summaryrefslogtreecommitdiff
path: root/lib/Bitcode/Writer/BitcodeWriter.cpp
blob: 6ee3a4a347495e26cd3200953d81ac9f2008d559 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//

#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "ValueEnumerator.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;

/// These are manifest constants used by the bitcode writer. They do not need to
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
  CurVersion = 0,
  
  // VALUE_SYMTAB_BLOCK abbrev id's.
  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  VST_ENTRY_7_ABBREV,
  VST_BBENTRY_7_ABBREV
  
};


static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  switch (Opcode) {
  default: assert(0 && "Unknown cast instruction!");
  case Instruction::Trunc   : return bitc::CAST_TRUNC;
  case Instruction::ZExt    : return bitc::CAST_ZEXT;
  case Instruction::SExt    : return bitc::CAST_SEXT;
  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  case Instruction::FPExt   : return bitc::CAST_FPEXT;
  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  case Instruction::BitCast : return bitc::CAST_BITCAST;
  }
}

static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  switch (Opcode) {
  default: assert(0 && "Unknown binary instruction!");
  case Instruction::Add:  return bitc::BINOP_ADD;
  case Instruction::Sub:  return bitc::BINOP_SUB;
  case Instruction::Mul:  return bitc::BINOP_MUL;
  case Instruction::UDiv: return bitc::BINOP_UDIV;
  case Instruction::FDiv:
  case Instruction::SDiv: return bitc::BINOP_SDIV;
  case Instruction::URem: return bitc::BINOP_UREM;
  case Instruction::FRem:
  case Instruction::SRem: return bitc::BINOP_SREM;
  case Instruction::Shl:  return bitc::BINOP_SHL;
  case Instruction::LShr: return bitc::BINOP_LSHR;
  case Instruction::AShr: return bitc::BINOP_ASHR;
  case Instruction::And:  return bitc::BINOP_AND;
  case Instruction::Or:   return bitc::BINOP_OR;
  case Instruction::Xor:  return bitc::BINOP_XOR;
  }
}



static void WriteStringRecord(unsigned Code, const std::string &Str, 
                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
  SmallVector<unsigned, 64> Vals;
  
  // Code: [strchar x N]
  for (unsigned i = 0, e = Str.size(); i != e; ++i)
    Vals.push_back(Str[i]);
    
  // Emit the finished record.
  Stream.EmitRecord(Code, Vals, AbbrevToUse);
}

// Emit information about parameter attributes.
static void WriteParamAttrTable(const ValueEnumerator &VE, 
                                BitstreamWriter &Stream) {
  const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
  if (Attrs.empty()) return;
  
  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);

  SmallVector<uint64_t, 64> Record;
  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    const ParamAttrsList *A = Attrs[i];
    for (unsigned op = 0, e = A->size(); op != e; ++op) {
      Record.push_back(A->getParamIndex(op));
      Record.push_back(A->getParamAttrsAtIndex(op));
    }
    
    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    Record.clear();
  }
  
  Stream.ExitBlock();
}

/// WriteTypeTable - Write out the type table for a module.
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  
  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
  SmallVector<uint64_t, 64> TypeVals;
  
  // FIXME: Set up abbrevs now that we know the width of the type fields, etc.
  
  // Emit an entry count so the reader can reserve space.
  TypeVals.push_back(TypeList.size());
  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  TypeVals.clear();
  
  // Loop over all of the types, emitting each in turn.
  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    const Type *T = TypeList[i].first;
    int AbbrevToUse = 0;
    unsigned Code = 0;
    
    switch (T->getTypeID()) {
    case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
    default: assert(0 && "Unknown type!");
    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
    case Type::IntegerTyID:
      // INTEGER: [width]
      Code = bitc::TYPE_CODE_INTEGER;
      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
      break;
    case Type::PointerTyID:
      // POINTER: [pointee type]
      Code = bitc::TYPE_CODE_POINTER;
      TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
      break;

    case Type::FunctionTyID: {
      const FunctionType *FT = cast<FunctionType>(T);
      // FUNCTION: [isvararg, attrid, #pararms, paramty x N]
      Code = bitc::TYPE_CODE_FUNCTION;
      TypeVals.push_back(FT->isVarArg());
      TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
      break;
    }
    case Type::StructTyID: {
      const StructType *ST = cast<StructType>(T);
      // STRUCT: [ispacked, #elts, eltty x N]
      Code = bitc::TYPE_CODE_STRUCT;
      TypeVals.push_back(ST->isPacked());
      // Output all of the element types.
      for (StructType::element_iterator I = ST->element_begin(),
           E = ST->element_end(); I != E; ++I)
        TypeVals.push_back(VE.getTypeID(*I));
      break;
    }
    case Type::ArrayTyID: {
      const ArrayType *AT = cast<ArrayType>(T);
      // ARRAY: [numelts, eltty]
      Code = bitc::TYPE_CODE_ARRAY;
      TypeVals.push_back(AT->getNumElements());
      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
      break;
    }
    case Type::VectorTyID: {
      const VectorType *VT = cast<VectorType>(T);
      // VECTOR [numelts, eltty]
      Code = bitc::TYPE_CODE_VECTOR;
      TypeVals.push_back(VT->getNumElements());
      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
      break;
    }
    }

    // Emit the finished record.
    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    TypeVals.clear();
  }
  
  Stream.ExitBlock();
}

static unsigned getEncodedLinkage(const GlobalValue *GV) {
  switch (GV->getLinkage()) {
  default: assert(0 && "Invalid linkage!");
  case GlobalValue::ExternalLinkage:     return 0;
  case GlobalValue::WeakLinkage:         return 1;
  case GlobalValue::AppendingLinkage:    return 2;
  case GlobalValue::InternalLinkage:     return 3;
  case GlobalValue::LinkOnceLinkage:     return 4;
  case GlobalValue::DLLImportLinkage:    return 5;
  case GlobalValue::DLLExportLinkage:    return 6;
  case GlobalValue::ExternalWeakLinkage: return 7;
  }
}

static unsigned getEncodedVisibility(const GlobalValue *GV) {
  switch (GV->getVisibility()) {
  default: assert(0 && "Invalid visibility!");
  case GlobalValue::DefaultVisibility:   return 0;
  case GlobalValue::HiddenVisibility:    return 1;
  case GlobalValue::ProtectedVisibility: return 2;
  }
}

// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
                            BitstreamWriter &Stream) {
  // Emit the list of dependent libraries for the Module.
  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);

  // Emit various pieces of data attached to a module.
  if (!M->getTargetTriple().empty())
    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
                      0/*TODO*/, Stream);
  if (!M->getDataLayout().empty())
    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
                      0/*TODO*/, Stream);
  if (!M->getModuleInlineAsm().empty())
    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
                      0/*TODO*/, Stream);

  // Emit information about sections, computing how many there are.  Also
  // compute the maximum alignment value.
  std::map<std::string, unsigned> SectionMap;
  unsigned MaxAlignment = 0;
  unsigned MaxGlobalType = 0;
  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
       GV != E; ++GV) {
    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    
    if (!GV->hasSection()) continue;
    // Give section names unique ID's.
    unsigned &Entry = SectionMap[GV->getSection()];
    if (Entry != 0) continue;
    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
                      0/*TODO*/, Stream);
    Entry = SectionMap.size();
  }
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    if (!F->hasSection()) continue;
    // Give section names unique ID's.
    unsigned &Entry = SectionMap[F->getSection()];
    if (Entry != 0) continue;
    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
                      0/*TODO*/, Stream);
    Entry = SectionMap.size();
  }
  
  // Emit abbrev for globals, now that we know # sections and max alignment.
  unsigned SimpleGVarAbbrev = 0;
  if (!M->global_empty()) { 
    // Add an abbrev for common globals with no visibility or thread localness.
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                              Log2_32_Ceil(MaxGlobalType+1)));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
    if (MaxAlignment == 0)                                      // Alignment.
      Abbv->Add(BitCodeAbbrevOp(0));
    else {
      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                               Log2_32_Ceil(MaxEncAlignment+1)));
    }
    if (SectionMap.empty())                                    // Section.
      Abbv->Add(BitCodeAbbrevOp(0));
    else
      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                               Log2_32_Ceil(SectionMap.size()+1)));
    // Don't bother emitting vis + thread local.
    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
  }
  
  // Emit the global variable information.
  SmallVector<unsigned, 64> Vals;
  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
       GV != E; ++GV) {
    unsigned AbbrevToUse = 0;

    // GLOBALVAR: [type, isconst, initid, 
    //             linkage, alignment, section, visibility, threadlocal]
    Vals.push_back(VE.getTypeID(GV->getType()));
    Vals.push_back(GV->isConstant());
    Vals.push_back(GV->isDeclaration() ? 0 :
                   (VE.getValueID(GV->getInitializer()) + 1));
    Vals.push_back(getEncodedLinkage(GV));
    Vals.push_back(Log2_32(GV->getAlignment())+1);
    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    if (GV->isThreadLocal() || 
        GV->getVisibility() != GlobalValue::DefaultVisibility) {
      Vals.push_back(getEncodedVisibility(GV));
      Vals.push_back(GV->isThreadLocal());
    } else {
      AbbrevToUse = SimpleGVarAbbrev;
    }
    
    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    Vals.clear();
  }

  // Emit the function proto information.
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
    //             visibility]
    Vals.push_back(VE.getTypeID(F->getType()));
    Vals.push_back(F->getCallingConv());
    Vals.push_back(F->isDeclaration());
    Vals.push_back(getEncodedLinkage(F));
    Vals.push_back(Log2_32(F->getAlignment())+1);
    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    Vals.push_back(getEncodedVisibility(F));
    
    unsigned AbbrevToUse = 0;
    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    Vals.clear();
  }
  
  
  // Emit the alias information.
  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
       AI != E; ++AI) {
    Vals.push_back(VE.getTypeID(AI->getType()));
    Vals.push_back(VE.getValueID(AI->getAliasee()));
    Vals.push_back(getEncodedLinkage(AI));
    unsigned AbbrevToUse = 0;
    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    Vals.clear();
  }
}


static void WriteConstants(unsigned FirstVal, unsigned LastVal,
                           const ValueEnumerator &VE,
                           BitstreamWriter &Stream) {
  if (FirstVal == LastVal) return;
  
  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2);

  // FIXME: Install and use abbrevs to reduce size.  Install them globally so
  // they don't need to be reemitted for each function body.
  
  SmallVector<uint64_t, 64> Record;

  const ValueEnumerator::ValueList &Vals = VE.getValues();
  const Type *LastTy = 0;
  for (unsigned i = FirstVal; i != LastVal; ++i) {
    const Value *V = Vals[i].first;
    // If we need to switch types, do so now.
    if (V->getType() != LastTy) {
      LastTy = V->getType();
      Record.push_back(VE.getTypeID(LastTy));
      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record);
      Record.clear();
    }
    
    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
      assert(0 && IA && "FIXME: Inline asm writing unimp!");
      continue;
    }
    const Constant *C = cast<Constant>(V);
    unsigned Code = -1U;
    unsigned AbbrevToUse = 0;
    if (C->isNullValue()) {
      Code = bitc::CST_CODE_NULL;
    } else if (isa<UndefValue>(C)) {
      Code = bitc::CST_CODE_UNDEF;
    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
      if (IV->getBitWidth() <= 64) {
        int64_t V = IV->getSExtValue();
        if (V >= 0)
          Record.push_back(V << 1);
        else
          Record.push_back((-V << 1) | 1);
        Code = bitc::CST_CODE_INTEGER;
      } else {                             // Wide integers, > 64 bits in size.
        // We have an arbitrary precision integer value to write whose 
        // bit width is > 64. However, in canonical unsigned integer 
        // format it is likely that the high bits are going to be zero.
        // So, we only write the number of active words.
        unsigned NWords = IV->getValue().getActiveWords(); 
        const uint64_t *RawWords = IV->getValue().getRawData();
        for (unsigned i = 0; i != NWords; ++i) {
          int64_t V = RawWords[i];
          if (V >= 0)
            Record.push_back(V << 1);
          else
            Record.push_back((-V << 1) | 1);
        }
        Code = bitc::CST_CODE_WIDE_INTEGER;
      }
    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
      Code = bitc::CST_CODE_FLOAT;
      if (CFP->getType() == Type::FloatTy) {
        Record.push_back(FloatToBits((float)CFP->getValue()));
      } else {
        assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
        Record.push_back(DoubleToBits((double)CFP->getValue()));
      }
    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
               isa<ConstantVector>(V)) {
      Code = bitc::CST_CODE_AGGREGATE;
      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
        Record.push_back(VE.getValueID(C->getOperand(i)));
    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
      switch (CE->getOpcode()) {
      default:
        if (Instruction::isCast(CE->getOpcode())) {
          Code = bitc::CST_CODE_CE_CAST;
          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
          Record.push_back(VE.getValueID(C->getOperand(0)));
        } else {
          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
          Code = bitc::CST_CODE_CE_BINOP;
          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
          Record.push_back(VE.getValueID(C->getOperand(0)));
          Record.push_back(VE.getValueID(C->getOperand(1)));
        }
        break;
      case Instruction::GetElementPtr:
        Code = bitc::CST_CODE_CE_GEP;
        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
          Record.push_back(VE.getValueID(C->getOperand(i)));
        }
        break;
      case Instruction::Select:
        Code = bitc::CST_CODE_CE_SELECT;
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(VE.getValueID(C->getOperand(2)));
        break;
      case Instruction::ExtractElement:
        Code = bitc::CST_CODE_CE_EXTRACTELT;
        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        break;
      case Instruction::InsertElement:
        Code = bitc::CST_CODE_CE_INSERTELT;
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(VE.getValueID(C->getOperand(2)));
        break;
      case Instruction::ShuffleVector:
        Code = bitc::CST_CODE_CE_SHUFFLEVEC;
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(VE.getValueID(C->getOperand(2)));
        break;
      case Instruction::ICmp:
      case Instruction::FCmp:
        Code = bitc::CST_CODE_CE_CMP;
        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(CE->getPredicate());
        break;
      }
    } else {
      assert(0 && "Unknown constant!");
    }
    Stream.EmitRecord(Code, Record, AbbrevToUse);
    Record.clear();
  }

  Stream.ExitBlock();
}

static void WriteModuleConstants(const ValueEnumerator &VE,
                                 BitstreamWriter &Stream) {
  const ValueEnumerator::ValueList &Vals = VE.getValues();
  
  // Find the first constant to emit, which is the first non-globalvalue value.
  // We know globalvalues have been emitted by WriteModuleInfo.
  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    if (!isa<GlobalValue>(Vals[i].first)) {
      WriteConstants(i, Vals.size(), VE, Stream);
      return;
    }
  }
}

/// WriteInstruction - Emit an instruction to the specified stream.
static void WriteInstruction(const Instruction &I, ValueEnumerator &VE, 
                             BitstreamWriter &Stream,
                             SmallVector<unsigned, 64> &Vals) {
  unsigned Code = 0;
  unsigned AbbrevToUse = 0;
  switch (I.getOpcode()) {
  default:
    if (Instruction::isCast(I.getOpcode())) {
      Code = bitc::FUNC_CODE_INST_CAST;
      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
      Vals.push_back(VE.getTypeID(I.getType()));
      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
      Vals.push_back(VE.getValueID(I.getOperand(0)));
    } else {
      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
      Code = bitc::FUNC_CODE_INST_BINOP;
      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
      Vals.push_back(VE.getTypeID(I.getType()));
      Vals.push_back(VE.getValueID(I.getOperand(0)));
      Vals.push_back(VE.getValueID(I.getOperand(1)));
    }
    break;

  case Instruction::GetElementPtr:
    Code = bitc::FUNC_CODE_INST_GEP;
    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
      Vals.push_back(VE.getTypeID(I.getOperand(i)->getType()));
      Vals.push_back(VE.getValueID(I.getOperand(i)));
    }
    break;
  case Instruction::Select:
    Code = bitc::FUNC_CODE_INST_SELECT;
    Vals.push_back(VE.getTypeID(I.getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));
    Vals.push_back(VE.getValueID(I.getOperand(1)));
    Vals.push_back(VE.getValueID(I.getOperand(2)));
    break;
  case Instruction::ExtractElement:
    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));
    Vals.push_back(VE.getValueID(I.getOperand(1)));
    break;
  case Instruction::InsertElement:
    Code = bitc::FUNC_CODE_INST_INSERTELT;
    Vals.push_back(VE.getTypeID(I.getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));
    Vals.push_back(VE.getValueID(I.getOperand(1)));
    Vals.push_back(VE.getValueID(I.getOperand(2)));
    break;
  case Instruction::ShuffleVector:
    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
    Vals.push_back(VE.getTypeID(I.getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));
    Vals.push_back(VE.getValueID(I.getOperand(1)));
    Vals.push_back(VE.getValueID(I.getOperand(2)));
    break;
  case Instruction::ICmp:
  case Instruction::FCmp:
    Code = bitc::FUNC_CODE_INST_CMP;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));
    Vals.push_back(VE.getValueID(I.getOperand(1)));
    Vals.push_back(cast<CmpInst>(I).getPredicate());
    break;

  case Instruction::Ret:
    Code = bitc::FUNC_CODE_INST_RET;
    if (I.getNumOperands()) {
      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
      Vals.push_back(VE.getValueID(I.getOperand(0)));
    }
    break;
  case Instruction::Br:
    Code = bitc::FUNC_CODE_INST_BR;
    Vals.push_back(VE.getValueID(I.getOperand(0)));
    if (cast<BranchInst>(I).isConditional()) {
      Vals.push_back(VE.getValueID(I.getOperand(1)));
      Vals.push_back(VE.getValueID(I.getOperand(2)));
    }
    break;
  case Instruction::Switch:
    Code = bitc::FUNC_CODE_INST_SWITCH;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
      Vals.push_back(VE.getValueID(I.getOperand(i)));
    break;
  case Instruction::Invoke: {
    Code = bitc::FUNC_CODE_INST_INVOKE;
    Vals.push_back(cast<InvokeInst>(I).getCallingConv());
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));  // callee
    Vals.push_back(VE.getValueID(I.getOperand(1)));  // normal
    Vals.push_back(VE.getValueID(I.getOperand(2)));  // unwind
    
    // Emit value #'s for the fixed parameters.
    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
      Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.

    // Emit type/value pairs for varargs params.
    if (FTy->isVarArg()) {
      unsigned NumVarargs = I.getNumOperands()-3-FTy->getNumParams();
      for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
           i != e; ++i) {
        Vals.push_back(VE.getTypeID(I.getOperand(i)->getType()));
        Vals.push_back(VE.getValueID(I.getOperand(i)));
      }
    }
    break;
  }
  case Instruction::Unwind:
    Code = bitc::FUNC_CODE_INST_UNWIND;
    break;
  case Instruction::Unreachable:
    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
    break;
  
  case Instruction::PHI:
    Code = bitc::FUNC_CODE_INST_PHI;
    Vals.push_back(VE.getTypeID(I.getType()));
    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
      Vals.push_back(VE.getValueID(I.getOperand(i)));
    break;
    
  case Instruction::Malloc:
    Code = bitc::FUNC_CODE_INST_MALLOC;
    Vals.push_back(VE.getTypeID(I.getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
    Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
    break;
    
  case Instruction::Free:
    Code = bitc::FUNC_CODE_INST_FREE;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));
    break;
    
  case Instruction::Alloca:
    Code = bitc::FUNC_CODE_INST_ALLOCA;
    Vals.push_back(VE.getTypeID(I.getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
    break;
    
  case Instruction::Load:
    Code = bitc::FUNC_CODE_INST_LOAD;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0))); // ptr.
    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
    Vals.push_back(cast<LoadInst>(I).isVolatile());
    break;
  case Instruction::Store:
    Code = bitc::FUNC_CODE_INST_STORE;
    Vals.push_back(VE.getTypeID(I.getOperand(1)->getType()));   // Pointer
    Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
    Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr.
    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
    Vals.push_back(cast<StoreInst>(I).isVolatile());
    break;
  case Instruction::Call: {
    Code = bitc::FUNC_CODE_INST_CALL;
    Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
                   cast<CallInst>(I).isTailCall());
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0)));  // callee
    
    // Emit value #'s for the fixed parameters.
    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
      Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
      
    // Emit type/value pairs for varargs params.
    if (FTy->isVarArg()) {
      unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
      for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
           i != e; ++i) {
        Vals.push_back(VE.getTypeID(I.getOperand(i)->getType()));
        Vals.push_back(VE.getValueID(I.getOperand(i)));
      }
    }
    break;
  }
  case Instruction::VAArg:
    Code = bitc::FUNC_CODE_INST_VAARG;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
    Vals.push_back(VE.getTypeID(I.getType())); // restype.
    break;
  }
  
  Stream.EmitRecord(Code, Vals, AbbrevToUse);
  Vals.clear();
}

// Emit names for globals/functions etc.
static void WriteValueSymbolTable(const ValueSymbolTable &VST,
                                  const ValueEnumerator &VE,
                                  BitstreamWriter &Stream) {
  if (VST.empty()) return;
  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 3);

  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    if (Stream.EmitAbbrev(Abbv) != VST_ENTRY_8_ABBREV)
      assert(0 && "Unexpected abbrev ordering!");
  }
  
  { // 7-bit fixed width VST_ENTRY strings.
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    if (Stream.EmitAbbrev(Abbv) != VST_ENTRY_7_ABBREV)
      assert(0 && "Unexpected abbrev ordering!");
  }
  { // 7-bit fixed width VST_BBENTRY strings.
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    if (Stream.EmitAbbrev(Abbv) != VST_BBENTRY_7_ABBREV)
      assert(0 && "Unexpected abbrev ordering!");
  }
  
  
  // FIXME: Set up the abbrev, we know how many values there are!
  // FIXME: We know if the type names can use 7-bit ascii.
  SmallVector<unsigned, 64> NameVals;
  
  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
       SI != SE; ++SI) {
    
    const ValueName &Name = *SI;
    
    // Figure out the encoding to use for the name.
    bool is7Bit = true;
    for (unsigned i = 0, e = Name.getKeyLength(); i != e; ++i)
      if ((unsigned char)Name.getKeyData()[i] & 128) {
        is7Bit = false;
        break;
      }
    
    
    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
    
    // VST_ENTRY:   [valueid, namechar x N]
    // VST_BBENTRY: [bbid, namechar x N]
    unsigned Code;
    if (isa<BasicBlock>(SI->getValue())) {
      Code = bitc::VST_CODE_BBENTRY;
      if (is7Bit) AbbrevToUse = VST_BBENTRY_7_ABBREV;
    } else {
      Code = bitc::VST_CODE_ENTRY;
      if (is7Bit) AbbrevToUse = VST_ENTRY_7_ABBREV;
    }
    
    NameVals.push_back(VE.getValueID(SI->getValue()));
    for (const char *P = Name.getKeyData(),
         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
      NameVals.push_back((unsigned char)*P);
    
    // Emit the finished record.
    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
    NameVals.clear();
  }
  Stream.ExitBlock();
}

/// WriteFunction - Emit a function body to the module stream.
static void WriteFunction(const Function &F, ValueEnumerator &VE, 
                          BitstreamWriter &Stream) {
  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3);
  VE.incorporateFunction(F);

  SmallVector<unsigned, 64> Vals;
  
  // Emit the number of basic blocks, so the reader can create them ahead of
  // time.
  Vals.push_back(VE.getBasicBlocks().size());
  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  Vals.clear();
  
  // FIXME: Function attributes?
  
  // If there are function-local constants, emit them now.
  unsigned CstStart, CstEnd;
  VE.getFunctionConstantRange(CstStart, CstEnd);
  WriteConstants(CstStart, CstEnd, VE, Stream);
  
  // Finally, emit all the instructions, in order.
  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      WriteInstruction(*I, VE, Stream, Vals);
  
  // Emit names for all the instructions etc.
  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
    
  VE.purgeFunction();
  Stream.ExitBlock();
}

/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
                                 const ValueEnumerator &VE,
                                 BitstreamWriter &Stream) {
  if (TST.empty()) return;
  
  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
  
  // FIXME: Set up the abbrev, we know how many types there are!
  // FIXME: We know if the type names can use 7-bit ascii.
  
  SmallVector<unsigned, 64> NameVals;
  
  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
       TI != TE; ++TI) {
    unsigned AbbrevToUse = 0;
    
    // TST_ENTRY: [typeid, namelen, namechar x N]
    NameVals.push_back(VE.getTypeID(TI->second));
    
    const std::string &Str = TI->first;
    for (unsigned i = 0, e = Str.size(); i != e; ++i)
      NameVals.push_back(Str[i]);
    
    // Emit the finished record.
    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse);
    NameVals.clear();
  }
  
  Stream.ExitBlock();
}


/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  
  // Emit the version number if it is non-zero.
  if (CurVersion) {
    SmallVector<unsigned, 1> Vals;
    Vals.push_back(CurVersion);
    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  }
  
  // Analyze the module, enumerating globals, functions, etc.
  ValueEnumerator VE(M);
  
  // Emit information about parameter attributes.
  WriteParamAttrTable(VE, Stream);
  
  // Emit information describing all of the types in the module.
  WriteTypeTable(VE, Stream);
  
  // Emit top-level description of module, including target triple, inline asm,
  // descriptors for global variables, and function prototype info.
  WriteModuleInfo(M, VE, Stream);
  
  // Emit constants.
  WriteModuleConstants(VE, Stream);
  
  // If we have any aggregate values in the value table, purge them - these can
  // only be used to initialize global variables.  Doing so makes the value
  // namespace smaller for code in functions.
  int NumNonAggregates = VE.PurgeAggregateValues();
  if (NumNonAggregates != -1) {
    SmallVector<unsigned, 1> Vals;
    Vals.push_back(NumNonAggregates);
    Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
  }
  
  // Emit function bodies.
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
    if (!I->isDeclaration())
      WriteFunction(*I, VE, Stream);
  
  // Emit the type symbol table information.
  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
  
  // Emit names for globals/functions etc.
  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  
  Stream.ExitBlock();
}

// Emit blockinfo, which defines the standard abbreviations etc.
static void WriteBlockInfo(BitstreamWriter &Stream) {
  // We only want to emit block info records for blocks that have multiple
  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
  // blocks can defined their abbrevs inline.
  Stream.EnterSubblock(bitc::BLOCKINFO_BLOCK_ID, 2);

#if 0
  // Configure TYPE_SYMTAB_BLOCK's.

  // Add an abbrev for VST_ENTRY where the characters each fit in 7 bits.
  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8); // Value ID
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
  
  xxx = Stream.EmitAbbrev(Abbv);
#endif
  Stream.ExitBlock();
}


/// WriteBitcodeToFile - Write the specified module to the specified output
/// stream.
void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
  std::vector<unsigned char> Buffer;
  BitstreamWriter Stream(Buffer);
  
  Buffer.reserve(256*1024);
  
  // Emit the file header.
  Stream.Emit((unsigned)'B', 8);
  Stream.Emit((unsigned)'C', 8);
  Stream.Emit(0x0, 4);
  Stream.Emit(0xC, 4);
  Stream.Emit(0xE, 4);
  Stream.Emit(0xD, 4);

  // Emit blockinfo, which defines the standard abbreviations etc.
  WriteBlockInfo(Stream);
  
  // Emit the module.
  WriteModule(M, Stream);
  
  // Write the generated bitstream to "Out".
  Out.write((char*)&Buffer.front(), Buffer.size());
}