summaryrefslogtreecommitdiff
path: root/lib/Analysis/LoopVR.cpp
blob: 7f5de259caf366d2834799bafd75c6c58f2cb2e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//===- LoopVR.cpp - Value Range analysis driven by loop information -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// FIXME: What does this do?
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loopvr"
#include "llvm/Analysis/LoopVR.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

char LoopVR::ID = 0;
static RegisterPass<LoopVR> X("loopvr", "Loop Value Ranges", true, true);

/// getRange - determine the range for a particular SCEV within a given Loop
ConstantRange LoopVR::getRange(SCEVHandle S, Loop *L, ScalarEvolution &SE) {
  SCEVHandle T = SE.getIterationCount(L);
  if (isa<SCEVCouldNotCompute>(T))
    return ConstantRange(cast<IntegerType>(S->getType())->getBitWidth(), true);

  T = SE.getTruncateOrZeroExtend(T, S->getType());
  return getRange(S, T, SE);
}

/// getRange - determine the range for a particular SCEV with a given trip count
ConstantRange LoopVR::getRange(SCEVHandle S, SCEVHandle T, ScalarEvolution &SE){

  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
    return ConstantRange(C->getValue()->getValue());

  ConstantRange FullSet(cast<IntegerType>(S->getType())->getBitWidth(), true);

  // {x,+,y,+,...z}. We detect overflow by checking the size of the set after
  // summing the upper and lower.
  if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    ConstantRange X = getRange(Add->getOperand(0), T, SE);
    if (X.isFullSet()) return FullSet;
    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) {
      ConstantRange Y = getRange(Add->getOperand(i), T, SE);
      if (Y.isFullSet()) return FullSet;

      APInt Spread_X = X.getSetSize(), Spread_Y = Y.getSetSize();
      APInt NewLower = X.getLower() + Y.getLower();
      APInt NewUpper = X.getUpper() + Y.getUpper() - 1;
      if (NewLower == NewUpper)
        return FullSet;

      X = ConstantRange(NewLower, NewUpper);
      if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
        return FullSet; // we've wrapped, therefore, full set.
    }
    return X;
  }

  // {x,*,y,*,...,z}. In order to detect overflow, we use k*bitwidth where
  // k is the number of terms being multiplied.
  if (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    ConstantRange X = getRange(Mul->getOperand(0), T, SE);
    if (X.isFullSet()) return FullSet;

    const IntegerType *Ty = IntegerType::get(X.getBitWidth());
    const IntegerType *ExTy = IntegerType::get(X.getBitWidth() *
                                               Mul->getNumOperands());
    ConstantRange XExt = X.zeroExtend(ExTy->getBitWidth());

    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) {
      ConstantRange Y = getRange(Mul->getOperand(i), T, SE);
      if (Y.isFullSet()) return FullSet;

      ConstantRange YExt = Y.zeroExtend(ExTy->getBitWidth());
      XExt = ConstantRange(XExt.getLower() * YExt.getLower(),
                           ((XExt.getUpper()-1) * (YExt.getUpper()-1)) + 1);
    }
    return XExt.truncate(Ty->getBitWidth());
  }

  // X smax Y smax ... Z is: range(smax(X_smin, Y_smin, ..., Z_smin),
  //                               smax(X_smax, Y_smax, ..., Z_smax))
  // It doesn't matter if one of the SCEVs has FullSet because we're taking
  // a maximum of the minimums across all of them.
  if (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
    ConstantRange X = getRange(SMax->getOperand(0), T, SE);
    if (X.isFullSet()) return FullSet;

    APInt smin = X.getSignedMin(), smax = X.getSignedMax();
    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) {
      ConstantRange Y = getRange(SMax->getOperand(i), T, SE);
      smin = APIntOps::smax(smin, Y.getSignedMin());
      smax = APIntOps::smax(smax, Y.getSignedMax());
    }
    if (smax + 1 == smin) return FullSet;
    return ConstantRange(smin, smax + 1);
  }

  // X umax Y umax ... Z is: range(umax(X_umin, Y_umin, ..., Z_umin),
  //                               umax(X_umax, Y_umax, ..., Z_umax))
  // It doesn't matter if one of the SCEVs has FullSet because we're taking
  // a maximum of the minimums across all of them.
  if (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
    ConstantRange X = getRange(UMax->getOperand(0), T, SE);
    if (X.isFullSet()) return FullSet;

    APInt umin = X.getUnsignedMin(), umax = X.getUnsignedMax();
    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) {
      ConstantRange Y = getRange(UMax->getOperand(i), T, SE);
      umin = APIntOps::umax(umin, Y.getUnsignedMin());
      umax = APIntOps::umax(umax, Y.getUnsignedMax());
    }
    if (umax + 1 == umin) return FullSet;
    return ConstantRange(umin, umax + 1);
  }

  // L udiv R. Luckily, there's only ever 2 sides to a udiv.
  if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
    ConstantRange L = getRange(UDiv->getLHS(), T, SE);
    ConstantRange R = getRange(UDiv->getRHS(), T, SE);
    if (L.isFullSet() && R.isFullSet()) return FullSet;

    if (R.getUnsignedMax() == 0) {
      // RHS must be single-element zero. Return an empty set.
      return ConstantRange(R.getBitWidth(), false);
    }

    APInt Lower = L.getUnsignedMin().udiv(R.getUnsignedMax());

    APInt Upper;

    if (R.getUnsignedMin() == 0) {
      // Just because it contains zero, doesn't mean it will also contain one.
      // Use maximalIntersectWith to get the right behaviour.
      ConstantRange NotZero(APInt(L.getBitWidth(), 1),
                            APInt::getNullValue(L.getBitWidth()));
      R = R.maximalIntersectWith(NotZero);
    }
 
    // But, the maximal intersection might still include zero. If it does, then
    // we know it also included one.
    if (R.contains(APInt::getNullValue(L.getBitWidth())))
      Upper = L.getUnsignedMax();
    else
      Upper = L.getUnsignedMax().udiv(R.getUnsignedMin());

    return ConstantRange(Lower, Upper);
  }

  // ConstantRange already implements the cast operators.

  if (SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
    T = SE.getTruncateOrZeroExtend(T, ZExt->getOperand()->getType());
    ConstantRange X = getRange(ZExt->getOperand(), T, SE);
    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
  }

  if (SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
    T = SE.getTruncateOrZeroExtend(T, SExt->getOperand()->getType());
    ConstantRange X = getRange(SExt->getOperand(), T, SE);
    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
  }

  if (SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
    T = SE.getTruncateOrZeroExtend(T, Trunc->getOperand()->getType());
    ConstantRange X = getRange(Trunc->getOperand(), T, SE);
    if (X.isFullSet()) return FullSet;
    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
  }

  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
    SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
    if (!Trip) return FullSet;

    if (AddRec->isAffine()) {
      SCEVHandle StartHandle = AddRec->getStart();
      SCEVHandle StepHandle = AddRec->getOperand(1);

      SCEVConstant *Step = dyn_cast<SCEVConstant>(StepHandle);
      if (!Step) return FullSet;

      uint32_t ExWidth = 2 * Trip->getValue()->getBitWidth();
      APInt TripExt = Trip->getValue()->getValue(); TripExt.zext(ExWidth);
      APInt StepExt = Step->getValue()->getValue(); StepExt.zext(ExWidth);
      if ((TripExt * StepExt).ugt(APInt::getLowBitsSet(ExWidth, ExWidth >> 1)))
        return FullSet;

      SCEVHandle EndHandle = SE.getAddExpr(StartHandle,
                                           SE.getMulExpr(T, StepHandle));
      SCEVConstant *Start = dyn_cast<SCEVConstant>(StartHandle);
      SCEVConstant *End = dyn_cast<SCEVConstant>(EndHandle);
      if (!Start || !End) return FullSet;

      const APInt &StartInt = Start->getValue()->getValue();
      const APInt &EndInt = End->getValue()->getValue();
      const APInt &StepInt = Step->getValue()->getValue();

      if (StepInt.isNegative()) {
        if (EndInt == StartInt + 1) return FullSet;
        return ConstantRange(EndInt, StartInt + 1);
      } else {
        if (StartInt == EndInt + 1) return FullSet;
        return ConstantRange(StartInt, EndInt + 1);
      }
    }
  }

  // TODO: non-affine addrec, udiv, SCEVUnknown (narrowed from elsewhere)?

  return FullSet;
}

bool LoopVR::runOnFunction(Function &F) { Map.clear(); return false; }

void LoopVR::print(std::ostream &os, const Module *) const {
  raw_os_ostream OS(os);
  for (std::map<Value *, ConstantRange *>::const_iterator I = Map.begin(),
       E = Map.end(); I != E; ++I) {
    OS << *I->first << ": " << *I->second << '\n';
  }
}

void LoopVR::releaseMemory() {
  for (std::map<Value *, ConstantRange *>::iterator I = Map.begin(),
       E = Map.end(); I != E; ++I) {
    delete I->second;
  }

  Map.clear();  
}

ConstantRange LoopVR::compute(Value *V) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    return ConstantRange(CI->getValue());

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);

  LoopInfo &LI = getAnalysis<LoopInfo>();
  ScalarEvolution &SE = getAnalysis<ScalarEvolution>();

  Loop *L = LI.getLoopFor(I->getParent());
  if (L->isLoopInvariant(I))
    return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);

  SCEVHandle S = SE.getSCEV(I);
  if (isa<SCEVUnknown>(S) || isa<SCEVCouldNotCompute>(S))
    return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);

  return ConstantRange(getRange(S, L, SE));
}

ConstantRange LoopVR::get(Value *V) {
  std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
  if (I == Map.end()) {
    ConstantRange *CR = new ConstantRange(compute(V));
    Map[V] = CR;
    return *CR;
  }

  return *I->second;
}

void LoopVR::remove(Value *V) {
  std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
  if (I != Map.end()) {
    delete I->second;
    Map.erase(I);
  }
}

void LoopVR::narrow(Value *V, const ConstantRange &CR) {
  if (CR.isFullSet()) return;

  std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
  if (I == Map.end())
    Map[V] = new ConstantRange(CR);
  else
    Map[V] = new ConstantRange(Map[V]->maximalIntersectWith(CR));
}