summaryrefslogtreecommitdiff
path: root/lib/Bytecode/Reader/Parser.cpp
blob: d236b64aae25c6cbb5d858973bb790ab4d097166 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
//===- Reader.cpp - Code to read bytecode files ---------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Reader.h
//
// Note that this library should be as fast as possible, reentrant, and 
// threadsafe!!
//
// TODO: Allow passing in an option to ignore the symbol table
//
//===----------------------------------------------------------------------===//

#include "AnalyzerInternals.h"
#include "llvm/Module.h"
#include "llvm/Bytecode/Format.h"
#include "Support/StringExtras.h"
#include <iostream>
#include <sstream>

using namespace llvm;

#define PARSE_ERROR(inserters) \
  { \
    std::ostringstream errormsg; \
    errormsg << inserters; \
    if ( ! handler->handleError( errormsg.str() ) ) \
      throw std::string(errormsg.str()); \
  }

const Type *AbstractBytecodeParser::getType(unsigned ID) {
  //cerr << "Looking up Type ID: " << ID << "\n";

  if (ID < Type::FirstDerivedTyID)
    if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
      return T;   // Asked for a primitive type...

  // Otherwise, derived types need offset...
  ID -= Type::FirstDerivedTyID;

  if (!CompactionTypeTable.empty()) {
    if (ID >= CompactionTypeTable.size())
      PARSE_ERROR("Type ID out of range for compaction table!");
    return CompactionTypeTable[ID];
  }

  // Is it a module-level type?
  if (ID < ModuleTypes.size())
    return ModuleTypes[ID].get();

  // Nope, is it a function-level type?
  ID -= ModuleTypes.size();
  if (ID < FunctionTypes.size())
    return FunctionTypes[ID].get();

  PARSE_ERROR("Illegal type reference!");
  return Type::VoidTy;
}

bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf,
                                      std::vector<unsigned> &Operands) {
  Operands.clear();
  unsigned iType = 0;
  unsigned Opcode = 0;
  unsigned Op = read(Buf, EndBuf);

  // bits   Instruction format:        Common to all formats
  // --------------------------
  // 01-00: Opcode type, fixed to 1.
  // 07-02: Opcode
  Opcode    = (Op >> 2) & 63;
  Operands.resize((Op >> 0) & 03);

  switch (Operands.size()) {
  case 1:
    // bits   Instruction format:
    // --------------------------
    // 19-08: Resulting type plane
    // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
    //
    iType   = (Op >>  8) & 4095;
    Operands[0] = (Op >> 20) & 4095;
    if (Operands[0] == 4095)    // Handle special encoding for 0 operands...
      Operands.resize(0);
    break;
  case 2:
    // bits   Instruction format:
    // --------------------------
    // 15-08: Resulting type plane
    // 23-16: Operand #1
    // 31-24: Operand #2  
    //
    iType   = (Op >>  8) & 255;
    Operands[0] = (Op >> 16) & 255;
    Operands[1] = (Op >> 24) & 255;
    break;
  case 3:
    // bits   Instruction format:
    // --------------------------
    // 13-08: Resulting type plane
    // 19-14: Operand #1
    // 25-20: Operand #2
    // 31-26: Operand #3
    //
    iType   = (Op >>  8) & 63;
    Operands[0] = (Op >> 14) & 63;
    Operands[1] = (Op >> 20) & 63;
    Operands[2] = (Op >> 26) & 63;
    break;
  case 0:
    Buf -= 4;  // Hrm, try this again...
    Opcode = read_vbr_uint(Buf, EndBuf);
    Opcode >>= 2;
    iType = read_vbr_uint(Buf, EndBuf);

    unsigned NumOperands = read_vbr_uint(Buf, EndBuf);
    Operands.resize(NumOperands);

    if (NumOperands == 0)
      PARSE_ERROR("Zero-argument instruction found; this is invalid.");

    for (unsigned i = 0; i != NumOperands; ++i)
      Operands[i] = read_vbr_uint(Buf, EndBuf);
    align32(Buf, EndBuf);
    break;
  }

  return handler->handleInstruction(Opcode, getType(iType), Operands);
}

/// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one
/// basicblock at a time.  This method reads in one of the basicblock packets.
void AbstractBytecodeParser::ParseBasicBlock(BufPtr &Buf,
                                            BufPtr EndBuf,
                                            unsigned BlockNo) {
  handler->handleBasicBlockBegin( BlockNo );

  std::vector<unsigned> Args;
  bool is_terminating = false;
  while (Buf < EndBuf)
    is_terminating = ParseInstruction(Buf, EndBuf, Args);

  if ( ! is_terminating )
    PARSE_ERROR(
      "Failed to recognize instruction as terminating at end of block");

  handler->handleBasicBlockEnd( BlockNo );
}


/// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the
/// body of a function.  In post 1.0 bytecode files, we no longer emit basic
/// block individually, in order to avoid per-basic-block overhead.
unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf, BufPtr EndBuf) {
  unsigned BlockNo = 0;
  std::vector<unsigned> Args;

  while (Buf < EndBuf) {
    handler->handleBasicBlockBegin( BlockNo );

    // Read instructions into this basic block until we get to a terminator
    bool is_terminating = false;
    while (Buf < EndBuf && !is_terminating )
	is_terminating = ParseInstruction(Buf, EndBuf, Args ) ;

    if (!is_terminating)
      PARSE_ERROR( "Non-terminated basic block found!");

    handler->handleBasicBlockEnd( BlockNo );
    ++BlockNo;
  }
  return BlockNo;
}

void AbstractBytecodeParser::ParseSymbolTable(BufPtr &Buf, BufPtr EndBuf) {
  handler->handleSymbolTableBegin();

  while (Buf < EndBuf) {
    // Symtab block header: [num entries][type id number]
    unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
    const Type *Ty = getType(Typ);

    handler->handleSymbolTablePlane( Typ, NumEntries, Ty );

    for (unsigned i = 0; i != NumEntries; ++i) {
      // Symtab entry: [def slot #][name]
      unsigned slot = read_vbr_uint(Buf, EndBuf);
      std::string Name = read_str(Buf, EndBuf);

      if (Typ == Type::TypeTyID)
        handler->handleSymbolTableType( i, slot, Name );
      else
	handler->handleSymbolTableValue( i, slot, Name );
    }
  }

  if (Buf > EndBuf) 
    PARSE_ERROR("Tried to read past end of buffer while reading symbol table.");

  handler->handleSymbolTableEnd();
}

void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) {
  if (FunctionSignatureList.empty())
    throw std::string("FunctionSignatureList empty!");

  const Type *FType = FunctionSignatureList.back();
  FunctionSignatureList.pop_back();

  // Save the information for future reading of the function
  LazyFunctionLoadMap[FType] = LazyFunctionInfo(Buf, EndBuf);
  // Pretend we've `parsed' this function
  Buf = EndBuf;
}

void AbstractBytecodeParser::ParseNextFunction(Type* FType) {
  // Find {start, end} pointers and slot in the map. If not there, we're done.
  LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(FType);

  // Make sure we found it
  if ( Fi == LazyFunctionLoadMap.end() ) {
    PARSE_ERROR("Unrecognized function of type " << FType->getDescription());
    return;
  }

  BufPtr Buf = Fi->second.Buf;
  BufPtr EndBuf = Fi->second.EndBuf;
  assert(Fi->first == FType);

  LazyFunctionLoadMap.erase(Fi);

  this->ParseFunctionBody( FType, Buf, EndBuf );
}

void AbstractBytecodeParser::ParseFunctionBody(const Type* FType, 
                                               BufPtr &Buf, BufPtr EndBuf ) {

  GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;

  unsigned LinkageType = read_vbr_uint(Buf, EndBuf);
  switch (LinkageType) {
  case 0: Linkage = GlobalValue::ExternalLinkage; break;
  case 1: Linkage = GlobalValue::WeakLinkage; break;
  case 2: Linkage = GlobalValue::AppendingLinkage; break;
  case 3: Linkage = GlobalValue::InternalLinkage; break;
  case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
  default:
    PARSE_ERROR("Invalid linkage type for Function.");
    Linkage = GlobalValue::InternalLinkage;
    break;
  }

  handler->handleFunctionBegin(FType,Linkage);

  // Keep track of how many basic blocks we have read in...
  unsigned BlockNum = 0;
  bool InsertedArguments = false;

  while (Buf < EndBuf) {
    unsigned Type, Size;
    BufPtr OldBuf = Buf;
    readBlock(Buf, EndBuf, Type, Size);

    switch (Type) {
    case BytecodeFormat::ConstantPool:
      ParseConstantPool(Buf, Buf+Size, FunctionTypes );
      break;

    case BytecodeFormat::CompactionTable:
      ParseCompactionTable(Buf, Buf+Size);
      break;

    case BytecodeFormat::BasicBlock:
      ParseBasicBlock(Buf, Buf+Size, BlockNum++);
      break;

    case BytecodeFormat::InstructionList:
      if (BlockNum) 
	PARSE_ERROR("InstructionList must come before basic blocks!");
      BlockNum = ParseInstructionList(Buf, Buf+Size);
      break;

    case BytecodeFormat::SymbolTable:
      ParseSymbolTable(Buf, Buf+Size );
      break;

    default:
      Buf += Size;
      if (OldBuf > Buf)
	PARSE_ERROR("Wrapped around reading bytecode");
      break;
    }

    // Malformed bc file if read past end of block.
    align32(Buf, EndBuf);
  }

  handler->handleFunctionEnd(FType);

  // Clear out function-level types...
  FunctionTypes.clear();
  CompactionTypeTable.clear();
}

void AbstractBytecodeParser::ParseAllFunctionBodies() {
  LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
  LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();

  while ( Fi != Fe ) {
    const Type* FType = Fi->first;
    this->ParseFunctionBody(FType, Fi->second.Buf, Fi->second.EndBuf);
  }
}

void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) {

  handler->handleCompactionTableBegin();

  while (Buf != End) {
    unsigned NumEntries = read_vbr_uint(Buf, End);
    unsigned Ty;

    if ((NumEntries & 3) == 3) {
      NumEntries >>= 2;
      Ty = read_vbr_uint(Buf, End);
    } else {
      Ty = NumEntries >> 2;
      NumEntries &= 3;
    }

    handler->handleCompactionTablePlane( Ty, NumEntries );

    if (Ty == Type::TypeTyID) {
      for (unsigned i = 0; i != NumEntries; ++i) {
	unsigned TypeSlot = read_vbr_uint(Buf,End);
        const Type *Typ = getGlobalTableType(TypeSlot);
	handler->handleCompactionTableType( i, TypeSlot, Typ );
      }
    } else {
      const Type *Typ = getType(Ty);
      // Push the implicit zero
      for (unsigned i = 0; i != NumEntries; ++i) {
	unsigned ValSlot = read_vbr_uint(Buf, End);
	handler->handleCompactionTableValue( i, ValSlot, Typ );
      }
    }
  }
  handler->handleCompactionTableEnd();
}

const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
					      const unsigned char *EndBuf) {
  unsigned PrimType = read_vbr_uint(Buf, EndBuf);

  const Type *Val = 0;
  if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
    return Val;
  
  switch (PrimType) {
  case Type::FunctionTyID: {
    const Type *RetType = getType(read_vbr_uint(Buf, EndBuf));

    unsigned NumParams = read_vbr_uint(Buf, EndBuf);

    std::vector<const Type*> Params;
    while (NumParams--)
      Params.push_back(getType(read_vbr_uint(Buf, EndBuf)));

    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
    if (isVarArg) Params.pop_back();

    Type* result = FunctionType::get(RetType, Params, isVarArg);
    handler->handleType( result );
    return result;
  }
  case Type::ArrayTyID: {
    unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
    const Type *ElementType = getType(ElTyp);

    unsigned NumElements = read_vbr_uint(Buf, EndBuf);

    BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" 
              << NumElements << "\n");
    Type* result =  ArrayType::get(ElementType, NumElements);
    handler->handleType( result );
    return result;
  }
  case Type::StructTyID: {
    std::vector<const Type*> Elements;
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
    while (Typ) {         // List is terminated by void/0 typeid
      Elements.push_back(getType(Typ));
      Typ = read_vbr_uint(Buf, EndBuf);
    }

    Type* result = StructType::get(Elements);
    handler->handleType( result );
    return result;
  }
  case Type::PointerTyID: {
    unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
    BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
    Type* result = PointerType::get(getType(ElTyp));
    handler->handleType( result );
    return result;
  }

  case Type::OpaqueTyID: {
    Type* result = OpaqueType::get();
    handler->handleType( result );
    return result;
  }

  default:
    PARSE_ERROR("Don't know how to deserialize primitive type" << PrimType << "\n");
    return Val;
  }
}

// ParseTypeConstants - We have to use this weird code to handle recursive
// types.  We know that recursive types will only reference the current slab of
// values in the type plane, but they can forward reference types before they
// have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
// be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
// this ugly problem, we pessimistically insert an opaque type for each type we
// are about to read.  This means that forward references will resolve to
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
                                        const unsigned char *EndBuf,
					TypeListTy &Tab,
					unsigned NumEntries) {
  assert(Tab.size() == 0 && "should not have read type constants in before!");

  // Insert a bunch of opaque types to be resolved later...
  Tab.reserve(NumEntries);
  for (unsigned i = 0; i != NumEntries; ++i)
    Tab.push_back(OpaqueType::get());

  // Loop through reading all of the types.  Forward types will make use of the
  // opaque types just inserted.
  //
  for (unsigned i = 0; i != NumEntries; ++i) {
    const Type *NewTy = ParseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
    if (NewTy == 0) throw std::string("Couldn't parse type!");
    BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
              "' Replacing: " << OldTy << "\n");

    // Don't insertValue the new type... instead we want to replace the opaque
    // type with the new concrete value...
    //

    // Refine the abstract type to the new type.  This causes all uses of the
    // abstract type to use NewTy.  This also will cause the opaque type to be
    // deleted...
    //
    cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);

    // This should have replace the old opaque type with the new type in the
    // value table... or with a preexisting type that was already in the system
    assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
  }

  BCR_TRACE(5, "Resulting types:\n");
  for (unsigned i = 0; i < NumEntries; ++i) {
    BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
  }
}


void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
                                             const unsigned char *EndBuf,
                                             unsigned TypeID) {

  // We must check for a ConstantExpr before switching by type because
  // a ConstantExpr can be of any type, and has no explicit value.
  // 
  // 0 if not expr; numArgs if is expr
  unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf);
  
  if (isExprNumArgs) {
    unsigned Opcode = read_vbr_uint(Buf, EndBuf);
    const Type* Typ = getType(TypeID);
    
    // FIXME: Encoding of constant exprs could be much more compact!
    std::vector<std::pair<const Type*,unsigned> > ArgVec;
    ArgVec.reserve(isExprNumArgs);

    // Read the slot number and types of each of the arguments
    for (unsigned i = 0; i != isExprNumArgs; ++i) {
      unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf);
      unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf);
      BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot)
                << "'  slot: " << ArgValSlot << "\n");
      
      // Get the arg value from its slot if it exists, otherwise a placeholder
      ArgVec.push_back(std::make_pair(getType(ArgTypeSlot), ArgValSlot));
    }

    handler->handleConstantExpression( Opcode, Typ, ArgVec );
    return;
  }
  
  // Ok, not an ConstantExpr.  We now know how to read the given type...
  const Type *Ty = getType(TypeID);
  switch (Ty->getPrimitiveID()) {
  case Type::BoolTyID: {
    unsigned Val = read_vbr_uint(Buf, EndBuf);
    if (Val != 0 && Val != 1) 
      PARSE_ERROR("Invalid boolean value read.");

    handler->handleConstantValue( ConstantBool::get(Val == 1));
    break;
  }

  case Type::UByteTyID:   // Unsigned integer types...
  case Type::UShortTyID:
  case Type::UIntTyID: {
    unsigned Val = read_vbr_uint(Buf, EndBuf);
    if (!ConstantUInt::isValueValidForType(Ty, Val)) 
      throw std::string("Invalid unsigned byte/short/int read.");
    handler->handleConstantValue( ConstantUInt::get(Ty, Val) );
    break;
  }

  case Type::ULongTyID: {
    handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf)) );
    break;
  }

  case Type::SByteTyID:   // Signed integer types...
  case Type::ShortTyID:
  case Type::IntTyID: {
  case Type::LongTyID:
    int64_t Val = read_vbr_int64(Buf, EndBuf);
    if (!ConstantSInt::isValueValidForType(Ty, Val)) 
      throw std::string("Invalid signed byte/short/int/long read.");
    handler->handleConstantValue(  ConstantSInt::get(Ty, Val) );
    break;
  }

  case Type::FloatTyID: {
    float F;
    input_data(Buf, EndBuf, &F, &F+1);
    handler->handleConstantValue( ConstantFP::get(Ty, F) );
    break;
  }

  case Type::DoubleTyID: {
    double Val;
    input_data(Buf, EndBuf, &Val, &Val+1);
    handler->handleConstantValue( ConstantFP::get(Ty, Val) );
    break;
  }

  case Type::TypeTyID:
    PARSE_ERROR("Type constants shouldn't live in constant table!");
    break;

  case Type::ArrayTyID: {
    const ArrayType *AT = cast<ArrayType>(Ty);
    unsigned NumElements = AT->getNumElements();
    std::vector<unsigned> Elements;
    Elements.reserve(NumElements);
    while (NumElements--)     // Read all of the elements of the constant.
      Elements.push_back(read_vbr_uint(Buf, EndBuf));

    handler->handleConstantArray( AT, Elements );
    break;
  }

  case Type::StructTyID: {
    const StructType *ST = cast<StructType>(Ty);
    std::vector<unsigned> Elements;
    Elements.reserve(ST->getNumElements());
    for (unsigned i = 0; i != ST->getNumElements(); ++i)
      Elements.push_back(read_vbr_uint(Buf, EndBuf));

    handler->handleConstantStruct( ST, Elements );
  }    

  case Type::PointerTyID: {  // ConstantPointerRef value...
    const PointerType *PT = cast<PointerType>(Ty);
    unsigned Slot = read_vbr_uint(Buf, EndBuf);
    handler->handleConstantPointer( PT, Slot );
  }

  default:
    PARSE_ERROR("Don't know how to deserialize constant value of type '"+
                      Ty->getDescription());
  }
}

void AbstractBytecodeParser::ParseGlobalTypes(const unsigned char *&Buf,
                                      const unsigned char *EndBuf) {
  ParseConstantPool(Buf, EndBuf, ModuleTypes);
}

void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
                                          const unsigned char *EndBuf,
                                          unsigned NumEntries ){
  for (; NumEntries; --NumEntries) {
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
    const Type *Ty = getType(Typ);
    if (!isa<ArrayType>(Ty))
      throw std::string("String constant data invalid!");
    
    const ArrayType *ATy = cast<ArrayType>(Ty);
    if (ATy->getElementType() != Type::SByteTy &&
        ATy->getElementType() != Type::UByteTy)
      throw std::string("String constant data invalid!");
    
    // Read character data.  The type tells us how long the string is.
    char Data[ATy->getNumElements()];
    input_data(Buf, EndBuf, Data, Data+ATy->getNumElements());

    std::vector<Constant*> Elements(ATy->getNumElements());
    if (ATy->getElementType() == Type::SByteTy)
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
        Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
    else
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
        Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);

    // Create the constant, inserting it as needed.
    ConstantArray *C = cast<ConstantArray>( ConstantArray::get(ATy, Elements) );
    handler->handleConstantString( C );
  }
}


void AbstractBytecodeParser::ParseConstantPool(const unsigned char *&Buf,
                                       const unsigned char *EndBuf,
                                       TypeListTy &TypeTab) {
  while (Buf < EndBuf) {
    unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
    if (Typ == Type::TypeTyID) {
      ParseTypeConstants(Buf, EndBuf, TypeTab, NumEntries);
    } else if (Typ == Type::VoidTyID) {
      ParseStringConstants(Buf, EndBuf, NumEntries);
    } else {
      BCR_TRACE(3, "Type: '" << *getType(Typ) << "'  NumEntries: "
                << NumEntries << "\n");

      for (unsigned i = 0; i < NumEntries; ++i) {
        ParseConstantValue(Buf, EndBuf, Typ);
      }
    }
  }
  
  if (Buf > EndBuf) PARSE_ERROR("Read past end of buffer.");
}

void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {

  handler->handleModuleGlobalsBegin();

  // Read global variables...
  unsigned VarType = read_vbr_uint(Buf, End);
  while (VarType != Type::VoidTyID) { // List is terminated by Void
    // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
    // Linkage, bit4+ = slot#
    unsigned SlotNo = VarType >> 5;
    unsigned LinkageID = (VarType >> 2) & 7;
    bool isConstant = VarType & 1;
    bool hasInitializer = VarType & 2;
    GlobalValue::LinkageTypes Linkage;

    switch (LinkageID) {
    case 0: Linkage = GlobalValue::ExternalLinkage;  break;
    case 1: Linkage = GlobalValue::WeakLinkage;      break;
    case 2: Linkage = GlobalValue::AppendingLinkage; break;
    case 3: Linkage = GlobalValue::InternalLinkage;  break;
    case 4: Linkage = GlobalValue::LinkOnceLinkage;  break;
    default: 
      PARSE_ERROR("Unknown linkage type: " << LinkageID);
      Linkage = GlobalValue::InternalLinkage;
      break;
    }

    const Type *Ty = getType(SlotNo);
    if ( !Ty ) {
      PARSE_ERROR("Global has no type! SlotNo=" << SlotNo);
    }

    if ( !isa<PointerType>(Ty)) {
      PARSE_ERROR("Global not a pointer type! Ty= " << Ty->getDescription());
    }

    const Type *ElTy = cast<PointerType>(Ty)->getElementType();

    // Create the global variable...
    if (hasInitializer)
      handler->handleGlobalVariable( ElTy, isConstant, Linkage );
    else {
      unsigned initSlot = read_vbr_uint(Buf,End);
      handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot );
    }

    // Get next item
    VarType = read_vbr_uint(Buf, End);
  }

  // Read the function objects for all of the functions that are coming
  unsigned FnSignature = read_vbr_uint(Buf, End);
  while (FnSignature != Type::VoidTyID) { // List is terminated by Void
    const Type *Ty = getType(FnSignature);
    if (!isa<PointerType>(Ty) ||
        !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
      PARSE_ERROR( "Function not a pointer to function type! Ty = " +
                        Ty->getDescription());
      // FIXME: what should Ty be if handler continues?
    }

    // We create functions by passing the underlying FunctionType to create...
    Ty = cast<PointerType>(Ty)->getElementType();

    // Save this for later so we know type of lazily instantiated functions
    FunctionSignatureList.push_back(Ty);

    handler->handleFunctionDeclaration(Ty);

    // Get Next function signature
    FnSignature = read_vbr_uint(Buf, End);
  }

  if (hasInconsistentModuleGlobalInfo)
    align32(Buf, End);

  // This is for future proofing... in the future extra fields may be added that
  // we don't understand, so we transparently ignore them.
  //
  Buf = End;

  handler->handleModuleGlobalsEnd();
}

void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) {
  unsigned Version = read_vbr_uint(Buf, EndBuf);

  // Unpack version number: low four bits are for flags, top bits = version
  Module::Endianness  Endianness;
  Module::PointerSize PointerSize;
  Endianness  = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
  PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;

  bool hasNoEndianness = Version & 4;
  bool hasNoPointerSize = Version & 8;
  
  RevisionNum = Version >> 4;

  // Default values for the current bytecode version
  hasInconsistentModuleGlobalInfo = false;
  hasExplicitPrimitiveZeros = false;
  hasRestrictedGEPTypes = false;

  switch (RevisionNum) {
  case 0:               //  LLVM 1.0, 1.1 release version
    // Base LLVM 1.0 bytecode format.
    hasInconsistentModuleGlobalInfo = true;
    hasExplicitPrimitiveZeros = true;
    // FALL THROUGH
  case 1:               // LLVM 1.2 release version
    // LLVM 1.2 added explicit support for emitting strings efficiently.

    // Also, it fixed the problem where the size of the ModuleGlobalInfo block
    // included the size for the alignment at the end, where the rest of the
    // blocks did not.

    // LLVM 1.2 and before required that GEP indices be ubyte constants for
    // structures and longs for sequential types.
    hasRestrictedGEPTypes = true;

    // FALL THROUGH
  case 2:               // LLVM 1.3 release version
    break;

  default:
    PARSE_ERROR("Unknown bytecode version number: " << RevisionNum);
  }

  if (hasNoEndianness) Endianness  = Module::AnyEndianness;
  if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;

  handler->handleVersionInfo(RevisionNum, Endianness, PointerSize );
}

void AbstractBytecodeParser::ParseModule(BufPtr &Buf, BufPtr EndBuf ) {
  unsigned Type, Size;
  readBlock(Buf, EndBuf, Type, Size);
  if (Type != BytecodeFormat::Module || Buf+Size != EndBuf)
    // Hrm, not a class?
    PARSE_ERROR("Expected Module block! B: " << unsigned(intptr_t(Buf)) <<
        ", S: " << Size << " E: " << unsigned(intptr_t(EndBuf))); 

  // Read into instance variables...
  ParseVersionInfo(Buf, EndBuf);
  align32(Buf, EndBuf);

  bool SeenModuleGlobalInfo = false;
  bool SeenGlobalTypePlane = false;
  while (Buf < EndBuf) {
    BufPtr OldBuf = Buf;
    readBlock(Buf, EndBuf, Type, Size);

    switch (Type) {

    case BytecodeFormat::GlobalTypePlane:
      if ( SeenGlobalTypePlane )
	PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");

      ParseGlobalTypes(Buf, Buf+Size);
      SeenGlobalTypePlane = true;
      break;

    case BytecodeFormat::ModuleGlobalInfo: 
      if ( SeenModuleGlobalInfo )
	PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
      ParseModuleGlobalInfo(Buf, Buf+Size);
      SeenModuleGlobalInfo = true;
      break;

    case BytecodeFormat::ConstantPool:
      ParseConstantPool(Buf, Buf+Size, ModuleTypes);
      break;

    case BytecodeFormat::Function:
      ParseFunctionLazily(Buf, Buf+Size);
      break;

    case BytecodeFormat::SymbolTable:
      ParseSymbolTable(Buf, Buf+Size );
      break;

    default:
      Buf += Size;
      if (OldBuf > Buf) 
      {
	PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
      }
      break;
    }
    align32(Buf, EndBuf);
  }
}

void AbstractBytecodeParser::ParseBytecode(
       BufPtr Buf, unsigned Length,
       const std::string &ModuleID) {

  handler->handleStart();
  unsigned char *EndBuf = (unsigned char*)(Buf + Length);

  // Read and check signature...
  unsigned Sig = read(Buf, EndBuf);
  if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
    PARSE_ERROR("Invalid bytecode signature: " << Sig);
  }

  handler->handleModuleBegin(ModuleID);

  this->ParseModule(Buf, EndBuf);

  handler->handleModuleEnd(ModuleID);

  handler->handleFinish();
}

// vim: sw=2