summaryrefslogtreecommitdiff
path: root/lib/CodeGen/AsmPrinter.cpp
blob: 4caa2c1be1e4bf72d43f0393d7a95a3d3d5524d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include <cerrno>
using namespace llvm;

AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm,
                       const TargetAsmInfo *T)
: FunctionNumber(0), O(o), TM(tm), TAI(T)
{}

std::string AsmPrinter::getSectionForFunction(const Function &F) const {
  return TAI->getTextSection();
}


/// SwitchToTextSection - Switch to the specified text section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToTextSection(const char *NewSection,
                                     const GlobalValue *GV) {
  std::string NS;
  if (GV && GV->hasSection())
    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
  else
    NS = NewSection;
  
  // If we're already in this section, we're done.
  if (CurrentSection == NS) return;

  // Close the current section, if applicable.
  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";

  CurrentSection = NS;

  if (!CurrentSection.empty())
    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
}

/// SwitchToDataSection - Switch to the specified data section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToDataSection(const char *NewSection,
                                     const GlobalValue *GV) {
  std::string NS;
  if (GV && GV->hasSection())
    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
  else
    NS = NewSection;
  
  // If we're already in this section, we're done.
  if (CurrentSection == NS) return;

  // Close the current section, if applicable.
  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";

  CurrentSection = NS;
  
  if (!CurrentSection.empty())
    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
}


bool AsmPrinter::doInitialization(Module &M) {
  Mang = new Mangler(M, TAI->getGlobalPrefix());
  
  if (!M.getModuleInlineAsm().empty())
    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
      << M.getModuleInlineAsm()
      << "\n" << TAI->getCommentString()
      << " End of file scope inline assembly\n";

  SwitchToDataSection("");   // Reset back to no section.
  
  if (MachineDebugInfo *DebugInfo = getAnalysisToUpdate<MachineDebugInfo>()) {
    DebugInfo->AnalyzeModule(M);
  }
  
  return false;
}

bool AsmPrinter::doFinalization(Module &M) {
  delete Mang; Mang = 0;
  return false;
}

void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
  // What's my mangled name?
  CurrentFnName = Mang->getValueName(MF.getFunction());
  IncrementFunctionNumber();
}

/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
  if (CP.empty()) return;

  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
  // in special sections.
  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    MachineConstantPoolEntry CPE = CP[i];
    const Type *Ty = CPE.getType();
    if (TAI->getFourByteConstantSection() &&
        TM.getTargetData()->getTypeSize(Ty) == 4)
      FourByteCPs.push_back(std::make_pair(CPE, i));
    else if (TAI->getEightByteConstantSection() &&
             TM.getTargetData()->getTypeSize(Ty) == 8)
      EightByteCPs.push_back(std::make_pair(CPE, i));
    else if (TAI->getSixteenByteConstantSection() &&
             TM.getTargetData()->getTypeSize(Ty) == 16)
      SixteenByteCPs.push_back(std::make_pair(CPE, i));
    else
      OtherCPs.push_back(std::make_pair(CPE, i));
  }

  unsigned Alignment = MCP->getConstantPoolAlignment();
  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
                   SixteenByteCPs);
  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
}

void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
  if (CP.empty()) return;

  SwitchToDataSection(Section);
  EmitAlignment(Alignment);
  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
      << CP[i].second << ":\t\t\t\t\t" << TAI->getCommentString() << " ";
    WriteTypeSymbolic(O, CP[i].first.getType(), 0) << '\n';
    if (CP[i].first.isMachineConstantPoolEntry())
      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
     else
      EmitGlobalConstant(CP[i].first.Val.ConstVal);
    if (i != e-1) {
      const Type *Ty = CP[i].first.getType();
      unsigned EntSize =
        TM.getTargetData()->getTypeSize(Ty);
      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
      // Emit inter-object padding for alignment.
      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
    }
  }
}

/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.  
///
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
                                   MachineFunction &MF) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return;
  const TargetData *TD = TM.getTargetData();
  
  // JTEntryDirective is a string to print sizeof(ptr) for non-PIC jump tables,
  // and 32 bits for PIC since PIC jump table entries are differences, not
  // pointers to blocks.
  // Use the architecture specific relocation directive, if it is set
  const char *JTEntryDirective = TAI->getJumpTableDirective();
  if (!JTEntryDirective)
    JTEntryDirective = TAI->getData32bitsDirective();
  
  // Pick the directive to use to print the jump table entries, and switch to 
  // the appropriate section.
  if (TM.getRelocationModel() == Reloc::PIC_) {
    TargetLowering *LoweringInfo = TM.getTargetLowering();
    if (LoweringInfo && LoweringInfo->usesGlobalOffsetTable()) {
      SwitchToDataSection(TAI->getJumpTableDataSection());
      if (TD->getPointerSize() == 8 && !JTEntryDirective)
        JTEntryDirective = TAI->getData64bitsDirective();
    } else {      
      // In PIC mode, we need to emit the jump table to the same section as the
      // function body itself, otherwise the label differences won't make sense.
      const Function *F = MF.getFunction();
      SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
    }
  } else {
    SwitchToDataSection(TAI->getJumpTableDataSection());
    if (TD->getPointerSize() == 8)
      JTEntryDirective = TAI->getData64bitsDirective();
  }
  EmitAlignment(Log2_32(TD->getPointerAlignment()));
  
  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
    
    // If this jump table was deleted, ignore it. 
    if (JTBBs.empty()) continue;

    // For PIC codegen, if possible we want to use the SetDirective to reduce
    // the number of relocations the assembler will generate for the jump table.
    // Set directives are all printed before the jump table itself.
    std::set<MachineBasicBlock*> EmittedSets;
    if (TAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_)
      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
        if (EmittedSets.insert(JTBBs[ii]).second)
          printSetLabel(i, JTBBs[ii]);
    
    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
      << '_' << i << ":\n";
    
    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
      O << JTEntryDirective << ' ';
      // If we have emitted set directives for the jump table entries, print 
      // them rather than the entries themselves.  If we're emitting PIC, then
      // emit the table entries as differences between two text section labels.
      // If we're emitting non-PIC code, then emit the entries as direct
      // references to the target basic blocks.
      if (!EmittedSets.empty()) {
        O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
          << '_' << i << "_set_" << JTBBs[ii]->getNumber();
      } else if (TM.getRelocationModel() == Reloc::PIC_) {
        printBasicBlockLabel(JTBBs[ii], false, false);
	//If the arch uses custom Jump Table directives, don't calc relative to JT
	if (!TAI->getJumpTableDirective()) 
	  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
	    << getFunctionNumber() << '_' << i;
      } else {
        printBasicBlockLabel(JTBBs[ii], false, false);
      }
      O << '\n';
    }
  }
}

/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM.  If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
  // Ignore debug and non-emitted data.
  if (GV->getSection() == "llvm.metadata") return true;
  
  if (!GV->hasAppendingLinkage()) return false;

  assert(GV->hasInitializer() && "Not a special LLVM global!");
  
  if (GV->getName() == "llvm.used") {
    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
      EmitLLVMUsedList(GV->getInitializer());
    return true;
  }

  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
    SwitchToDataSection(TAI->getStaticCtorsSection());
    EmitAlignment(2, 0);
    EmitXXStructorList(GV->getInitializer());
    return true;
  } 
  
  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
    SwitchToDataSection(TAI->getStaticDtorsSection());
    EmitAlignment(2, 0);
    EmitXXStructorList(GV->getInitializer());
    return true;
  }
  
  return false;
}

/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
/// global in the specified llvm.used list as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
  const char *Directive = TAI->getUsedDirective();

  // Should be an array of 'sbyte*'.
  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
  if (InitList == 0) return;
  
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
    O << Directive;
    EmitConstantValueOnly(InitList->getOperand(i));
    O << "\n";
  }
}

/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the 
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
  // Should be an array of '{ int, void ()* }' structs.  The first value is the
  // init priority, which we ignore.
  if (!isa<ConstantArray>(List)) return;
  ConstantArray *InitList = cast<ConstantArray>(List);
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.

      if (CS->getOperand(1)->isNullValue())
        return;  // Found a null terminator, exit printing.
      // Emit the function pointer.
      EmitGlobalConstant(CS->getOperand(1));
    }
}

/// getGlobalLinkName - Returns the asm/link name of of the specified
/// global variable.  Should be overridden by each target asm printer to
/// generate the appropriate value.
const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
  std::string LinkName;
  
  if (isa<Function>(GV)) {
    LinkName += TAI->getFunctionAddrPrefix();
    LinkName += Mang->getValueName(GV);
    LinkName += TAI->getFunctionAddrSuffix();
  } else {
    LinkName += TAI->getGlobalVarAddrPrefix();
    LinkName += Mang->getValueName(GV);
    LinkName += TAI->getGlobalVarAddrSuffix();
  }  
  
  return LinkName;
}

// EmitAlignment - Emit an alignment directive to the specified power of two.
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
  if (GV && GV->getAlignment())
    NumBits = Log2_32(GV->getAlignment());
  if (NumBits == 0) return;   // No need to emit alignment.
  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
  O << TAI->getAlignDirective() << NumBits << "\n";
}

/// EmitZeros - Emit a block of zeros.
///
void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
  if (NumZeros) {
    if (TAI->getZeroDirective()) {
      O << TAI->getZeroDirective() << NumZeros;
      if (TAI->getZeroDirectiveSuffix())
        O << TAI->getZeroDirectiveSuffix();
      O << "\n";
    } else {
      for (; NumZeros; --NumZeros)
        O << TAI->getData8bitsDirective() << "0\n";
    }
  }
}

// Print out the specified constant, without a storage class.  Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
  if (CV->isNullValue() || isa<UndefValue>(CV))
    O << "0";
  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
    assert(CB->getValue());
    O << "1";
  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    if (CI->getType()->isSigned()) {
      if (((CI->getSExtValue() << 32) >> 32) == CI->getSExtValue())
        O << CI->getSExtValue();
      else
        O << (uint64_t)CI->getSExtValue();
    } else 
      O << CI->getZExtValue();
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
    // This is a constant address for a global variable or function. Use the
    // name of the variable or function as the address value, possibly
    // decorating it with GlobalVarAddrPrefix/Suffix or
    // FunctionAddrPrefix/Suffix (these all default to "" )
    if (isa<Function>(GV)) {
      O << TAI->getFunctionAddrPrefix()
        << Mang->getValueName(GV)
        << TAI->getFunctionAddrSuffix();
    } else {
      O << TAI->getGlobalVarAddrPrefix()
        << Mang->getValueName(GV)
        << TAI->getGlobalVarAddrSuffix();
    }
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    const TargetData *TD = TM.getTargetData();
    switch(CE->getOpcode()) {
    case Instruction::GetElementPtr: {
      // generate a symbolic expression for the byte address
      const Constant *ptrVal = CE->getOperand(0);
      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), idxVec)) {
        if (Offset)
          O << "(";
        EmitConstantValueOnly(ptrVal);
        if (Offset > 0)
          O << ") + " << Offset;
        else if (Offset < 0)
          O << ") - " << -Offset;
      } else {
        EmitConstantValueOnly(ptrVal);
      }
      break;
    }
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
      break;
    case Instruction::IntToPtr:
    case Instruction::PtrToInt:
    case Instruction::BitCast: {
      // Support only foldable casts to/from pointers that can be eliminated by
      // changing the pointer to the appropriately sized integer type.
      Constant *Op = CE->getOperand(0);
      const Type *OpTy = Op->getType(), *Ty = CE->getType();

      // Handle casts to pointers by changing them into casts to the appropriate
      // integer type.  This promotes constant folding and simplifies this code.
      if (isa<PointerType>(Ty)) {
        const Type *IntPtrTy = TD->getIntPtrType();
        Op = ConstantExpr::getCast(Op, IntPtrTy);
        return EmitConstantValueOnly(Op);
      }
      
      // We know the dest type is not a pointer.  Is the src value a pointer or
      // integral?
      if (isa<PointerType>(OpTy) || OpTy->isIntegral()) {
        // We can emit the pointer value into this slot if the slot is an
        // integer slot greater or equal to the size of the pointer.
        if (Ty->isIntegral() && TD->getTypeSize(Ty) >= TD->getTypeSize(OpTy))
          return EmitConstantValueOnly(Op);
      }
      
      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
      EmitConstantValueOnly(Op);
      break;
    }
    case Instruction::Add:
      O << "(";
      EmitConstantValueOnly(CE->getOperand(0));
      O << ") + (";
      EmitConstantValueOnly(CE->getOperand(1));
      O << ")";
      break;
    default:
      assert(0 && "Unsupported operator!");
    }
  } else {
    assert(0 && "Unknown constant value!");
  }
}

/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
  return (X&7)+'0';
}

/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA,
                           unsigned LastElt) {
  assert(CVA->isString() && "Array is not string compatible!");

  O << "\"";
  for (unsigned i = 0; i != LastElt; ++i) {
    unsigned char C =
        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();

    if (C == '"') {
      O << "\\\"";
    } else if (C == '\\') {
      O << "\\\\";
    } else if (isprint(C)) {
      O << C;
    } else {
      switch(C) {
      case '\b': O << "\\b"; break;
      case '\f': O << "\\f"; break;
      case '\n': O << "\\n"; break;
      case '\r': O << "\\r"; break;
      case '\t': O << "\\t"; break;
      default:
        O << '\\';
        O << toOctal(C >> 6);
        O << toOctal(C >> 3);
        O << toOctal(C >> 0);
        break;
      }
    }
  }
  O << "\"";
}

/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
  unsigned NumElts = CVA->getNumOperands();
  if (TAI->getAscizDirective() && NumElts && 
      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
    O << TAI->getAscizDirective();
    printAsCString(O, CVA, NumElts-1);
  } else {
    O << TAI->getAsciiDirective();
    printAsCString(O, CVA, NumElts);
  }
  O << "\n";
}

/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
///
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
  const TargetData *TD = TM.getTargetData();

  if (CV->isNullValue() || isa<UndefValue>(CV)) {
    EmitZeros(TD->getTypeSize(CV->getType()));
    return;
  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    if (CVA->isString()) {
      EmitString(CVA);
    } else { // Not a string.  Print the values in successive locations
      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
        EmitGlobalConstant(CVA->getOperand(i));
    }
    return;
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    // Print the fields in successive locations. Pad to align if needed!
    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
    uint64_t sizeSoFar = 0;
    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
      const Constant* field = CVS->getOperand(i);

      // Check if padding is needed and insert one or more 0s.
      uint64_t fieldSize = TD->getTypeSize(field->getType());
      uint64_t padSize = ((i == e-1? cvsLayout->StructSize
                           : cvsLayout->MemberOffsets[i+1])
                          - cvsLayout->MemberOffsets[i]) - fieldSize;
      sizeSoFar += fieldSize + padSize;

      // Now print the actual field value
      EmitGlobalConstant(field);

      // Insert the field padding unless it's zero bytes...
      EmitZeros(padSize);
    }
    assert(sizeSoFar == cvsLayout->StructSize &&
           "Layout of constant struct may be incorrect!");
    return;
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    // FP Constants are printed as integer constants to avoid losing
    // precision...
    double Val = CFP->getValue();
    if (CFP->getType() == Type::DoubleTy) {
      if (TAI->getData64bitsDirective())
        O << TAI->getData64bitsDirective() << DoubleToBits(Val) << "\t"
          << TAI->getCommentString() << " double value: " << Val << "\n";
      else if (TD->isBigEndian()) {
        O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32)
          << "\t" << TAI->getCommentString()
          << " double most significant word " << Val << "\n";
        O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val))
          << "\t" << TAI->getCommentString()
          << " double least significant word " << Val << "\n";
      } else {
        O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val))
          << "\t" << TAI->getCommentString()
          << " double least significant word " << Val << "\n";
        O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32)
          << "\t" << TAI->getCommentString()
          << " double most significant word " << Val << "\n";
      }
      return;
    } else {
      O << TAI->getData32bitsDirective() << FloatToBits(Val)
        << "\t" << TAI->getCommentString() << " float " << Val << "\n";
      return;
    }
  } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
      uint64_t Val = CI->getZExtValue();

      if (TAI->getData64bitsDirective())
        O << TAI->getData64bitsDirective() << Val << "\n";
      else if (TD->isBigEndian()) {
        O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
          << "\t" << TAI->getCommentString()
          << " Double-word most significant word " << Val << "\n";
        O << TAI->getData32bitsDirective() << unsigned(Val)
          << "\t" << TAI->getCommentString()
          << " Double-word least significant word " << Val << "\n";
      } else {
        O << TAI->getData32bitsDirective() << unsigned(Val)
          << "\t" << TAI->getCommentString()
          << " Double-word least significant word " << Val << "\n";
        O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
          << "\t" << TAI->getCommentString()
          << " Double-word most significant word " << Val << "\n";
      }
      return;
    }
  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
    const PackedType *PTy = CP->getType();
    
    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
      EmitGlobalConstant(CP->getOperand(I));
    
    return;
  }

  const Type *type = CV->getType();
  printDataDirective(type);
  EmitConstantValueOnly(CV);
  O << "\n";
}

void
AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
  // Target doesn't support this yet!
  abort();
}

/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself.  This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings.  The
/// syntax used is ${:comment}.  Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
  if (!strcmp(Code, "private")) {
    O << TAI->getPrivateGlobalPrefix();
  } else if (!strcmp(Code, "comment")) {
    O << TAI->getCommentString();
  } else if (!strcmp(Code, "uid")) {
    // Assign a unique ID to this machine instruction.
    static const MachineInstr *LastMI = 0;
    static unsigned Counter = 0U-1;
    // If this is a new machine instruction, bump the counter.
    if (LastMI != MI) { ++Counter; LastMI = MI; }
    O << Counter;
  } else {
    cerr << "Unknown special formatter '" << Code
         << "' for machine instr: " << *MI;
    exit(1);
  }    
}


/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
  unsigned NumOperands = MI->getNumOperands();
  
  // Count the number of register definitions.
  unsigned NumDefs = 0;
  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
       ++NumDefs)
    assert(NumDefs != NumOperands-1 && "No asm string?");
  
  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");

  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();

  // If this asmstr is empty, don't bother printing the #APP/#NOAPP markers.
  if (AsmStr[0] == 0) {
    O << "\n";  // Tab already printed, avoid double indenting next instr.
    return;
  }
  
  O << TAI->getInlineAsmStart() << "\n\t";

  // The variant of the current asmprinter: FIXME: change.
  int AsmPrinterVariant = 0;
  
  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
  const char *LastEmitted = AsmStr; // One past the last character emitted.
  
  while (*LastEmitted) {
    switch (*LastEmitted) {
    default: {
      // Not a special case, emit the string section literally.
      const char *LiteralEnd = LastEmitted+1;
      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
        ++LiteralEnd;
      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
        O.write(LastEmitted, LiteralEnd-LastEmitted);
      LastEmitted = LiteralEnd;
      break;
    }
    case '\n':
      ++LastEmitted;   // Consume newline character.
      O << "\n\t";     // Indent code with newline.
      break;
    case '$': {
      ++LastEmitted;   // Consume '$' character.
      bool Done = true;

      // Handle escapes.
      switch (*LastEmitted) {
      default: Done = false; break;
      case '$':     // $$ -> $
        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
          O << '$';
        ++LastEmitted;  // Consume second '$' character.
        break;
      case '(':             // $( -> same as GCC's { character.
        ++LastEmitted;      // Consume '(' character.
        if (CurVariant != -1) {
          cerr << "Nested variants found in inline asm string: '"
               << AsmStr << "'\n";
          exit(1);
        }
        CurVariant = 0;     // We're in the first variant now.
        break;
      case '|':
        ++LastEmitted;  // consume '|' character.
        if (CurVariant == -1) {
          cerr << "Found '|' character outside of variant in inline asm "
               << "string: '" << AsmStr << "'\n";
          exit(1);
        }
        ++CurVariant;   // We're in the next variant.
        break;
      case ')':         // $) -> same as GCC's } char.
        ++LastEmitted;  // consume ')' character.
        if (CurVariant == -1) {
          cerr << "Found '}' character outside of variant in inline asm "
               << "string: '" << AsmStr << "'\n";
          exit(1);
        }
        CurVariant = -1;
        break;
      }
      if (Done) break;
      
      bool HasCurlyBraces = false;
      if (*LastEmitted == '{') {     // ${variable}
        ++LastEmitted;               // Consume '{' character.
        HasCurlyBraces = true;
      }
      
      const char *IDStart = LastEmitted;
      char *IDEnd;
      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
        cerr << "Bad $ operand number in inline asm string: '" 
             << AsmStr << "'\n";
        exit(1);
      }
      LastEmitted = IDEnd;
      
      char Modifier[2] = { 0, 0 };
      
      if (HasCurlyBraces) {
        // If we have curly braces, check for a modifier character.  This
        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
        if (*LastEmitted == ':') {
          ++LastEmitted;    // Consume ':' character.
          if (*LastEmitted == 0) {
            cerr << "Bad ${:} expression in inline asm string: '" 
                 << AsmStr << "'\n";
            exit(1);
          }
          
          Modifier[0] = *LastEmitted;
          ++LastEmitted;    // Consume modifier character.
        }
        
        if (*LastEmitted != '}') {
          cerr << "Bad ${} expression in inline asm string: '" 
               << AsmStr << "'\n";
          exit(1);
        }
        ++LastEmitted;    // Consume '}' character.
      }
      
      if ((unsigned)Val >= NumOperands-1) {
        cerr << "Invalid $ operand number in inline asm string: '" 
             << AsmStr << "'\n";
        exit(1);
      }
      
      // Okay, we finally have a value number.  Ask the target to print this
      // operand!
      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
        unsigned OpNo = 1;

        bool Error = false;

        // Scan to find the machine operand number for the operand.
        for (; Val; --Val) {
          if (OpNo >= MI->getNumOperands()) break;
          unsigned OpFlags = MI->getOperand(OpNo).getImmedValue();
          OpNo += (OpFlags >> 3) + 1;
        }

        if (OpNo >= MI->getNumOperands()) {
          Error = true;
        } else {
          unsigned OpFlags = MI->getOperand(OpNo).getImmedValue();
          ++OpNo;  // Skip over the ID number.

          AsmPrinter *AP = const_cast<AsmPrinter*>(this);
          if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
            Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
                                              Modifier[0] ? Modifier : 0);
          } else {
            Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
                                        Modifier[0] ? Modifier : 0);
          }
        }
        if (Error) {
          cerr << "Invalid operand found in inline asm: '"
               << AsmStr << "'\n";
          MI->dump();
          exit(1);
        }
      }
      break;
    }
    }
  }
  O << "\n\t" << TAI->getInlineAsmEnd() << "\n";
}

/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant.  Targets should
/// overried this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
                                 unsigned AsmVariant, const char *ExtraCode) {
  // Target doesn't support this yet!
  return true;
}

bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
                                       unsigned AsmVariant,
                                       const char *ExtraCode) {
  // Target doesn't support this yet!
  return true;
}

/// printBasicBlockLabel - This method prints the label for the specified
/// MachineBasicBlock
void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
                                      bool printColon,
                                      bool printComment) const {
  O << TAI->getPrivateGlobalPrefix() << "BB" << FunctionNumber << "_"
    << MBB->getNumber();
  if (printColon)
    O << ':';
  if (printComment && MBB->getBasicBlock())
    O << '\t' << TAI->getCommentString() << MBB->getBasicBlock()->getName();
}

/// printSetLabel - This method prints a set label for the specified
/// MachineBasicBlock
void AsmPrinter::printSetLabel(unsigned uid, 
                               const MachineBasicBlock *MBB) const {
  if (!TAI->getSetDirective())
    return;
  
  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
  printBasicBlockLabel(MBB, false, false);
  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
    << '_' << uid << '\n';
}

void AsmPrinter::printSetLabel(unsigned uid, unsigned uid2,
                               const MachineBasicBlock *MBB) const {
  if (!TAI->getSetDirective())
    return;
  
  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
    << getFunctionNumber() << '_' << uid << '_' << uid2
    << "_set_" << MBB->getNumber() << ',';
  printBasicBlockLabel(MBB, false, false);
  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
    << '_' << uid << '_' << uid2 << '\n';
}

/// printDataDirective - This method prints the asm directive for the
/// specified type.
void AsmPrinter::printDataDirective(const Type *type) {
  const TargetData *TD = TM.getTargetData();
  switch (type->getTypeID()) {
  case Type::BoolTyID:
  case Type::UByteTyID: case Type::SByteTyID:
    O << TAI->getData8bitsDirective();
    break;
  case Type::UShortTyID: case Type::ShortTyID:
    O << TAI->getData16bitsDirective();
    break;
  case Type::PointerTyID:
    if (TD->getPointerSize() == 8) {
      assert(TAI->getData64bitsDirective() &&
             "Target cannot handle 64-bit pointer exprs!");
      O << TAI->getData64bitsDirective();
      break;
    }
    //Fall through for pointer size == int size
  case Type::UIntTyID: case Type::IntTyID:
    O << TAI->getData32bitsDirective();
    break;
  case Type::ULongTyID: case Type::LongTyID:
    assert(TAI->getData64bitsDirective() &&
           "Target cannot handle 64-bit constant exprs!");
    O << TAI->getData64bitsDirective();
    break;
  case Type::FloatTyID: case Type::DoubleTyID:
    assert (0 && "Should have already output floating point constant.");
  default:
    assert (0 && "Can't handle printing this type of thing");
    break;
  }
}