summaryrefslogtreecommitdiff
path: root/lib/CodeGen/InlineSpiller.cpp
blob: 5fdc59ad667cfea18d101c8b63f4d28b26f8a145 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "spiller"
#include "Spiller.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {
class InlineSpiller : public Spiller {
  MachineFunctionPass &pass_;
  MachineFunction &mf_;
  LiveIntervals &lis_;
  MachineLoopInfo &loops_;
  VirtRegMap &vrm_;
  MachineFrameInfo &mfi_;
  MachineRegisterInfo &mri_;
  const TargetInstrInfo &tii_;
  const TargetRegisterInfo &tri_;
  const BitVector reserved_;

  SplitAnalysis splitAnalysis_;

  // Variables that are valid during spill(), but used by multiple methods.
  LiveInterval *li_;
  SmallVectorImpl<LiveInterval*> *newIntervals_;
  const TargetRegisterClass *rc_;
  int stackSlot_;
  const SmallVectorImpl<LiveInterval*> *spillIs_;

  // Values of the current interval that can potentially remat.
  SmallPtrSet<VNInfo*, 8> reMattable_;

  // Values in reMattable_ that failed to remat at some point.
  SmallPtrSet<VNInfo*, 8> usedValues_;

  ~InlineSpiller() {}

public:
  InlineSpiller(MachineFunctionPass &pass,
                MachineFunction &mf,
                VirtRegMap &vrm)
    : pass_(pass),
      mf_(mf),
      lis_(pass.getAnalysis<LiveIntervals>()),
      loops_(pass.getAnalysis<MachineLoopInfo>()),
      vrm_(vrm),
      mfi_(*mf.getFrameInfo()),
      mri_(mf.getRegInfo()),
      tii_(*mf.getTarget().getInstrInfo()),
      tri_(*mf.getTarget().getRegisterInfo()),
      reserved_(tri_.getReservedRegs(mf_)),
      splitAnalysis_(mf, lis_, loops_) {}

  void spill(LiveInterval *li,
             SmallVectorImpl<LiveInterval*> &newIntervals,
             SmallVectorImpl<LiveInterval*> &spillIs);

private:
  bool split();

  bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
                          SlotIndex UseIdx);
  bool reMaterializeFor(MachineBasicBlock::iterator MI);
  void reMaterializeAll();

  bool coalesceStackAccess(MachineInstr *MI);
  bool foldMemoryOperand(MachineBasicBlock::iterator MI,
                         const SmallVectorImpl<unsigned> &Ops);
  void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
  void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
};
}

namespace llvm {
Spiller *createInlineSpiller(MachineFunctionPass &pass,
                             MachineFunction &mf,
                             VirtRegMap &vrm) {
  return new InlineSpiller(pass, mf, vrm);
}
}

/// split - try splitting the current interval into pieces that may allocate
/// separately. Return true if successful.
bool InlineSpiller::split() {
  splitAnalysis_.analyze(li_);

  // Try splitting around loops.
  if (const MachineLoop *loop = splitAnalysis_.getBestSplitLoop()) {
    SplitEditor(splitAnalysis_, lis_, vrm_, *newIntervals_)
      .splitAroundLoop(loop);
    return true;
  }

  // Try splitting into single block intervals.
  SplitAnalysis::BlockPtrSet blocks;
  if (splitAnalysis_.getMultiUseBlocks(blocks)) {
    SplitEditor(splitAnalysis_, lis_, vrm_, *newIntervals_)
      .splitSingleBlocks(blocks);
    return true;
  }

  // Try splitting inside a basic block.
  if (const MachineBasicBlock *MBB = splitAnalysis_.getBlockForInsideSplit()) {
    SplitEditor(splitAnalysis_, lis_, vrm_, *newIntervals_)
      .splitInsideBlock(MBB);
    return true;
  }

  return false;
}

/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool InlineSpiller::allUsesAvailableAt(const MachineInstr *OrigMI,
                                       SlotIndex OrigIdx,
                                       SlotIndex UseIdx) {
  OrigIdx = OrigIdx.getUseIndex();
  UseIdx = UseIdx.getUseIndex();
  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = OrigMI->getOperand(i);
    if (!MO.isReg() || !MO.getReg() || MO.getReg() == li_->reg)
      continue;
    // Reserved registers are OK.
    if (MO.isUndef() || !lis_.hasInterval(MO.getReg()))
      continue;
    // We don't want to move any defs.
    if (MO.isDef())
      return false;
    // We cannot depend on virtual registers in spillIs_. They will be spilled.
    for (unsigned si = 0, se = spillIs_->size(); si != se; ++si)
      if ((*spillIs_)[si]->reg == MO.getReg())
        return false;

    LiveInterval &LI = lis_.getInterval(MO.getReg());
    const VNInfo *OVNI = LI.getVNInfoAt(OrigIdx);
    if (!OVNI)
      continue;
    if (OVNI != LI.getVNInfoAt(UseIdx))
      return false;
  }
  return true;
}

/// reMaterializeFor - Attempt to rematerialize li_->reg before MI instead of
/// reloading it.
bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) {
  SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex();
  VNInfo *OrigVNI = li_->getVNInfoAt(UseIdx);
  if (!OrigVNI) {
    DEBUG(dbgs() << "\tadding <undef> flags: ");
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg)
        MO.setIsUndef();
    }
    DEBUG(dbgs() << UseIdx << '\t' << *MI);
    return true;
  }
  if (!reMattable_.count(OrigVNI)) {
    DEBUG(dbgs() << "\tusing non-remat valno " << OrigVNI->id << ": "
                 << UseIdx << '\t' << *MI);
    return false;
  }
  MachineInstr *OrigMI = lis_.getInstructionFromIndex(OrigVNI->def);
  if (!allUsesAvailableAt(OrigMI, OrigVNI->def, UseIdx)) {
    usedValues_.insert(OrigVNI);
    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
    return false;
  }

  // If the instruction also writes li_->reg, it had better not require the same
  // register for uses and defs.
  bool Reads, Writes;
  SmallVector<unsigned, 8> Ops;
  tie(Reads, Writes) = MI->readsWritesVirtualRegister(li_->reg, &Ops);
  if (Writes) {
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(Ops[i]);
      if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
        usedValues_.insert(OrigVNI);
        DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
        return false;
      }
    }
  }

  // Alocate a new register for the remat.
  unsigned NewVReg = mri_.createVirtualRegister(rc_);
  vrm_.grow();
  LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg);
  NewLI.markNotSpillable();
  newIntervals_->push_back(&NewLI);

  // Finally we can rematerialize OrigMI before MI.
  MachineBasicBlock &MBB = *MI->getParent();
  tii_.reMaterialize(MBB, MI, NewLI.reg, 0, OrigMI, tri_);
  MachineBasicBlock::iterator RematMI = MI;
  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(--RematMI).getDefIndex();
  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t' << *RematMI);

  // Replace operands
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(Ops[i]);
    if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) {
      MO.setReg(NewVReg);
      MO.setIsKill();
    }
  }
  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);

  VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, lis_.getVNInfoAllocator());
  NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
  DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
  return true;
}

/// reMaterializeAll - Try to rematerialize as many uses of li_ as possible,
/// and trim the live ranges after.
void InlineSpiller::reMaterializeAll() {
  // Do a quick scan of the interval values to find if any are remattable.
  reMattable_.clear();
  usedValues_.clear();
  for (LiveInterval::const_vni_iterator I = li_->vni_begin(),
       E = li_->vni_end(); I != E; ++I) {
    VNInfo *VNI = *I;
    if (VNI->isUnused())
      continue;
    MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
    if (!DefMI || !tii_.isTriviallyReMaterializable(DefMI))
      continue;
    reMattable_.insert(VNI);
  }

  // Often, no defs are remattable.
  if (reMattable_.empty())
    return;

  // Try to remat before all uses of li_->reg.
  bool anyRemat = false;
  for (MachineRegisterInfo::use_nodbg_iterator
       RI = mri_.use_nodbg_begin(li_->reg);
       MachineInstr *MI = RI.skipInstruction();)
     anyRemat |= reMaterializeFor(MI);

  if (!anyRemat)
    return;

  // Remove any values that were completely rematted.
  bool anyRemoved = false;
  for (SmallPtrSet<VNInfo*, 8>::iterator I = reMattable_.begin(),
       E = reMattable_.end(); I != E; ++I) {
    VNInfo *VNI = *I;
    if (VNI->hasPHIKill() || usedValues_.count(VNI))
      continue;
    MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
    DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI);
    lis_.RemoveMachineInstrFromMaps(DefMI);
    vrm_.RemoveMachineInstrFromMaps(DefMI);
    DefMI->eraseFromParent();
    VNI->def = SlotIndex();
    anyRemoved = true;
  }

  if (!anyRemoved)
    return;

  // Removing values may cause debug uses where li_ is not live.
  for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(li_->reg);
       MachineInstr *MI = RI.skipInstruction();) {
    if (!MI->isDebugValue())
      continue;
    // Try to preserve the debug value if li_ is live immediately after it.
    MachineBasicBlock::iterator NextMI = MI;
    ++NextMI;
    if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) {
      VNInfo *VNI = li_->getVNInfoAt(lis_.getInstructionIndex(NextMI));
      if (VNI && (VNI->hasPHIKill() || usedValues_.count(VNI)))
        continue;
    }
    DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI);
    MI->eraseFromParent();
  }
}

/// If MI is a load or store of stackSlot_, it can be removed.
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI) {
  int FI = 0;
  unsigned reg;
  if (!(reg = tii_.isLoadFromStackSlot(MI, FI)) &&
      !(reg = tii_.isStoreToStackSlot(MI, FI)))
    return false;

  // We have a stack access. Is it the right register and slot?
  if (reg != li_->reg || FI != stackSlot_)
    return false;

  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
  lis_.RemoveMachineInstrFromMaps(MI);
  MI->eraseFromParent();
  return true;
}

/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
/// Return true on success, and MI will be erased.
bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
                                      const SmallVectorImpl<unsigned> &Ops) {
  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
  // operands.
  SmallVector<unsigned, 8> FoldOps;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    unsigned Idx = Ops[i];
    MachineOperand &MO = MI->getOperand(Idx);
    if (MO.isImplicit())
      continue;
    // FIXME: Teach targets to deal with subregs.
    if (MO.getSubReg())
      return false;
    // Tied use operands should not be passed to foldMemoryOperand.
    if (!MI->isRegTiedToDefOperand(Idx))
      FoldOps.push_back(Idx);
  }

  MachineInstr *FoldMI = tii_.foldMemoryOperand(MI, FoldOps, stackSlot_);
  if (!FoldMI)
    return false;
  lis_.ReplaceMachineInstrInMaps(MI, FoldMI);
  vrm_.addSpillSlotUse(stackSlot_, FoldMI);
  MI->eraseFromParent();
  DEBUG(dbgs() << "\tfolded: " << *FoldMI);
  return true;
}

/// insertReload - Insert a reload of NewLI.reg before MI.
void InlineSpiller::insertReload(LiveInterval &NewLI,
                                 MachineBasicBlock::iterator MI) {
  MachineBasicBlock &MBB = *MI->getParent();
  SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
  tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_);
  --MI; // Point to load instruction.
  SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
  vrm_.addSpillSlotUse(stackSlot_, MI);
  DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
  VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
                                       lis_.getVNInfoAllocator());
  NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
}

/// insertSpill - Insert a spill of NewLI.reg after MI.
void InlineSpiller::insertSpill(LiveInterval &NewLI,
                                MachineBasicBlock::iterator MI) {
  MachineBasicBlock &MBB = *MI->getParent();
  SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
  tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_);
  --MI; // Point to store instruction.
  SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
  vrm_.addSpillSlotUse(stackSlot_, MI);
  DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
  VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, lis_.getVNInfoAllocator());
  NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
}

void InlineSpiller::spill(LiveInterval *li,
                          SmallVectorImpl<LiveInterval*> &newIntervals,
                          SmallVectorImpl<LiveInterval*> &spillIs) {
  DEBUG(dbgs() << "Inline spilling " << *li << "\n");
  assert(li->isSpillable() && "Attempting to spill already spilled value.");
  assert(!li->isStackSlot() && "Trying to spill a stack slot.");

  li_ = li;
  newIntervals_ = &newIntervals;
  rc_ = mri_.getRegClass(li->reg);
  spillIs_ = &spillIs;

  if (split())
    return;

  reMaterializeAll();

  // Remat may handle everything.
  if (li_->empty())
    return;

  stackSlot_ = vrm_.getStackSlot(li->reg);
  if (stackSlot_ == VirtRegMap::NO_STACK_SLOT)
    stackSlot_ = vrm_.assignVirt2StackSlot(li->reg);

  // Iterate over instructions using register.
  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(li->reg);
       MachineInstr *MI = RI.skipInstruction();) {

    // Debug values are not allowed to affect codegen.
    if (MI->isDebugValue()) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      uint64_t Offset = MI->getOperand(1).getImm();
      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
      DebugLoc DL = MI->getDebugLoc();
      if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_,
                                                           Offset, MDPtr, DL)) {
        DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
        MachineBasicBlock *MBB = MI->getParent();
        MBB->insert(MBB->erase(MI), NewDV);
      } else {
        DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
        MI->eraseFromParent();
      }
      continue;
    }

    // Stack slot accesses may coalesce away.
    if (coalesceStackAccess(MI))
      continue;

    // Analyze instruction.
    bool Reads, Writes;
    SmallVector<unsigned, 8> Ops;
    tie(Reads, Writes) = MI->readsWritesVirtualRegister(li->reg, &Ops);

    // Attempt to fold memory ops.
    if (foldMemoryOperand(MI, Ops))
      continue;

    // Allocate interval around instruction.
    // FIXME: Infer regclass from instruction alone.
    unsigned NewVReg = mri_.createVirtualRegister(rc_);
    vrm_.grow();
    LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg);
    NewLI.markNotSpillable();

    if (Reads)
      insertReload(NewLI, MI);

    // Rewrite instruction operands.
    bool hasLiveDef = false;
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(Ops[i]);
      MO.setReg(NewVReg);
      if (MO.isUse()) {
        if (!MI->isRegTiedToDefOperand(Ops[i]))
          MO.setIsKill();
      } else {
        if (!MO.isDead())
          hasLiveDef = true;
      }
    }

    // FIXME: Use a second vreg if instruction has no tied ops.
    if (Writes && hasLiveDef)
      insertSpill(NewLI, MI);

    DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
    newIntervals.push_back(&NewLI);
  }
}