summaryrefslogtreecommitdiff
path: root/lib/CodeGen/BranchFolding.cpp
blob: 394fe7b81b1613dee78a0832cd2cf5483e7c8e8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
//===-- BranchFolding.cpp - Fold machine code branch instructions ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass forwards branches to unconditional branches to make them branch
// directly to the target block.  This pass often results in dead MBB's, which
// it then removes.
//
// Note that this pass must be run after register allocation, it cannot handle
// SSA form.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "branchfolding"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
STATISTIC(NumBranchOpts, "Number of branches optimized");
STATISTIC(NumTailMerge , "Number of block tails merged");
static cl::opt<bool> EnableTailMerge("enable-tail-merge", cl::Hidden);

namespace {
  struct BranchFolder : public MachineFunctionPass {
    static const int ID;
    BranchFolder() : MachineFunctionPass((intptr_t)&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);
    virtual const char *getPassName() const { return "Control Flow Optimizer"; }
    const TargetInstrInfo *TII;
    MachineModuleInfo *MMI;
    bool MadeChange;
  private:
    // Tail Merging.
    bool TailMergeBlocks(MachineFunction &MF);
    void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
                                 MachineBasicBlock *NewDest);
    MachineBasicBlock *SplitMBBAt(MachineBasicBlock &CurMBB,
                                  MachineBasicBlock::iterator BBI1);

    const MRegisterInfo *RegInfo;
    RegScavenger *RS;
    // Branch optzn.
    bool OptimizeBranches(MachineFunction &MF);
    void OptimizeBlock(MachineBasicBlock *MBB);
    void RemoveDeadBlock(MachineBasicBlock *MBB);
    
    bool CanFallThrough(MachineBasicBlock *CurBB);
    bool CanFallThrough(MachineBasicBlock *CurBB, bool BranchUnAnalyzable,
                        MachineBasicBlock *TBB, MachineBasicBlock *FBB,
                        const std::vector<MachineOperand> &Cond);
  };
  const int BranchFolder::ID = 0;
}

FunctionPass *llvm::createBranchFoldingPass() { return new BranchFolder(); }

/// RemoveDeadBlock - Remove the specified dead machine basic block from the
/// function, updating the CFG.
void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
  assert(MBB->pred_empty() && "MBB must be dead!");
  DOUT << "\nRemoving MBB: " << *MBB;
  
  MachineFunction *MF = MBB->getParent();
  // drop all successors.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_end()-1);
  
  // If there is DWARF info to active, check to see if there are any LABEL
  // records in the basic block.  If so, unregister them from MachineModuleInfo.
  if (MMI && !MBB->empty()) {
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
         I != E; ++I) {
      if ((unsigned)I->getOpcode() == TargetInstrInfo::LABEL) {
        // The label ID # is always operand #0, an immediate.
        MMI->InvalidateLabel(I->getOperand(0).getImm());
      }
    }
  }
  
  // Remove the block.
  MF->getBasicBlockList().erase(MBB);
}

bool BranchFolder::runOnMachineFunction(MachineFunction &MF) {
  TII = MF.getTarget().getInstrInfo();
  if (!TII) return false;

  RegInfo = MF.getTarget().getRegisterInfo();
  RS = RegInfo->requiresRegisterScavenging(MF) ? new RegScavenger() : NULL;

  MMI = getAnalysisToUpdate<MachineModuleInfo>();
  
  bool EverMadeChange = false;
  bool MadeChangeThisIteration = true;
  while (MadeChangeThisIteration) {
    MadeChangeThisIteration = false;
    MadeChangeThisIteration |= TailMergeBlocks(MF);
    MadeChangeThisIteration |= OptimizeBranches(MF);
    EverMadeChange |= MadeChangeThisIteration;
  }

  // See if any jump tables have become mergable or dead as the code generator
  // did its thing.
  MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
  const std::vector<MachineJumpTableEntry> &JTs = JTI->getJumpTables();
  if (!JTs.empty()) {
    // Figure out how these jump tables should be merged.
    std::vector<unsigned> JTMapping;
    JTMapping.reserve(JTs.size());
    
    // We always keep the 0th jump table.
    JTMapping.push_back(0);

    // Scan the jump tables, seeing if there are any duplicates.  Note that this
    // is N^2, which should be fixed someday.
    for (unsigned i = 1, e = JTs.size(); i != e; ++i)
      JTMapping.push_back(JTI->getJumpTableIndex(JTs[i].MBBs));
    
    // If a jump table was merge with another one, walk the function rewriting
    // references to jump tables to reference the new JT ID's.  Keep track of
    // whether we see a jump table idx, if not, we can delete the JT.
    std::vector<bool> JTIsLive;
    JTIsLive.resize(JTs.size());
    for (MachineFunction::iterator BB = MF.begin(), E = MF.end();
         BB != E; ++BB) {
      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
           I != E; ++I)
        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
          MachineOperand &Op = I->getOperand(op);
          if (!Op.isJumpTableIndex()) continue;
          unsigned NewIdx = JTMapping[Op.getJumpTableIndex()];
          Op.setJumpTableIndex(NewIdx);

          // Remember that this JT is live.
          JTIsLive[NewIdx] = true;
        }
    }
   
    // Finally, remove dead jump tables.  This happens either because the
    // indirect jump was unreachable (and thus deleted) or because the jump
    // table was merged with some other one.
    for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
      if (!JTIsLive[i]) {
        JTI->RemoveJumpTable(i);
        EverMadeChange = true;
      }
  }
  
  delete RS;
  return EverMadeChange;
}

//===----------------------------------------------------------------------===//
//  Tail Merging of Blocks
//===----------------------------------------------------------------------===//

/// HashMachineInstr - Compute a hash value for MI and its operands.
static unsigned HashMachineInstr(const MachineInstr *MI) {
  unsigned Hash = MI->getOpcode();
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &Op = MI->getOperand(i);
    
    // Merge in bits from the operand if easy.
    unsigned OperandHash = 0;
    switch (Op.getType()) {
    case MachineOperand::MO_Register:          OperandHash = Op.getReg(); break;
    case MachineOperand::MO_Immediate:         OperandHash = Op.getImm(); break;
    case MachineOperand::MO_MachineBasicBlock:
      OperandHash = Op.getMachineBasicBlock()->getNumber();
      break;
    case MachineOperand::MO_FrameIndex: OperandHash = Op.getFrameIndex(); break;
    case MachineOperand::MO_ConstantPoolIndex:
      OperandHash = Op.getConstantPoolIndex();
      break;
    case MachineOperand::MO_JumpTableIndex:
      OperandHash = Op.getJumpTableIndex();
      break;
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      // Global address / external symbol are too hard, don't bother, but do
      // pull in the offset.
      OperandHash = Op.getOffset();
      break;
    default: break;
    }
    
    Hash += ((OperandHash << 3) | Op.getType()) << (i&31);
  }
  return Hash;
}

/// HashEndOfMBB - Hash the last two instructions in the MBB.  We hash two
/// instructions, because cross-jumping only saves code when at least two
/// instructions are removed (since a branch must be inserted).
static unsigned HashEndOfMBB(const MachineBasicBlock *MBB) {
  MachineBasicBlock::const_iterator I = MBB->end();
  if (I == MBB->begin())
    return 0;   // Empty MBB.
  
  --I;
  unsigned Hash = HashMachineInstr(I);
    
  if (I == MBB->begin())
    return Hash;   // Single instr MBB.
  
  --I;
  // Hash in the second-to-last instruction.
  Hash ^= HashMachineInstr(I) << 2;
  return Hash;
}

/// ComputeCommonTailLength - Given two machine basic blocks, compute the number
/// of instructions they actually have in common together at their end.  Return
/// iterators for the first shared instruction in each block.
static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
                                        MachineBasicBlock *MBB2,
                                        MachineBasicBlock::iterator &I1,
                                        MachineBasicBlock::iterator &I2) {
  I1 = MBB1->end();
  I2 = MBB2->end();
  
  unsigned TailLen = 0;
  while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
    --I1; --I2;
    if (!I1->isIdenticalTo(I2)) {
      ++I1; ++I2;
      break;
    }
    ++TailLen;
  }
  return TailLen;
}

/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.  This
/// returns true if OldInst's block is modified, false if NewDest is modified.
void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
                                           MachineBasicBlock *NewDest) {
  MachineBasicBlock *OldBB = OldInst->getParent();
  
  // Remove all the old successors of OldBB from the CFG.
  while (!OldBB->succ_empty())
    OldBB->removeSuccessor(OldBB->succ_begin());
  
  // Remove all the dead instructions from the end of OldBB.
  OldBB->erase(OldInst, OldBB->end());

  // If OldBB isn't immediately before OldBB, insert a branch to it.
  if (++MachineFunction::iterator(OldBB) != MachineFunction::iterator(NewDest))
    TII->InsertBranch(*OldBB, NewDest, 0, std::vector<MachineOperand>());
  OldBB->addSuccessor(NewDest);
  ++NumTailMerge;
}

/// SplitMBBAt - Given a machine basic block and an iterator into it, split the
/// MBB so that the part before the iterator falls into the part starting at the
/// iterator.  This returns the new MBB.
MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
                                            MachineBasicBlock::iterator BBI1) {
  // Create the fall-through block.
  MachineFunction::iterator MBBI = &CurMBB;
  MachineBasicBlock *NewMBB = new MachineBasicBlock(CurMBB.getBasicBlock());
  CurMBB.getParent()->getBasicBlockList().insert(++MBBI, NewMBB);

  // Move all the successors of this block to the specified block.
  while (!CurMBB.succ_empty()) {
    MachineBasicBlock *S = *(CurMBB.succ_end()-1);
    NewMBB->addSuccessor(S);
    CurMBB.removeSuccessor(S);
  }
 
  // Add an edge from CurMBB to NewMBB for the fall-through.
  CurMBB.addSuccessor(NewMBB);
  
  // Splice the code over.
  NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());

  // For targets that use the register scavenger, we must maintain LiveIns.
  if (RS) {
    RS->enterBasicBlock(&CurMBB);
    if (!CurMBB.empty())
      RS->forward(prior(CurMBB.end()));
    BitVector RegsLiveAtExit(RegInfo->getNumRegs());
    RS->getRegsUsed(RegsLiveAtExit, false);
    for (unsigned int i=0, e=RegInfo->getNumRegs(); i!=e; i++)
      if (RegsLiveAtExit[i])
        NewMBB->addLiveIn(i);
  }

  return NewMBB;
}

/// EstimateRuntime - Make a rough estimate for how long it will take to run
/// the specified code.
static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
                                MachineBasicBlock::iterator E,
                                const TargetInstrInfo *TII) {
  unsigned Time = 0;
  for (; I != E; ++I) {
    const TargetInstrDescriptor &TID = TII->get(I->getOpcode());
    if (TID.Flags & M_CALL_FLAG)
      Time += 10;
    else if (TID.Flags & (M_LOAD_FLAG|M_STORE_FLAG))
      Time += 2;
    else
      ++Time;
  }
  return Time;
}

/// ShouldSplitFirstBlock - We need to either split MBB1 at MBB1I or MBB2 at
/// MBB2I and then insert an unconditional branch in the other block.  Determine
/// which is the best to split
static bool ShouldSplitFirstBlock(MachineBasicBlock *MBB1,
                                  MachineBasicBlock::iterator MBB1I,
                                  MachineBasicBlock *MBB2,
                                  MachineBasicBlock::iterator MBB2I,
                                  const TargetInstrInfo *TII) {
  // TODO: if we had some notion of which block was hotter, we could split
  // the hot block, so it is the fall-through.  Since we don't have profile info
  // make a decision based on which will hurt most to split.
  unsigned MBB1Time = EstimateRuntime(MBB1->begin(), MBB1I, TII);
  unsigned MBB2Time = EstimateRuntime(MBB2->begin(), MBB2I, TII);
  
  // If the MBB1 prefix takes "less time" to run than the MBB2 prefix, split the
  // MBB1 block so it falls through.  This will penalize the MBB2 path, but will
  // have a lower overall impact on the program execution.
  return MBB1Time < MBB2Time;
}

bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
  MadeChange = false;
  
  if (!EnableTailMerge) return false;
  
  // Find blocks with no successors.
  std::vector<std::pair<unsigned,MachineBasicBlock*> > MergePotentials;
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    if (I->succ_empty())
      MergePotentials.push_back(std::make_pair(HashEndOfMBB(I), I));
  }
  
  // Sort by hash value so that blocks with identical end sequences sort
  // together.
  std::stable_sort(MergePotentials.begin(), MergePotentials.end());

  // Walk through equivalence sets looking for actual exact matches.
  while (MergePotentials.size() > 1) {
    unsigned CurHash  = (MergePotentials.end()-1)->first;
    unsigned PrevHash = (MergePotentials.end()-2)->first;
    MachineBasicBlock *CurMBB = (MergePotentials.end()-1)->second;
    
    // If there is nothing that matches the hash of the current basic block,
    // give up.
    if (CurHash != PrevHash) {
      MergePotentials.pop_back();
      continue;
    }
    
    // Determine the actual length of the shared tail between these two basic
    // blocks.  Because the hash can have collisions, it's possible that this is
    // less than 2.
    MachineBasicBlock::iterator BBI1, BBI2;
    unsigned CommonTailLen = 
      ComputeCommonTailLength(CurMBB, (MergePotentials.end()-2)->second, 
                              BBI1, BBI2);
    
    // If the tails don't have at least two instructions in common, see if there
    // is anything else in the equivalence class that does match.
    if (CommonTailLen < 2) {
      unsigned FoundMatch = ~0U;
      for (int i = MergePotentials.size()-2;
           i != -1 && MergePotentials[i].first == CurHash; --i) {
        CommonTailLen = ComputeCommonTailLength(CurMBB, 
                                                MergePotentials[i].second,
                                                BBI1, BBI2);
        if (CommonTailLen >= 2) {
          FoundMatch = i;
          break;
        }
      }
      
      // If we didn't find anything that has at least two instructions matching
      // this one, bail out.
      if (FoundMatch == ~0U) {
        MergePotentials.pop_back();
        continue;
      }
      
      // Otherwise, move the matching block to the right position.
      std::swap(MergePotentials[FoundMatch], *(MergePotentials.end()-2));
    }

    MachineBasicBlock *MBB2 = (MergePotentials.end()-2)->second;

    // If neither block is the entire common tail, split the tail of one block
    // to make it redundant with the other tail.
    if (CurMBB->begin() != BBI1 && MBB2->begin() != BBI2) {
      if (0) { // Enable this to disable partial tail merges.
        MergePotentials.pop_back();
        continue;
      }
      
      // Decide whether we want to split CurMBB or MBB2.
      if (ShouldSplitFirstBlock(CurMBB, BBI1, MBB2, BBI2, TII)) {
        CurMBB = SplitMBBAt(*CurMBB, BBI1);
        BBI1 = CurMBB->begin();
        MergePotentials.back().second = CurMBB;
      } else {
        MBB2 = SplitMBBAt(*MBB2, BBI2);
        BBI2 = MBB2->begin();
        (MergePotentials.end()-2)->second = MBB2;
      }
    }
    
    if (MBB2->begin() == BBI2) {
      // Hack the end off CurMBB, making it jump to MBBI@ instead.
      ReplaceTailWithBranchTo(BBI1, MBB2);
      // This modifies CurMBB, so remove it from the worklist.
      MergePotentials.pop_back();
    } else {
      assert(CurMBB->begin() == BBI1 && "Didn't split block correctly?");
      // Hack the end off MBB2, making it jump to CurMBB instead.
      ReplaceTailWithBranchTo(BBI2, CurMBB);
      // This modifies MBB2, so remove it from the worklist.
      MergePotentials.erase(MergePotentials.end()-2);
    }
    MadeChange = true;
  }
  
  return MadeChange;
}


//===----------------------------------------------------------------------===//
//  Branch Optimization
//===----------------------------------------------------------------------===//

bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
  MadeChange = false;
  
  // Make sure blocks are numbered in order
  MF.RenumberBlocks();

  for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
    MachineBasicBlock *MBB = I++;
    OptimizeBlock(MBB);
    
    // If it is dead, remove it.
    if (MBB->pred_empty()) {
      RemoveDeadBlock(MBB);
      MadeChange = true;
      ++NumDeadBlocks;
    }
  }
  return MadeChange;
}


/// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
/// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
/// DestB, remove any other MBB successors from the CFG.  DestA and DestB can
/// be null.
static bool CorrectExtraCFGEdges(MachineBasicBlock &MBB, 
                                 MachineBasicBlock *DestA,
                                 MachineBasicBlock *DestB,
                                 bool isCond, 
                                 MachineFunction::iterator FallThru) {
  bool MadeChange = false;
  bool AddedFallThrough = false;
  
  // If this block ends with a conditional branch that falls through to its
  // successor, set DestB as the successor.
  if (isCond) {
    if (DestB == 0 && FallThru != MBB.getParent()->end()) {
      DestB = FallThru;
      AddedFallThrough = true;
    }
  } else {
    // If this is an unconditional branch with no explicit dest, it must just be
    // a fallthrough into DestB.
    if (DestA == 0 && FallThru != MBB.getParent()->end()) {
      DestA = FallThru;
      AddedFallThrough = true;
    }
  }
  
  MachineBasicBlock::pred_iterator SI = MBB.succ_begin();
  while (SI != MBB.succ_end()) {
    if (*SI == DestA) {
      DestA = 0;
      ++SI;
    } else if (*SI == DestB) {
      DestB = 0;
      ++SI;
    } else if ((*SI)->isLandingPad()) {
      ++SI;
    } else {
      // Otherwise, this is a superfluous edge, remove it.
      MBB.removeSuccessor(SI);
      MadeChange = true;
    }
  }
  if (!AddedFallThrough) {
    assert(DestA == 0 && DestB == 0 &&
           "MachineCFG is missing edges!");
  } else if (isCond) {
    assert(DestA == 0 && "MachineCFG is missing edges!");
  }
  return MadeChange;
}


/// ReplaceUsesOfBlockWith - Given a machine basic block 'BB' that branched to
/// 'Old', change the code and CFG so that it branches to 'New' instead.
static void ReplaceUsesOfBlockWith(MachineBasicBlock *BB,
                                   MachineBasicBlock *Old,
                                   MachineBasicBlock *New,
                                   const TargetInstrInfo *TII) {
  assert(Old != New && "Cannot replace self with self!");

  MachineBasicBlock::iterator I = BB->end();
  while (I != BB->begin()) {
    --I;
    if (!TII->isTerminatorInstr(I->getOpcode())) break;

    // Scan the operands of this machine instruction, replacing any uses of Old
    // with New.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
      if (I->getOperand(i).isMachineBasicBlock() &&
          I->getOperand(i).getMachineBasicBlock() == Old)
        I->getOperand(i).setMachineBasicBlock(New);
  }

  // Update the successor information.
  std::vector<MachineBasicBlock*> Succs(BB->succ_begin(), BB->succ_end());
  for (int i = Succs.size()-1; i >= 0; --i)
    if (Succs[i] == Old) {
      BB->removeSuccessor(Old);
      BB->addSuccessor(New);
    }
}

/// CanFallThrough - Return true if the specified block (with the specified
/// branch condition) can implicitly transfer control to the block after it by
/// falling off the end of it.  This should return false if it can reach the
/// block after it, but it uses an explicit branch to do so (e.g. a table jump).
///
/// True is a conservative answer.
///
bool BranchFolder::CanFallThrough(MachineBasicBlock *CurBB,
                                  bool BranchUnAnalyzable,
                                  MachineBasicBlock *TBB, MachineBasicBlock *FBB,
                                  const std::vector<MachineOperand> &Cond) {
  MachineFunction::iterator Fallthrough = CurBB;
  ++Fallthrough;
  // If FallthroughBlock is off the end of the function, it can't fall through.
  if (Fallthrough == CurBB->getParent()->end())
    return false;
  
  // If FallthroughBlock isn't a successor of CurBB, no fallthrough is possible.
  if (!CurBB->isSuccessor(Fallthrough))
    return false;
  
  // If we couldn't analyze the branch, assume it could fall through.
  if (BranchUnAnalyzable) return true;
  
  // If there is no branch, control always falls through.
  if (TBB == 0) return true;

  // If there is some explicit branch to the fallthrough block, it can obviously
  // reach, even though the branch should get folded to fall through implicitly.
  if (MachineFunction::iterator(TBB) == Fallthrough ||
      MachineFunction::iterator(FBB) == Fallthrough)
    return true;
  
  // If it's an unconditional branch to some block not the fall through, it 
  // doesn't fall through.
  if (Cond.empty()) return false;
  
  // Otherwise, if it is conditional and has no explicit false block, it falls
  // through.
  return FBB == 0;
}

/// CanFallThrough - Return true if the specified can implicitly transfer
/// control to the block after it by falling off the end of it.  This should
/// return false if it can reach the block after it, but it uses an explicit
/// branch to do so (e.g. a table jump).
///
/// True is a conservative answer.
///
bool BranchFolder::CanFallThrough(MachineBasicBlock *CurBB) {
  MachineBasicBlock *TBB = 0, *FBB = 0;
  std::vector<MachineOperand> Cond;
  bool CurUnAnalyzable = TII->AnalyzeBranch(*CurBB, TBB, FBB, Cond);
  return CanFallThrough(CurBB, CurUnAnalyzable, TBB, FBB, Cond);
}

/// IsBetterFallthrough - Return true if it would be clearly better to
/// fall-through to MBB1 than to fall through into MBB2.  This has to return
/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
/// result in infinite loops.
static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 
                                MachineBasicBlock *MBB2,
                                const TargetInstrInfo &TII) {
  // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
  // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
  // optimize branches that branch to either a return block or an assert block
  // into a fallthrough to the return.
  if (MBB1->empty() || MBB2->empty()) return false;

  MachineInstr *MBB1I = --MBB1->end();
  MachineInstr *MBB2I = --MBB2->end();
  return TII.isCall(MBB2I->getOpcode()) && !TII.isCall(MBB1I->getOpcode());
}

/// OptimizeBlock - Analyze and optimize control flow related to the specified
/// block.  This is never called on the entry block.
void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
  MachineFunction::iterator FallThrough = MBB;
  ++FallThrough;
  
  // If this block is empty, make everyone use its fall-through, not the block
  // explicitly.
  if (MBB->empty()) {
    // Dead block?  Leave for cleanup later.
    if (MBB->pred_empty()) return;
    
    if (FallThrough == MBB->getParent()->end()) {
      // TODO: Simplify preds to not branch here if possible!
    } else {
      // Rewrite all predecessors of the old block to go to the fallthrough
      // instead.
      while (!MBB->pred_empty()) {
        MachineBasicBlock *Pred = *(MBB->pred_end()-1);
        ReplaceUsesOfBlockWith(Pred, MBB, FallThrough, TII);
      }
      
      // If MBB was the target of a jump table, update jump tables to go to the
      // fallthrough instead.
      MBB->getParent()->getJumpTableInfo()->
        ReplaceMBBInJumpTables(MBB, FallThrough);
      MadeChange = true;
    }
    return;
  }

  // Check to see if we can simplify the terminator of the block before this
  // one.
  MachineBasicBlock &PrevBB = *prior(MachineFunction::iterator(MBB));

  MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
  std::vector<MachineOperand> PriorCond;
  bool PriorUnAnalyzable =
    TII->AnalyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond);
  if (!PriorUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= CorrectExtraCFGEdges(PrevBB, PriorTBB, PriorFBB,
                                       !PriorCond.empty(), MBB);
    
    // If the previous branch is conditional and both conditions go to the same
    // destination, remove the branch, replacing it with an unconditional one or
    // a fall-through.
    if (PriorTBB && PriorTBB == PriorFBB) {
      TII->RemoveBranch(PrevBB);
      PriorCond.clear(); 
      if (PriorTBB != MBB)
        TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond);
      MadeChange = true;
      ++NumBranchOpts;
      return OptimizeBlock(MBB);
    }
    
    // If the previous branch *only* branches to *this* block (conditional or
    // not) remove the branch.
    if (PriorTBB == MBB && PriorFBB == 0) {
      TII->RemoveBranch(PrevBB);
      MadeChange = true;
      ++NumBranchOpts;
      return OptimizeBlock(MBB);
    }
    
    // If the prior block branches somewhere else on the condition and here if
    // the condition is false, remove the uncond second branch.
    if (PriorFBB == MBB) {
      TII->RemoveBranch(PrevBB);
      TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond);
      MadeChange = true;
      ++NumBranchOpts;
      return OptimizeBlock(MBB);
    }
    
    // If the prior block branches here on true and somewhere else on false, and
    // if the branch condition is reversible, reverse the branch to create a
    // fall-through.
    if (PriorTBB == MBB) {
      std::vector<MachineOperand> NewPriorCond(PriorCond);
      if (!TII->ReverseBranchCondition(NewPriorCond)) {
        TII->RemoveBranch(PrevBB);
        TII->InsertBranch(PrevBB, PriorFBB, 0, NewPriorCond);
        MadeChange = true;
        ++NumBranchOpts;
        return OptimizeBlock(MBB);
      }
    }
    
    // If this block doesn't fall through (e.g. it ends with an uncond branch or
    // has no successors) and if the pred falls through into this block, and if
    // it would otherwise fall through into the block after this, move this
    // block to the end of the function.
    //
    // We consider it more likely that execution will stay in the function (e.g.
    // due to loops) than it is to exit it.  This asserts in loops etc, moving
    // the assert condition out of the loop body.
    if (!PriorCond.empty() && PriorFBB == 0 &&
        MachineFunction::iterator(PriorTBB) == FallThrough &&
        !CanFallThrough(MBB)) {
      bool DoTransform = true;
      
      // We have to be careful that the succs of PredBB aren't both no-successor
      // blocks.  If neither have successors and if PredBB is the second from
      // last block in the function, we'd just keep swapping the two blocks for
      // last.  Only do the swap if one is clearly better to fall through than
      // the other.
      if (FallThrough == --MBB->getParent()->end() &&
          !IsBetterFallthrough(PriorTBB, MBB, *TII))
        DoTransform = false;

      // We don't want to do this transformation if we have control flow like:
      //   br cond BB2
      // BB1:
      //   ..
      //   jmp BBX
      // BB2:
      //   ..
      //   ret
      //
      // In this case, we could actually be moving the return block *into* a
      // loop!
      if (DoTransform && !MBB->succ_empty() &&
          (!CanFallThrough(PriorTBB) || PriorTBB->empty()))
        DoTransform = false;
      
      
      if (DoTransform) {
        // Reverse the branch so we will fall through on the previous true cond.
        std::vector<MachineOperand> NewPriorCond(PriorCond);
        if (!TII->ReverseBranchCondition(NewPriorCond)) {
          DOUT << "\nMoving MBB: " << *MBB;
          DOUT << "To make fallthrough to: " << *PriorTBB << "\n";
          
          TII->RemoveBranch(PrevBB);
          TII->InsertBranch(PrevBB, MBB, 0, NewPriorCond);

          // Move this block to the end of the function.
          MBB->moveAfter(--MBB->getParent()->end());
          MadeChange = true;
          ++NumBranchOpts;
          return;
        }
      }
    }
  }
  
  // Analyze the branch in the current block.
  MachineBasicBlock *CurTBB = 0, *CurFBB = 0;
  std::vector<MachineOperand> CurCond;
  bool CurUnAnalyzable = TII->AnalyzeBranch(*MBB, CurTBB, CurFBB, CurCond);
  if (!CurUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= CorrectExtraCFGEdges(*MBB, CurTBB, CurFBB,
                                       !CurCond.empty(),
                                       ++MachineFunction::iterator(MBB));

    // If this is a two-way branch, and the FBB branches to this block, reverse 
    // the condition so the single-basic-block loop is faster.  Instead of:
    //    Loop: xxx; jcc Out; jmp Loop
    // we want:
    //    Loop: xxx; jncc Loop; jmp Out
    if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
      std::vector<MachineOperand> NewCond(CurCond);
      if (!TII->ReverseBranchCondition(NewCond)) {
        TII->RemoveBranch(*MBB);
        TII->InsertBranch(*MBB, CurFBB, CurTBB, NewCond);
        MadeChange = true;
        ++NumBranchOpts;
        return OptimizeBlock(MBB);
      }
    }
    
    
    // If this branch is the only thing in its block, see if we can forward
    // other blocks across it.
    if (CurTBB && CurCond.empty() && CurFBB == 0 && 
        TII->isBranch(MBB->begin()->getOpcode()) && CurTBB != MBB) {
      // This block may contain just an unconditional branch.  Because there can
      // be 'non-branch terminators' in the block, try removing the branch and
      // then seeing if the block is empty.
      TII->RemoveBranch(*MBB);

      // If this block is just an unconditional branch to CurTBB, we can
      // usually completely eliminate the block.  The only case we cannot
      // completely eliminate the block is when the block before this one
      // falls through into MBB and we can't understand the prior block's branch
      // condition.
      if (MBB->empty()) {
        bool PredHasNoFallThrough = TII->BlockHasNoFallThrough(PrevBB);
        if (PredHasNoFallThrough || !PriorUnAnalyzable ||
            !PrevBB.isSuccessor(MBB)) {
          // If the prior block falls through into us, turn it into an
          // explicit branch to us to make updates simpler.
          if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 
              PriorTBB != MBB && PriorFBB != MBB) {
            if (PriorTBB == 0) {
              assert(PriorCond.empty() && PriorFBB == 0 &&
                     "Bad branch analysis");
              PriorTBB = MBB;
            } else {
              assert(PriorFBB == 0 && "Machine CFG out of date!");
              PriorFBB = MBB;
            }
            TII->RemoveBranch(PrevBB);
            TII->InsertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond);
          }

          // Iterate through all the predecessors, revectoring each in-turn.
          MachineBasicBlock::pred_iterator PI = MBB->pred_begin();
          bool DidChange = false;
          bool HasBranchToSelf = false;
          while (PI != MBB->pred_end()) {
            if (*PI == MBB) {
              // If this block has an uncond branch to itself, leave it.
              ++PI;
              HasBranchToSelf = true;
            } else {
              DidChange = true;
              ReplaceUsesOfBlockWith(*PI, MBB, CurTBB, TII);
            }
          }

          // Change any jumptables to go to the new MBB.
          MBB->getParent()->getJumpTableInfo()->
            ReplaceMBBInJumpTables(MBB, CurTBB);
          if (DidChange) {
            ++NumBranchOpts;
            MadeChange = true;
            if (!HasBranchToSelf) return;
          }
        }
      }
      
      // Add the branch back if the block is more than just an uncond branch.
      TII->InsertBranch(*MBB, CurTBB, 0, CurCond);
    }
  }

  // If the prior block doesn't fall through into this block, and if this
  // block doesn't fall through into some other block, see if we can find a
  // place to move this block where a fall-through will happen.
  if (!CanFallThrough(&PrevBB, PriorUnAnalyzable,
                      PriorTBB, PriorFBB, PriorCond)) {
    // Now we know that there was no fall-through into this block, check to
    // see if it has a fall-through into its successor.
    bool CurFallsThru = CanFallThrough(MBB, CurUnAnalyzable, CurTBB, CurFBB, 
                                       CurCond);

    if (!MBB->isLandingPad()) {
      // Check all the predecessors of this block.  If one of them has no fall
      // throughs, move this block right after it.
      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
           E = MBB->pred_end(); PI != E; ++PI) {
        // Analyze the branch at the end of the pred.
        MachineBasicBlock *PredBB = *PI;
        MachineFunction::iterator PredFallthrough = PredBB; ++PredFallthrough;
        if (PredBB != MBB && !CanFallThrough(PredBB)
            && (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
          // If the current block doesn't fall through, just move it.
          // If the current block can fall through and does not end with a
          // conditional branch, we need to append an unconditional jump to 
          // the (current) next block.  To avoid a possible compile-time
          // infinite loop, move blocks only backward in this case.
          if (CurFallsThru) {
            MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
            CurCond.clear();
            TII->InsertBranch(*MBB, NextBB, 0, CurCond);
          }
          MBB->moveAfter(PredBB);
          MadeChange = true;
          return OptimizeBlock(MBB);
        }
      }
    }
        
    if (!CurFallsThru) {
      // Check all successors to see if we can move this block before it.
      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
           E = MBB->succ_end(); SI != E; ++SI) {
        // Analyze the branch at the end of the block before the succ.
        MachineBasicBlock *SuccBB = *SI;
        MachineFunction::iterator SuccPrev = SuccBB; --SuccPrev;
        std::vector<MachineOperand> SuccPrevCond;
        
        // If this block doesn't already fall-through to that successor, and if
        // the succ doesn't already have a block that can fall through into it,
        // and if the successor isn't an EH destination, we can arrange for the
        // fallthrough to happen.
        if (SuccBB != MBB && !CanFallThrough(SuccPrev) &&
            !SuccBB->isLandingPad()) {
          MBB->moveBefore(SuccBB);
          MadeChange = true;
          return OptimizeBlock(MBB);
        }
      }
      
      // Okay, there is no really great place to put this block.  If, however,
      // the block before this one would be a fall-through if this block were
      // removed, move this block to the end of the function.
      if (FallThrough != MBB->getParent()->end() &&
          PrevBB.isSuccessor(FallThrough)) {
        MBB->moveAfter(--MBB->getParent()->end());
        MadeChange = true;
        return;
      }
    }
  }
}