summaryrefslogtreecommitdiff
path: root/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
blob: 6933f74150fd3c1a3efd38fab3ef031f020aaa3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//===- ScalarEvolutionAliasAnalysis.cpp - SCEV-based Alias Analysis -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ScalarEvolutionAliasAnalysis pass, which implements a
// simple alias analysis implemented in terms of ScalarEvolution queries.
//
// This differs from traditional loop dependence analysis in that it tests
// for dependencies within a single iteration of a loop, rather than
// dependencies between different iterations.
//
// ScalarEvolution has a more complete understanding of pointer arithmetic
// than BasicAliasAnalysis' collection of ad-hoc analyses.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Pass.h"
using namespace llvm;

namespace {
  /// ScalarEvolutionAliasAnalysis - This is a simple alias analysis
  /// implementation that uses ScalarEvolution to answer queries.
  class ScalarEvolutionAliasAnalysis : public FunctionPass,
                                       public AliasAnalysis {
    ScalarEvolution *SE;

  public:
    static char ID; // Class identification, replacement for typeinfo
    ScalarEvolutionAliasAnalysis() : FunctionPass(ID), SE(nullptr) {
      initializeScalarEvolutionAliasAnalysisPass(
        *PassRegistry::getPassRegistry());
    }

    /// getAdjustedAnalysisPointer - This method is used when a pass implements
    /// an analysis interface through multiple inheritance.  If needed, it
    /// should override this to adjust the this pointer as needed for the
    /// specified pass info.
    void *getAdjustedAnalysisPointer(AnalysisID PI) override {
      if (PI == &AliasAnalysis::ID)
        return (AliasAnalysis*)this;
      return this;
    }

  private:
    void getAnalysisUsage(AnalysisUsage &AU) const override;
    bool runOnFunction(Function &F) override;
    AliasResult alias(const Location &LocA, const Location &LocB) override;

    Value *GetBaseValue(const SCEV *S);
  };
}  // End of anonymous namespace

// Register this pass...
char ScalarEvolutionAliasAnalysis::ID = 0;
INITIALIZE_AG_PASS_BEGIN(ScalarEvolutionAliasAnalysis, AliasAnalysis, "scev-aa",
                   "ScalarEvolution-based Alias Analysis", false, true, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_AG_PASS_END(ScalarEvolutionAliasAnalysis, AliasAnalysis, "scev-aa",
                    "ScalarEvolution-based Alias Analysis", false, true, false)

FunctionPass *llvm::createScalarEvolutionAliasAnalysisPass() {
  return new ScalarEvolutionAliasAnalysis();
}

void
ScalarEvolutionAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequiredTransitive<ScalarEvolution>();
  AU.setPreservesAll();
  AliasAnalysis::getAnalysisUsage(AU);
}

bool
ScalarEvolutionAliasAnalysis::runOnFunction(Function &F) {
  InitializeAliasAnalysis(this);
  SE = &getAnalysis<ScalarEvolution>();
  return false;
}

/// GetBaseValue - Given an expression, try to find a
/// base value. Return null is none was found.
Value *
ScalarEvolutionAliasAnalysis::GetBaseValue(const SCEV *S) {
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    // In an addrec, assume that the base will be in the start, rather
    // than the step.
    return GetBaseValue(AR->getStart());
  } else if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
    // If there's a pointer operand, it'll be sorted at the end of the list.
    const SCEV *Last = A->getOperand(A->getNumOperands()-1);
    if (Last->getType()->isPointerTy())
      return GetBaseValue(Last);
  } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    // This is a leaf node.
    return U->getValue();
  }
  // No Identified object found.
  return nullptr;
}

AliasAnalysis::AliasResult
ScalarEvolutionAliasAnalysis::alias(const Location &LocA,
                                    const Location &LocB) {
  // If either of the memory references is empty, it doesn't matter what the
  // pointer values are. This allows the code below to ignore this special
  // case.
  if (LocA.Size == 0 || LocB.Size == 0)
    return NoAlias;

  // This is ScalarEvolutionAliasAnalysis. Get the SCEVs!
  const SCEV *AS = SE->getSCEV(const_cast<Value *>(LocA.Ptr));
  const SCEV *BS = SE->getSCEV(const_cast<Value *>(LocB.Ptr));

  // If they evaluate to the same expression, it's a MustAlias.
  if (AS == BS) return MustAlias;

  // If something is known about the difference between the two addresses,
  // see if it's enough to prove a NoAlias.
  if (SE->getEffectiveSCEVType(AS->getType()) ==
      SE->getEffectiveSCEVType(BS->getType())) {
    unsigned BitWidth = SE->getTypeSizeInBits(AS->getType());
    APInt ASizeInt(BitWidth, LocA.Size);
    APInt BSizeInt(BitWidth, LocB.Size);

    // Compute the difference between the two pointers.
    const SCEV *BA = SE->getMinusSCEV(BS, AS);

    // Test whether the difference is known to be great enough that memory of
    // the given sizes don't overlap. This assumes that ASizeInt and BSizeInt
    // are non-zero, which is special-cased above.
    if (ASizeInt.ule(SE->getUnsignedRange(BA).getUnsignedMin()) &&
        (-BSizeInt).uge(SE->getUnsignedRange(BA).getUnsignedMax()))
      return NoAlias;

    // Folding the subtraction while preserving range information can be tricky
    // (because of INT_MIN, etc.); if the prior test failed, swap AS and BS
    // and try again to see if things fold better that way.

    // Compute the difference between the two pointers.
    const SCEV *AB = SE->getMinusSCEV(AS, BS);

    // Test whether the difference is known to be great enough that memory of
    // the given sizes don't overlap. This assumes that ASizeInt and BSizeInt
    // are non-zero, which is special-cased above.
    if (BSizeInt.ule(SE->getUnsignedRange(AB).getUnsignedMin()) &&
        (-ASizeInt).uge(SE->getUnsignedRange(AB).getUnsignedMax()))
      return NoAlias;
  }

  // If ScalarEvolution can find an underlying object, form a new query.
  // The correctness of this depends on ScalarEvolution not recognizing
  // inttoptr and ptrtoint operators.
  Value *AO = GetBaseValue(AS);
  Value *BO = GetBaseValue(BS);
  if ((AO && AO != LocA.Ptr) || (BO && BO != LocB.Ptr))
    if (alias(Location(AO ? AO : LocA.Ptr,
                       AO ? +UnknownSize : LocA.Size,
                       AO ? nullptr : LocA.TBAATag),
              Location(BO ? BO : LocB.Ptr,
                       BO ? +UnknownSize : LocB.Size,
                       BO ? nullptr : LocB.TBAATag)) == NoAlias)
      return NoAlias;

  // Forward the query to the next analysis.
  return AliasAnalysis::alias(LocA, LocB);
}