "\n";

  OS << "\n";
}

PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
                                                ModuleAnalysisManager *AM) {
  LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);

  OS << "Printing the call graph for module: " << M->getModuleIdentifier()
     << "\n\n";

  SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
  for (LazyCallGraph::Node *N : G)
    if (Printed.insert(N))
      printNodes(OS, *N, Printed);

  for (LazyCallGraph::SCC *SCC : G.postorder_sccs())
    printSCC(OS, *SCC);

  return PreservedAnalyses::all();

}