summaryrefslogtreecommitdiff
path: root/lib/Analysis/LoopDependenceAnalysis.cpp
blob: b696e5fae16701176ae93e4d9961873c51eec457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
//===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the (beginning) of an implementation of a loop dependence analysis
// framework, which is used to detect dependences in memory accesses in loops.
//
// Please note that this is work in progress and the interface is subject to
// change.
//
// TODO: adapt as implementation progresses.
//
// TODO: document lingo (pair, subscript, index)
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "lda"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopDependenceAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Instructions.h"
#include "llvm/Operator.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/DataLayout.h"
using namespace llvm;

STATISTIC(NumAnswered,    "Number of dependence queries answered");
STATISTIC(NumAnalysed,    "Number of distinct dependence pairs analysed");
STATISTIC(NumDependent,   "Number of pairs with dependent accesses");
STATISTIC(NumIndependent, "Number of pairs with independent accesses");
STATISTIC(NumUnknown,     "Number of pairs with unknown accesses");

LoopPass *llvm::createLoopDependenceAnalysisPass() {
  return new LoopDependenceAnalysis();
}

INITIALIZE_PASS_BEGIN(LoopDependenceAnalysis, "lda",
                "Loop Dependence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(LoopDependenceAnalysis, "lda",
                "Loop Dependence Analysis", false, true)
char LoopDependenceAnalysis::ID = 0;

//===----------------------------------------------------------------------===//
//                             Utility Functions
//===----------------------------------------------------------------------===//

static inline bool IsMemRefInstr(const Value *V) {
  const Instruction *I = dyn_cast<const Instruction>(V);
  return I && (I->mayReadFromMemory() || I->mayWriteToMemory());
}

static void GetMemRefInstrs(const Loop *L,
                            SmallVectorImpl<Instruction*> &Memrefs) {
  for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
       b != be; ++b)
    for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end();
         i != ie; ++i)
      if (IsMemRefInstr(i))
        Memrefs.push_back(i);
}

static bool IsLoadOrStoreInst(Value *I) {
  // Returns true if the load or store can be analyzed. Atomic and volatile
  // operations have properties which this analysis does not understand.
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isUnordered();
  else if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();
  return false;
}

static Value *GetPointerOperand(Value *I) {
  if (LoadInst *i = dyn_cast<LoadInst>(I))
    return i->getPointerOperand();
  if (StoreInst *i = dyn_cast<StoreInst>(I))
    return i->getPointerOperand();
  llvm_unreachable("Value is no load or store instruction!");
}

static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA,
                                                         const Value *A,
                                                         const Value *B) {
  const Value *aObj = GetUnderlyingObject(A);
  const Value *bObj = GetUnderlyingObject(B);
  return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()),
                   bObj, AA->getTypeStoreSize(bObj->getType()));
}

static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) {
  return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L);
}

//===----------------------------------------------------------------------===//
//                             Dependence Testing
//===----------------------------------------------------------------------===//

bool LoopDependenceAnalysis::isDependencePair(const Value *A,
                                              const Value *B) const {
  return IsMemRefInstr(A) &&
         IsMemRefInstr(B) &&
         (cast<const Instruction>(A)->mayWriteToMemory() ||
          cast<const Instruction>(B)->mayWriteToMemory());
}

bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A,
                                                        Value *B,
                                                        DependencePair *&P) {
  void *insertPos = 0;
  FoldingSetNodeID id;
  id.AddPointer(A);
  id.AddPointer(B);

  P = Pairs.FindNodeOrInsertPos(id, insertPos);
  if (P) return true;

  P = new (PairAllocator) DependencePair(id, A, B);
  Pairs.InsertNode(P, insertPos);
  return false;
}

void LoopDependenceAnalysis::getLoops(const SCEV *S,
                                      DenseSet<const Loop*>* Loops) const {
  // Refactor this into an SCEVVisitor, if efficiency becomes a concern.
  for (const Loop *L = this->L; L != 0; L = L->getParentLoop())
    if (!SE->isLoopInvariant(S, L))
      Loops->insert(L);
}

bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const {
  DenseSet<const Loop*> loops;
  getLoops(S, &loops);
  return loops.empty();
}

bool LoopDependenceAnalysis::isAffine(const SCEV *S) const {
  const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S);
  return isLoopInvariant(S) || (rec && rec->isAffine());
}

bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const {
  return isLoopInvariant(A) && isLoopInvariant(B);
}

bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const {
  DenseSet<const Loop*> loops;
  getLoops(A, &loops);
  getLoops(B, &loops);
  return loops.size() == 1;
}

LoopDependenceAnalysis::DependenceResult
LoopDependenceAnalysis::analyseZIV(const SCEV *A,
                                   const SCEV *B,
                                   Subscript *S) const {
  assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!");
  return A == B ? Dependent : Independent;
}

LoopDependenceAnalysis::DependenceResult
LoopDependenceAnalysis::analyseSIV(const SCEV *A,
                                   const SCEV *B,
                                   Subscript *S) const {
  return Unknown; // TODO: Implement.
}

LoopDependenceAnalysis::DependenceResult
LoopDependenceAnalysis::analyseMIV(const SCEV *A,
                                   const SCEV *B,
                                   Subscript *S) const {
  return Unknown; // TODO: Implement.
}

LoopDependenceAnalysis::DependenceResult
LoopDependenceAnalysis::analyseSubscript(const SCEV *A,
                                         const SCEV *B,
                                         Subscript *S) const {
  DEBUG(dbgs() << "  Testing subscript: " << *A << ", " << *B << "\n");

  if (A == B) {
    DEBUG(dbgs() << "  -> [D] same SCEV\n");
    return Dependent;
  }

  if (!isAffine(A) || !isAffine(B)) {
    DEBUG(dbgs() << "  -> [?] not affine\n");
    return Unknown;
  }

  if (isZIVPair(A, B))
    return analyseZIV(A, B, S);

  if (isSIVPair(A, B))
    return analyseSIV(A, B, S);

  return analyseMIV(A, B, S);
}

LoopDependenceAnalysis::DependenceResult
LoopDependenceAnalysis::analysePair(DependencePair *P) const {
  DEBUG(dbgs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n");

  // We only analyse loads and stores but no possible memory accesses by e.g.
  // free, call, or invoke instructions.
  if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) {
    DEBUG(dbgs() << "--> [?] no load/store\n");
    return Unknown;
  }

  Value *aPtr = GetPointerOperand(P->A);
  Value *bPtr = GetPointerOperand(P->B);

  switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) {
  case AliasAnalysis::MayAlias:
  case AliasAnalysis::PartialAlias:
    // We can not analyse objects if we do not know about their aliasing.
    DEBUG(dbgs() << "---> [?] may alias\n");
    return Unknown;

  case AliasAnalysis::NoAlias:
    // If the objects noalias, they are distinct, accesses are independent.
    DEBUG(dbgs() << "---> [I] no alias\n");
    return Independent;

  case AliasAnalysis::MustAlias:
    break; // The underlying objects alias, test accesses for dependence.
  }

  const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr);
  const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr);

  if (!aGEP || !bGEP)
    return Unknown;

  // FIXME: Is filtering coupled subscripts necessary?

  // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding
  // trailing zeroes to the smaller GEP, if needed.
  typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy;
  GEPOpdPairsTy opds;
  for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(),
                                     aEnd = aGEP->idx_end(),
                                     bIdx = bGEP->idx_begin(),
                                     bEnd = bGEP->idx_end();
      aIdx != aEnd && bIdx != bEnd;
      aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) {
    const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE);
    const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE);
    opds.push_back(std::make_pair(aSCEV, bSCEV));
  }

  if (!opds.empty() && opds[0].first != opds[0].second) {
    // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting
    //
    // TODO: this could be relaxed by adding the size of the underlying object
    // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we
    // know that x is a [100 x i8]*, we could modify the first subscript to be
    // (i, 200-i) instead of (i, -i).
    return Unknown;
  }

  // Now analyse the collected operand pairs (skipping the GEP ptr offsets).
  for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end();
       i != end; ++i) {
    Subscript subscript;
    DependenceResult result = analyseSubscript(i->first, i->second, &subscript);
    if (result != Dependent) {
      // We either proved independence or failed to analyse this subscript.
      // Further subscripts will not improve the situation, so abort early.
      return result;
    }
    P->Subscripts.push_back(subscript);
  }
  // We successfully analysed all subscripts but failed to prove independence.
  return Dependent;
}

bool LoopDependenceAnalysis::depends(Value *A, Value *B) {
  assert(isDependencePair(A, B) && "Values form no dependence pair!");
  ++NumAnswered;

  DependencePair *p;
  if (!findOrInsertDependencePair(A, B, p)) {
    // The pair is not cached, so analyse it.
    ++NumAnalysed;
    switch (p->Result = analysePair(p)) {
    case Dependent:   ++NumDependent;   break;
    case Independent: ++NumIndependent; break;
    case Unknown:     ++NumUnknown;     break;
    }
  }
  return p->Result != Independent;
}

//===----------------------------------------------------------------------===//
//                   LoopDependenceAnalysis Implementation
//===----------------------------------------------------------------------===//

bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
  this->L = L;
  AA = &getAnalysis<AliasAnalysis>();
  SE = &getAnalysis<ScalarEvolution>();
  return false;
}

void LoopDependenceAnalysis::releaseMemory() {
  Pairs.clear();
  PairAllocator.Reset();
}

void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AliasAnalysis>();
  AU.addRequiredTransitive<ScalarEvolution>();
}

static void PrintLoopInfo(raw_ostream &OS,
                          LoopDependenceAnalysis *LDA, const Loop *L) {
  if (!L->empty()) return; // ignore non-innermost loops

  SmallVector<Instruction*, 8> memrefs;
  GetMemRefInstrs(L, memrefs);

  OS << "Loop at depth " << L->getLoopDepth() << ", header block: ";
  WriteAsOperand(OS, L->getHeader(), false);
  OS << "\n";

  OS << "  Load/store instructions: " << memrefs.size() << "\n";
  for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
       end = memrefs.end(); x != end; ++x)
    OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n";

  OS << "  Pairwise dependence results:\n";
  for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
       end = memrefs.end(); x != end; ++x)
    for (SmallVector<Instruction*, 8>::const_iterator y = x + 1;
         y != end; ++y)
      if (LDA->isDependencePair(*x, *y))
        OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin())
           << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent")
           << "\n";
}

void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const {
  // TODO: doc why const_cast is safe
  PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L);
}