summaryrefslogtreecommitdiff
path: root/lib/Analysis/LazyValueInfo.cpp
blob: ff9026bede97e9404f2018fc424bae2d5a6c136e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "lazy-value-info"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

char LazyValueInfo::ID = 0;
static RegisterPass<LazyValueInfo>
X("lazy-value-info", "Lazy Value Information Analysis", false, true);

namespace llvm {
  FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
}


//===----------------------------------------------------------------------===//
//                               LVILatticeVal
//===----------------------------------------------------------------------===//

/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
/// value.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
///
namespace {
class LVILatticeVal {
  enum LatticeValueTy {
    /// undefined - This LLVM Value has no known value yet.
    undefined,
    /// constant - This LLVM Value has a specific constant value.
    constant,
    
    /// notconstant - This LLVM value is known to not have the specified value.
    notconstant,
    
    /// overdefined - This instruction is not known to be constant, and we know
    /// it has a value.
    overdefined
  };
  
  /// Val: This stores the current lattice value along with the Constant* for
  /// the constant if this is a 'constant' or 'notconstant' value.
  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
  
public:
  LVILatticeVal() : Val(0, undefined) {}

  static LVILatticeVal get(Constant *C) {
    LVILatticeVal Res;
    Res.markConstant(C);
    return Res;
  }
  static LVILatticeVal getNot(Constant *C) {
    LVILatticeVal Res;
    Res.markNotConstant(C);
    return Res;
  }
  
  bool isUndefined() const   { return Val.getInt() == undefined; }
  bool isConstant() const    { return Val.getInt() == constant; }
  bool isNotConstant() const { return Val.getInt() == notconstant; }
  bool isOverdefined() const { return Val.getInt() == overdefined; }
  
  Constant *getConstant() const {
    assert(isConstant() && "Cannot get the constant of a non-constant!");
    return Val.getPointer();
  }
  
  Constant *getNotConstant() const {
    assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    return Val.getPointer();
  }
  
  /// markOverdefined - Return true if this is a change in status.
  bool markOverdefined() {
    if (isOverdefined())
      return false;
    Val.setInt(overdefined);
    return true;
  }

  /// markConstant - Return true if this is a change in status.
  bool markConstant(Constant *V) {
    if (isConstant()) {
      assert(getConstant() == V && "Marking constant with different value");
      return false;
    }
    
    assert(isUndefined());
    Val.setInt(constant);
    assert(V && "Marking constant with NULL");
    Val.setPointer(V);
    return true;
  }
  
  /// markNotConstant - Return true if this is a change in status.
  bool markNotConstant(Constant *V) {
    if (isNotConstant()) {
      assert(getNotConstant() == V && "Marking !constant with different value");
      return false;
    }
    
    if (isConstant())
      assert(getConstant() != V && "Marking not constant with different value");
    else
      assert(isUndefined());

    Val.setInt(notconstant);
    assert(V && "Marking constant with NULL");
    Val.setPointer(V);
    return true;
  }
  
  /// mergeIn - Merge the specified lattice value into this one, updating this
  /// one and returning true if anything changed.
  bool mergeIn(const LVILatticeVal &RHS) {
    if (RHS.isUndefined() || isOverdefined()) return false;
    if (RHS.isOverdefined()) return markOverdefined();

    if (RHS.isNotConstant()) {
      if (isNotConstant()) {
        if (getNotConstant() != RHS.getNotConstant() ||
            isa<ConstantExpr>(getNotConstant()) ||
            isa<ConstantExpr>(RHS.getNotConstant()))
          return markOverdefined();
        return false;
      }
      if (isConstant()) {
        if (getConstant() == RHS.getNotConstant() ||
            isa<ConstantExpr>(RHS.getNotConstant()) ||
            isa<ConstantExpr>(getConstant()))
          return markOverdefined();
        return markNotConstant(RHS.getNotConstant());
      }
      
      assert(isUndefined() && "Unexpected lattice");
      return markNotConstant(RHS.getNotConstant());
    }
    
    // RHS must be a constant, we must be undef, constant, or notconstant.
    if (isUndefined())
      return markConstant(RHS.getConstant());
    
    if (isConstant()) {
      if (getConstant() != RHS.getConstant())
        return markOverdefined();
      return false;
    }

    // If we are known "!=4" and RHS is "==5", stay at "!=4".
    if (getNotConstant() == RHS.getConstant() ||
        isa<ConstantExpr>(getNotConstant()) ||
        isa<ConstantExpr>(RHS.getConstant()))
      return markOverdefined();
    return false;
  }
  
};
  
} // end anonymous namespace.

namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
  if (Val.isUndefined())
    return OS << "undefined";
  if (Val.isOverdefined())
    return OS << "overdefined";

  if (Val.isNotConstant())
    return OS << "notconstant<" << *Val.getNotConstant() << '>';
  return OS << "constant<" << *Val.getConstant() << '>';
}
}

//===----------------------------------------------------------------------===//
//                          LazyValueInfoCache Decl
//===----------------------------------------------------------------------===//

namespace {
  /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
  /// maintains information about queries across the clients' queries.
  class LazyValueInfoCache {
  public:
    /// BlockCacheEntryTy - This is a computed lattice value at the end of the
    /// specified basic block for a Value* that depends on context.
    typedef std::pair<BasicBlock*, LVILatticeVal> BlockCacheEntryTy;
    
    /// ValueCacheEntryTy - This is all of the cached block information for
    /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
    /// entries, allowing us to do a lookup with a binary search.
    typedef std::vector<BlockCacheEntryTy> ValueCacheEntryTy;

  private:
    /// ValueCache - This is all of the cached information for all values,
    /// mapped from Value* to key information.
    DenseMap<Value*, ValueCacheEntryTy> ValueCache;
  public:
    
    /// getValueInBlock - This is the query interface to determine the lattice
    /// value for the specified Value* at the end of the specified block.
    LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);

    /// getValueOnEdge - This is the query interface to determine the lattice
    /// value for the specified Value* that is true on the specified edge.
    LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
  };
} // end anonymous namespace

namespace {
  struct BlockCacheEntryComparator {
    static int Compare(const void *LHSv, const void *RHSv) {
      const LazyValueInfoCache::BlockCacheEntryTy *LHS =
        static_cast<const LazyValueInfoCache::BlockCacheEntryTy *>(LHSv);
      const LazyValueInfoCache::BlockCacheEntryTy *RHS =
        static_cast<const LazyValueInfoCache::BlockCacheEntryTy *>(RHSv);
      if (LHS->first < RHS->first)
        return -1;
      if (LHS->first > RHS->first)
        return 1;
      return 0;
    }
    
    bool operator()(const LazyValueInfoCache::BlockCacheEntryTy &LHS,
                    const LazyValueInfoCache::BlockCacheEntryTy &RHS) const {
      return LHS.first < RHS.first;
    }
  };
}

//===----------------------------------------------------------------------===//
//                              LVIQuery Impl
//===----------------------------------------------------------------------===//

namespace {
  /// LVIQuery - This is a transient object that exists while a query is
  /// being performed.
  ///
  /// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids
  /// reallocation of the densemap on every query.
  class LVIQuery {
    typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy;
    typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy;
    
    /// This is the current value being queried for.
    Value *Val;
    
    /// This is all of the cached information about this value.
    ValueCacheEntryTy &Cache;
    
    ///  NewBlocks - This is a mapping of the new BasicBlocks which have been
    /// added to cache but that are not in sorted order.
    DenseMap<BasicBlock*, LVILatticeVal> NewBlockInfo;
  public:
    
    LVIQuery(Value *V, ValueCacheEntryTy &VC) : Val(V), Cache(VC) {
    }

    ~LVIQuery() {
      // When the query is done, insert the newly discovered facts into the
      // cache in sorted order.
      if (NewBlockInfo.empty()) return;

      // Grow the cache to exactly fit the new data.
      Cache.reserve(Cache.size() + NewBlockInfo.size());
      
      // If we only have one new entry, insert it instead of doing a full-on
      // sort.
      if (NewBlockInfo.size() == 1) {
        BlockCacheEntryTy Entry = *NewBlockInfo.begin();
        ValueCacheEntryTy::iterator I =
          std::lower_bound(Cache.begin(), Cache.end(), Entry,
                           BlockCacheEntryComparator());
        assert((I == Cache.end() || I->first != Entry.first) &&
               "Entry already in map!");
        
        Cache.insert(I, Entry);
        return;
      }
      
      // TODO: If we only have two new elements, INSERT them both.
      
      Cache.insert(Cache.end(), NewBlockInfo.begin(), NewBlockInfo.end());
      array_pod_sort(Cache.begin(), Cache.end(),
                     BlockCacheEntryComparator::Compare);
      
    }

    LVILatticeVal getBlockValue(BasicBlock *BB);
    LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB);

  private:
    LVILatticeVal &getCachedEntryForBlock(BasicBlock *BB);
  };
} // end anonymous namespace

/// getCachedEntryForBlock - See if we already have a value for this block.  If
/// so, return it, otherwise create a new entry in the NewBlockInfo map to use.
LVILatticeVal &LVIQuery::getCachedEntryForBlock(BasicBlock *BB) {
  
  // Do a binary search to see if we already have an entry for this block in
  // the cache set.  If so, find it.
  if (!Cache.empty()) {
    ValueCacheEntryTy::iterator Entry =
      std::lower_bound(Cache.begin(), Cache.end(),
                       BlockCacheEntryTy(BB, LVILatticeVal()),
                       BlockCacheEntryComparator());
    if (Entry != Cache.end() && Entry->first == BB)
      return Entry->second;
  }
  
  // Otherwise, check to see if it's in NewBlockInfo or create a new entry if
  // not.
  return NewBlockInfo[BB];
}

LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
  // See if we already have a value for this block.
  LVILatticeVal &BBLV = getCachedEntryForBlock(BB);
  
  // If we've already computed this block's value, return it.
  if (!BBLV.isUndefined()) {
    DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
    return BBLV;
  }

  // Otherwise, this is the first time we're seeing this block.  Reset the
  // lattice value to overdefined, so that cycles will terminate and be
  // conservatively correct.
  BBLV.markOverdefined();
  
  // If V is live into BB, see if our predecessors know anything about it.
  Instruction *BBI = dyn_cast<Instruction>(Val);
  if (BBI == 0 || BBI->getParent() != BB) {
    LVILatticeVal Result;  // Start Undefined.
    unsigned NumPreds = 0;
    
    // Loop over all of our predecessors, merging what we know from them into
    // result.
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
      Result.mergeIn(getEdgeValue(*PI, BB));
      
      // If we hit overdefined, exit early.  The BlockVals entry is already set
      // to overdefined.
      if (Result.isOverdefined()) {
        DEBUG(dbgs() << " compute BB '" << BB->getName()
                     << "' - overdefined because of pred.\n");
        return Result;
      }
      ++NumPreds;
    }
    
    // If this is the entry block, we must be asking about an argument.  The
    // value is overdefined.
    if (NumPreds == 0 && BB == &BB->getParent()->front()) {
      assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
      Result.markOverdefined();
      return Result;
    }
    
    // Return the merged value, which is more precise than 'overdefined'.
    assert(!Result.isOverdefined());
    return getCachedEntryForBlock(BB) = Result;
  }
  
  // If this value is defined by an instruction in this block, we have to
  // process it here somehow or return overdefined.
  if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    (void)PN;
    // TODO: PHI Translation in preds.
  } else {
    
  }
  
  DEBUG(dbgs() << " compute BB '" << BB->getName()
               << "' - overdefined because inst def found.\n");

  LVILatticeVal Result;
  Result.markOverdefined();
  return getCachedEntryForBlock(BB) = Result;
}


/// getEdgeValue - This method attempts to infer more complex 
LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
  // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
  // know that v != 0.
  if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    // If this is a conditional branch and only one successor goes to BBTo, then
    // we maybe able to infer something from the condition. 
    if (BI->isConditional() &&
        BI->getSuccessor(0) != BI->getSuccessor(1)) {
      bool isTrueDest = BI->getSuccessor(0) == BBTo;
      assert(BI->getSuccessor(!isTrueDest) == BBTo &&
             "BBTo isn't a successor of BBFrom");
      
      // If V is the condition of the branch itself, then we know exactly what
      // it is.
      if (BI->getCondition() == Val)
        return LVILatticeVal::get(ConstantInt::get(
                               Type::getInt1Ty(Val->getContext()), isTrueDest));
      
      // If the condition of the branch is an equality comparison, we may be
      // able to infer the value.
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
        if (ICI->isEquality() && ICI->getOperand(0) == Val &&
            isa<Constant>(ICI->getOperand(1))) {
          // We know that V has the RHS constant if this is a true SETEQ or
          // false SETNE. 
          if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
            return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
          return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
        }
    }
  }

  // If the edge was formed by a switch on the value, then we may know exactly
  // what it is.
  if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    // If BBTo is the default destination of the switch, we don't know anything.
    // Given a more powerful range analysis we could know stuff.
    if (SI->getCondition() == Val && SI->getDefaultDest() != BBTo) {
      // We only know something if there is exactly one value that goes from
      // BBFrom to BBTo.
      unsigned NumEdges = 0;
      ConstantInt *EdgeVal = 0;
      for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
        if (SI->getSuccessor(i) != BBTo) continue;
        if (NumEdges++) break;
        EdgeVal = SI->getCaseValue(i);
      }
      assert(EdgeVal && "Missing successor?");
      if (NumEdges == 1)
        return LVILatticeVal::get(EdgeVal);
    }
  }
  
  // Otherwise see if the value is known in the block.
  return getBlockValue(BBFrom);
}


//===----------------------------------------------------------------------===//
//                         LazyValueInfoCache Impl
//===----------------------------------------------------------------------===//

LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
  // If already a constant, there is nothing to compute.
  if (Constant *VC = dyn_cast<Constant>(V))
    return LVILatticeVal::get(VC);
  
  DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
        << BB->getName() << "'\n");
  
  LVILatticeVal Result = LVIQuery(V, ValueCache[V]).getBlockValue(BB);
  
  DEBUG(dbgs() << "  Result = " << Result << "\n");
  return Result;
}

LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
  // If already a constant, there is nothing to compute.
  if (Constant *VC = dyn_cast<Constant>(V))
    return LVILatticeVal::get(VC);
  
  DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
        << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
  LVILatticeVal Result =
    LVIQuery(V, ValueCache[V]).getEdgeValue(FromBB, ToBB);
  
  DEBUG(dbgs() << "  Result = " << Result << "\n");
  
  return Result;
}

//===----------------------------------------------------------------------===//
//                            LazyValueInfo Impl
//===----------------------------------------------------------------------===//

bool LazyValueInfo::runOnFunction(Function &F) {
  TD = getAnalysisIfAvailable<TargetData>();
  // Fully lazy.
  return false;
}

/// getCache - This lazily constructs the LazyValueInfoCache.
static LazyValueInfoCache &getCache(void *&PImpl) {
  if (!PImpl)
    PImpl = new LazyValueInfoCache();
  return *static_cast<LazyValueInfoCache*>(PImpl);
}

void LazyValueInfo::releaseMemory() {
  // If the cache was allocated, free it.
  if (PImpl) {
    delete &getCache(PImpl);
    PImpl = 0;
  }
}

Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
  LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
  
  if (Result.isConstant())
    return Result.getConstant();
  return 0;
}

/// getConstantOnEdge - Determine whether the specified value is known to be a
/// constant on the specified edge.  Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
                                           BasicBlock *ToBB) {
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
  
  if (Result.isConstant())
    return Result.getConstant();
  return 0;
}

/// getPredicateOnEdge - Determine whether the specified value comparison
/// with a constant is known to be true or false on the specified CFG edge.
/// Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
                                  BasicBlock *FromBB, BasicBlock *ToBB) {
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
  
  // If we know the value is a constant, evaluate the conditional.
  Constant *Res = 0;
  if (Result.isConstant()) {
    Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
    if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
      return ResCI->isZero() ? False : True;
    return Unknown;
  }
  
  if (Result.isNotConstant()) {
    // If this is an equality comparison, we can try to fold it knowing that
    // "V != C1".
    if (Pred == ICmpInst::ICMP_EQ) {
      // !C1 == C -> false iff C1 == C.
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
                                            Result.getNotConstant(), C, TD);
      if (Res->isNullValue())
        return False;
    } else if (Pred == ICmpInst::ICMP_NE) {
      // !C1 != C -> true iff C1 == C.
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
                                            Result.getNotConstant(), C, TD);
      if (Res->isNullValue())
        return True;
    }
    return Unknown;
  }
  
  return Unknown;
}